1
|
Nguyen TC, Bui NTT, Nguyen LT, Ngo TNT, Van Nguyen C, Nguyen LM, Nouhin J, Karlsson E, Padungtod P, Pamornchainavakul N, Kesdangsakonwut S, Thanawongnuwech R, Do DT. An African swine fever vaccine-like variant with multiple gene deletions caused reproductive failure in a Vietnamese breeding herd. Sci Rep 2025; 15:14919. [PMID: 40295549 PMCID: PMC12037777 DOI: 10.1038/s41598-025-95641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
African swine fever (ASF), an economically damaging disease in domestic pigs, has emerged in Vietnam since 2019. Vietnam is the only country granted licenses for developing and commercializing modified live-attenuated vaccines (LAVs) against the highly pathogenic ASF virus (ASFV). The nationwide implementation of LAVs in Vietnam for prophylaxis has likely influenced the viral genetic pool among the swine population. This study highlighted the incursion of a novel ASF vaccine-like variant into a non-vaccinated breeding herd. Retrospective epidemiology suggested a high replacement rate and improper biosecurity measures might introduce the disease into the herd. Affected gilts displayed non-to-mild symptoms, whereas gestational sows experienced reproductive disorders. Remarkably, severe ulcerative dermatitis in udders was observed in lactating sows 1-2 weeks postpartum. The ASF outbreak was significantly associated with reduced reproductive performance compared to the pre-outbreak period (P < 0.001). Genetic analysis revealed several virulence-associated gene deletions and a marker gene presence in the left variable region, consistent with the ASFV-G-∆MGF vaccine strain. Molecular detection and immunohistochemistry indicated viral antigens distributed in macrophage-like cells of the reproductive organs and affected udders. Microscopic findings implied massive necrotizing vasculitis with fibrinoid degeneration compatible with immune complex-induced lesions. In conclusion, naïve sows are highly susceptible to the novel ASF vaccine-like variant than gilts, underscoring improved biosecurity requirements when introducing replacement gilts and monitoring ASF vaccine-like variants.
Collapse
Affiliation(s)
- Thanh Che Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, 70000, Vietnam
| | - Nga To Thi Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 10000, Vietnam
| | - Lua Thi Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 10000, Vietnam
| | - Tram Ngoc Thi Ngo
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, 70000, Vietnam
| | - Cuong Van Nguyen
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, 70000, Vietnam
| | - Luan Minh Nguyen
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, 70000, Vietnam
| | - Janin Nouhin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, 120210, Cambodia
| | - Erik Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, 120210, Cambodia
| | - Pawin Padungtod
- Representation in Vietnam, Food and Agriculture Organization of the United Nations (FAO), Hanoi, 11112, Vietnam
| | | | - Sawang Kesdangsakonwut
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- CU-Animal Fertility Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-emerging Infectious Disease in Animals and One Health Research Cluster, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Duy Tien Do
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, 70000, Vietnam.
| |
Collapse
|
2
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Lin L, Zhu S, Yang B, Zhang X, Wu H, Wu S, Wu L, Shu J, He Y, Feng H. H9 Consensus Hemagglutinin Subunit Vaccine with Adjuvants Induces Robust Mucosal and Systemic Immune Responses in Mice by Intranasal Administration. Microorganisms 2024; 12:2294. [PMID: 39597683 PMCID: PMC11596065 DOI: 10.3390/microorganisms12112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The H9N2 subtype avian influenza viruses mainly cause respiratory symptoms, reduce the egg production and fertility of poultry, and result in secondary infections, posing a great threat to the poultry industry and human health. Currently, all H9N2 avian influenza commercial vaccines are inactivated vaccines, which provide protection for immunized animals but cannot inhibit the spread of the virus and make it difficult to distinguish between the infected animals and vaccinated animals. In this study, a trimeric consensus H9 hemagglutinin (HA) subunit vaccine for the H9N2 subtype avian influenza virus based on a baculovirus expression system was first generated, and then the effects of three molecular adjuvants on the H9 HA subunit vaccine, Cholera toxin subunit B (CTB), flagellin, and granulocyte-macrophage colony-stimulating factor (GM-CSF) fused with H9 HA, and one synthetic compound, a polyinosinic-polycytidylic acid (PolyI:C) adjuvant, were evaluated in mice by intranasal administration. The results showed that these four adjuvants enhanced the immunogenicity of the H9 HA subunit vaccine for avian influenza viruses, and that GM-CSF and PolyI:C present better mucosal adjuvant activity for the H9 HA subunit vaccine. These results demonstrate that we have developed a potential universal H9 HA mucosal subunit vaccine with adjuvants in a baculovirus system that would be helpful for the prevention and control of H9N2 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Beibei Yang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Huimin Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.L.); (S.Z.); (B.Y.); (X.Z.); (H.W.); (S.W.); (J.S.); (Y.H.)
| |
Collapse
|
4
|
Sasse S, Arrizabalaga-Larrañaga A, Sterk SS. Antiviral drugs in animal-derived matrices: A review. Heliyon 2024; 10:e37460. [PMID: 39309792 PMCID: PMC11416254 DOI: 10.1016/j.heliyon.2024.e37460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The ban of antiviral drugs in food-producing animals in several parts of the world, latest by Commission Delegated Regulation (EU) 2022/1644, has increased the need for food control laboratories to develop analytical methods and perform official controls. However, little is known about antiviral drugs, their use, and its analysis in food-producing animals in the EU. This review aims to provide insights into relevant viruses, antiviral drugs, and animal-derived matrices for analytical method development and monitoring purposes to implement in food control laboratories. For years, animal viruses, such as African swine fever and avian influenza, have caused many outbreaks. Besides, they led to large economic losses due to the applied control measures and a lack of available treatments. Considering these losses and the known effectiveness of authorized human antiviral drugs in different organisms, medicines such as amantadine in Chinese poultry have been misused. Various analytical methods, including screening assays and sensors (published 2016-2023), and mass spectrometry methods (published 2012-2023) have been outlined in this review for the monitoring of antiviral drugs in animal-derived matrices. However, pharmacokinetics information on metabolite formation and distribution of these substances in different animal-derived matrices is incomplete. Additionally, apart from a few countries, there is a lack of available data on the potential misuse of different antiviral drugs in animal-derived matrices. Although a handful of important antiviral drugs, such as influenza, broad-spectrum, antiretroviral, and herpes drugs, and animal-derived matrices, such as chicken muscle, are identified, the priority of the scope should be further specified by closing the aforementioned gaps.
Collapse
Affiliation(s)
- Samantha Sasse
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Saskia S. Sterk
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| |
Collapse
|
5
|
Ahmadivand S, Fux R, Palić D. Ferritin Vaccine Platform for Animal and Zoonotic Viruses. Vaccines (Basel) 2024; 12:1112. [PMID: 39460279 PMCID: PMC11511493 DOI: 10.3390/vaccines12101112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Viral infections in animals continue to pose a significant challenge, affecting livestock health, welfare, and food safety, and, in the case of zoonotic viruses, threatening global public health. The control of viral diseases currently relies on conventional approaches such as inactivated or attenuated vaccines produced via platforms with inherent limitations. Self-assembling ferritin nanocages represent a novel vaccine platform that has been utilized for several viruses, some of which are currently undergoing human clinical trials. Experimental evidence also supports the potential of this platform for developing commercial vaccines for veterinary viruses. In addition to improved stability and immunogenicity, ferritin-based vaccines are safe and DIVA-compatible, and can be rapidly deployed in response to emerging epidemics or pandemics. This review discusses the structural and functional properties of ferritin proteins, followed by an overview of the design and production of ferritin-based vaccines, the mechanisms of immune responses, and their applications in developing vaccines against animal and zoonotic viruses.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
6
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Sarker MS, Nath SC, Ahmed I, Siddiky NA, Islam S, Kabir ME, Bupasha ZB. Knowledge, attitude and practice towards antibiotic use and resistance among the veterinarians in Bangladesh. PLoS One 2024; 19:e0308324. [PMID: 39137217 PMCID: PMC11321546 DOI: 10.1371/journal.pone.0308324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance is a growing human and animal health concern around the world. When a number of studies have emphasized the Knowledge, Attitude and Practice (KAP) regarding antibiotic use and resistance in humans, little attention has been paid to the veterinary sector. The aim of this study was to understand the KAP towards antibiotic use and resistance among veterinarians in Bangladesh. METHODS A cross-sectional online based questionnaire survey was conducted from August to September 2020 among the registered veterinary practitioners. A self-administered Google form questionnaire consisting of 45 questions on knowledge, attitude and practice regarding antibiotic use and resistance was used. For statistical significance test we used Chi-square or Fisher's Exact test and logistic regression for factor analysis. RESULTS A total of 208 registered veterinarians participated in this study. The study involved a majority of male participants, constituting 85.1%, while 54.8% of the participants held a Masters degree. Around 52% of the veterinarians were poultry practitioners. All respondents were familiar with antimicrobials. The participants (91.4%) knew that antibiotics cannot cure viral infections, while 97.6% believed that frequent antibiotic prescriptions rendered them less effective. Participants claimed that only they were eligible to prescribe drugs for the treatment of animals, and around 80% disagreed with adding antibiotics with feed/water as a growth promoter in livestock. Of the total participants, 87% believed that a local antimicrobial guideline would be more effective than an international one. A multivariable analysis revealed that male veterinarians have 2.37 times higher knowledge regarding antimicrobial use (AMU) and antimicrobial resistance (AMR) (OR = 2.37, CI = 1.01-5.59, p = 0.05). Veterinarians engaged in government services demonstrated a 2.59 times more favorable attitude towards AMU and AMR (OR = 2.59, CI = 0.99-6.73, p = 0.05). Additionally, respondents aged 31-35 were 0.45 times more likely to exhibit good practices (OR = 0.45, CI = 0.2-1.00, p = 0.05). However, gaps in practices were highlighted in our study, suggesting training deficiencies. CONCLUSION The present study, for the first time conducted in Bangladesh, dictates that future interventions like academic courses, workshops, and seminars on antibiotic usage and resistance are needed to facilitate the knowledge, behavior and practice of veterinarians with regard to the rational use of antibiotics.
Collapse
Affiliation(s)
- Md Samun Sarker
- Bangladesh Livestock Research Institute (BLRI), Antimicrobial Resistance Action Center (ARAC), Savar, Dhaka, Bangladesh
| | - Sanjib Chandra Nath
- Bangladesh Livestock Research Institute (BLRI), Antimicrobial Resistance Action Center (ARAC), Savar, Dhaka, Bangladesh
| | - Iftekhar Ahmed
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Nure Alam Siddiky
- Bangladesh Livestock Research Institute (BLRI), Antimicrobial Resistance Action Center (ARAC), Savar, Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Bangladesh
| | - Md Ehsanul Kabir
- Bangladesh Livestock Research Institute (BLRI), Antimicrobial Resistance Action Center (ARAC), Savar, Dhaka, Bangladesh
| | - Zamila Bueaza Bupasha
- Bangladesh Livestock Research Institute (BLRI), Antimicrobial Resistance Action Center (ARAC), Savar, Dhaka, Bangladesh
| |
Collapse
|
8
|
Wang L, Ren J, Wang J, Zhang H, Shi J. Editorial: Advances and insights in the diagnosis of viral infections and vaccines development in animals. Front Microbiol 2024; 15:1443858. [PMID: 39015738 PMCID: PMC11249551 DOI: 10.3389/fmicb.2024.1443858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
- Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jianke Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan, China
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Tataje-Lavanda L, Málaga E, Verastegui M, Mayta Huatuco E, Icochea E, Fernández-Díaz M, Zimic M. Identification and evaluation in-vitro of conserved peptides with high affinity to MHC-I as potential protective epitopes for Newcastle disease virus vaccines. BMC Vet Res 2023; 19:196. [PMID: 37805566 PMCID: PMC10559636 DOI: 10.1186/s12917-023-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Newcastle disease (ND) is a major threat to the poultry industry, leading to significant economic losses. The current ND vaccines, usually based on active or attenuated strains, are only partially effective and can cause adverse effects post-vaccination. Therefore, the development of safer and more efficient vaccines is necessary. Epitopes represent the antigenic portion of the pathogen and their identification and use for immunization could lead to safer and more effective vaccines. However, the prediction of protective epitopes for a pathogen is a major challenge, especially taking into account the immune system of the target species. RESULTS In this study, we utilized an artificial intelligence algorithm to predict ND virus (NDV) peptides that exhibit high affinity to the chicken MHC-I complex. We selected the peptides that are conserved across different NDV genotypes and absent in the chicken proteome. From the filtered peptides, we synthesized the five peptides with the highest affinities for the L, HN, and F proteins of NDV. We evaluated these peptides in-vitro for their ability to elicit cell-mediated immunity, which was measured by the lymphocyte proliferation in spleen cells of chickens previously immunized with NDV. CONCLUSIONS Our study identified five peptides with high affinity to MHC-I that have the potential to serve as protective epitopes and could be utilized for the development of multi-epitope NDV vaccines. This approach can provide a safer and more efficient method for NDV immunization.
Collapse
Affiliation(s)
- Luis Tataje-Lavanda
- Research and Development Laboratories, FARVET SAC, Chincha Alta, Ica, Peru.
- Laboratory of Clinical Molecular Virology, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru.
- School of Human Medicine, Private University San Juan Bautista, Lima, Peru.
| | - Edith Málaga
- Research Laboratory On Infectious Diseases, Cayetano Heredia Peruvian University, Lima, Peru
| | - Manuela Verastegui
- Research Laboratory On Infectious Diseases, Cayetano Heredia Peruvian University, Lima, Peru
| | - Egma Mayta Huatuco
- Laboratory of Clinical Molecular Virology, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | - Eliana Icochea
- Avian Pathology Laboratory, Faculty of Veterinary Medicine, National University of San Marcos, Lima, Peru
| | | | - Mirko Zimic
- Research and Development Laboratories, FARVET SAC, Chincha Alta, Ica, Peru
- Bioinformatics, Molecular Biology, and Technological Developments Laboratory, Faculty of Science and Philosophy, Cayetano Heredia Peruvian University, Lima, Peru
| |
Collapse
|
10
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Exosome-Based Vaccines: Pros and Cons in the World of Animal Health. Viruses 2021; 13:v13081499. [PMID: 34452364 PMCID: PMC8402771 DOI: 10.3390/v13081499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Due to the emergence of antibiotic resistance and new and more complex diseases that affect livestock animal health and food security, the control of epidemics has become a top priority worldwide. Vaccination represents the most important and cost-effective measure to control infectious diseases in animal health, but it represents only 23% of the total global animal health market, highlighting the need to develop new vaccines. A recent strategy in animal health vaccination is the use of extracellular vesicles (EVs), lipid bilayer nanovesicles produced by almost all living cells, including both prokaryotes and eukaryotes. EVs have been evaluated as a prominent source of viral antigens to elicit specific immune responses and to develop new vaccination platforms as viruses and EVs share biogenesis pathways. Preliminary trials with lymphocytic choriomeningitis virus infection (LCMV), porcine reproductive and respiratory syndrome virus (PRRSV), and Marek's disease virus (MDV) have demonstrated that EVs have a role in the activation of cellular and antibody immune responses. Moreover, in parasitic diseases such as Eimeria (chickens) and Plasmodium yoelii (mice) protection has been achieved. Research into EVs is therefore opening an opportunity for new strategies to overcome old problems affecting food security, animal health, and emerging diseases. Here, we review different conventional approaches for vaccine design and compare them with examples of EV-based vaccines that have already been tested in relation to animal health.
Collapse
|
13
|
Vilela J, Rohaim MA, Munir M. Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Front Cell Infect Microbiol 2020; 10:581504. [PMID: 33330126 PMCID: PMC7732654 DOI: 10.3389/fcimb.2020.581504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats associated protein nuclease 9 (CRISPR-Cas9) technology offers novel approaches to precisely, cost-effectively, and user-friendly edit genomes for a wide array of applications and across multiple disciplines. This methodology can be leveraged to underpin host-virus interactions, elucidate viral gene functions, and to develop recombinant vaccines. The successful utilization of CRISPR/Cas9 in editing viral genomes has paved the way of developing novel and multiplex viral vectored poultry vaccines. Furthermore, CRISPR/Cas9 can be exploited to rectify major limitations of conventional approaches including reversion to virulent form, recombination with field viruses and transgene, and genome instability. This review provides comprehensive analysis of the potential of CRISPR/Cas9 genome editing technique in understanding avian virus-host interactions and developing novel poultry vaccines. Finally, we discuss the simplest and practical aspects of genome editing approaches in generating multivalent recombinant poultry vaccines that conform simultaneous protection against major avian diseases.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
14
|
Su F, Liu X, Jiang Y. Roles of MOV10 in Animal RNA Virus Infection. Front Vet Sci 2020; 7:569737. [PMID: 33195554 PMCID: PMC7524886 DOI: 10.3389/fvets.2020.569737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal epidemic diseases caused by RNA viruses are the primary threat to the livestock industry, and understanding the mechanisms of RNA virus clearance from target cells is critical to establish an effective method to reduce economic losses. As an SF-1, ATP-dependent RNA helicase in the UPF1p family, MOV10 participates in the RNA degradation of multiple viruses mediated via miRNA pathways and therefore contributes to a decrease in the replication of RNA viruses. This review primarily focuses on the bioactivity of MOV10, the mechanism of RNA virus removal, and the potential roles of MOV10 in RNA virus clearance. In addition, clues are provided to reduce animal diseases caused by RNA viruses.
Collapse
Affiliation(s)
- Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xueming Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
15
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
16
|
Galindo-Villegas J, García-Alcazar A, Meseguer J, Mulero V. Aluminum adjuvant potentiates gilthead seabream immune responses but induces toxicity in splenic melanomacrophage centers. FISH & SHELLFISH IMMUNOLOGY 2019; 85:31-43. [PMID: 29510253 DOI: 10.1016/j.fsi.2018.02.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
A key goal of a successful vaccine formulation is the strong induction of persistent protective immune responses without producing side-effects. Adjuvants have been proved to be successful in several species at inducing increased immune responses against poorly immunogenic antigens. Fish are not the exception and promising results of adjuvanted vaccine formulations in many species are needed. In this study, over a period of 300 days, we characterized the apparent damage and immune response in gilthead seabream immunized by intraperitoneal injection with the model antigen keyhole limpet hemocyanin (KLH) alone or formulated with Montanide ISA water-in-oil (761 or 763), or Imject™ aluminum hydroxide (aluminium), as adjuvants. Throughout the trial, external tissue damage was examined visually, but no change was observed. Internally, severe adhesions, increased fat tissue, and hepatomegaly were recorded, but, without impairing animal health. At 120 days post priming (dpp), histopathological evaluations of head-kidney, spleen and liver revealed the presence of altered melanomacrophage centers (MMC) in HK and spleen, but not in liver. Surprisingly, in all aluminium treated fish, classical stains unmasked a toxic effect on splenic-MMC, unequivocally characterized by a strong cell depletion. Furthermore, at 170 dpp transmission electron microscopy confirmed this data. Paradoxically, at the same time powerful immune responses were recorded in most vaccinated groups, including the aluminium treatment. Whatever the case, despite the observed adhesions and MMC depletion, fish physiology was not affected, and most side-effects were resolved after 300 dpp. Therefore, our data support adjuvant inclusion, but strongly suggest that use of aluminium must be further explored in detail before it might benefit the rational design of new vaccination strategies in aquaculture.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain.
| | | | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|