1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
4
|
Piñon-Teal WL, Ogilvie JM. G protein-coupled estrogen receptor expression in postnatal developing mouse retina. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1331298. [PMID: 38984123 PMCID: PMC11182193 DOI: 10.3389/fopht.2024.1331298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 07/11/2024]
Abstract
Introduction Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.
Collapse
Affiliation(s)
| | - Judith Mosinger Ogilvie
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
5
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
6
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
7
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
8
|
Nohara T, Tsuji M, Oguchi T, Momma Y, Ohashi H, Nagata M, Ito N, Yamamoto K, Murakami H, Kiuchi Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines 2023; 11:2135. [PMID: 37626631 PMCID: PMC10452439 DOI: 10.3390/biomedicines11082135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Amyloid-β (Aβ) is one of the causes of Alzheimer's disease (AD), damaging nerve membranes and inducing neurotoxicity. AD is more prevalent in female patients than in male patients, and women are more susceptible to developing AD due to the decline in estrogen levels around menopause. Raloxifene, a selective estrogen receptor modulator, exhibits protective effects by activating the transmembrane G-protein-coupled estrogen receptor (GPER). Additionally, raloxifene prevents mild cognitive impairment and restores cognition. However, the influence of raloxifene via GPER on highly toxic Aβ-oligomers (Aβo)-induced neurotoxicity remains uncertain. In this study, we investigated the GPER-mediated neuroprotective effects of raloxifene against the neurotoxicity caused by Aβo-induced cytotoxicity. The impact of raloxifene on Aβo-induced cell damage was evaluated using measures such as cell viability, production of reactive oxygen species (ROS) and mitochondrial ROS, peroxidation of cell-membrane phospholipids, and changes in intracellular calcium ion concentration ([Ca2+]i) levels. Raloxifene hindered Aβo-induced oxidative stress and reduced excessive [Ca2+]i, resulting in improved cell viability. Furthermore, these effects of raloxifene were inhibited with pretreatment with a GPER antagonist. Our findings suggest that raloxifene safeguards against Aβo-induced neurotoxicity by modifying oxidative parameters and maintaining [Ca2+]i homeostasis. Raloxifene may prove effective in preventing and inhibiting the progression of AD.
Collapse
Affiliation(s)
- Tetsuhito Nohara
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Tatsunori Oguchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yutaro Momma
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Hideaki Ohashi
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Miki Nagata
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo 142-8555, Japan;
| | - Naohito Ito
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Ken Yamamoto
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Hidetomo Murakami
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan; (H.O.); (H.M.)
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan; (T.N.); (T.O.); (Y.M.); (N.I.); (K.Y.); (Y.K.)
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
9
|
Bouck EG, Arvanitis M, Osburn WO, Sang Y, Reventun P, Ahmadzia HK, Smith NL, Lowenstein CJ, Wolberg AS. High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro. PLoS One 2023; 18:e0284333. [PMID: 37075041 PMCID: PMC10115293 DOI: 10.1371/journal.pone.0284333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Oral contraceptive (OC) use increases venous thromboembolism risk 2-5-fold. Procoagulant changes can be detected in plasma from OC users even without thrombosis, but cellular mechanisms that provoke thrombosis have not been identified. Endothelial cell (EC) dysfunction is thought to initiate venous thromboembolism. It is unknown whether OC hormones provoke aberrant procoagulant activity in ECs. OBJECTIVE Characterize the effect of high-risk OC hormones (ethinyl estradiol [EE] and drospirenone) on EC procoagulant activity and the potential interplay with nuclear estrogen receptors ERα and ERβ and inflammatory processes. METHODS Human umbilical vein and dermal microvascular ECs (HUVEC and HDMVEC, respectively) were treated with EE and/or drospirenone. Genes encoding the estrogen receptors ERα and ERβ (ESR1 and ESR2, respectively) were overexpressed in HUVEC and HDMVEC via lentiviral vectors. EC gene expression was assessed by RT-qPCR. The ability of ECs to support thrombin generation and fibrin formation was measured by calibrated automated thrombography and spectrophotometry, respectively. RESULTS Neither EE nor drospirenone, alone or together, changed expression of genes encoding anti- or procoagulant proteins (TFPI, THBD, F3), integrins (ITGAV, ITGB3), or fibrinolytic mediators (SERPINE1, PLAT). EE and/or drospirenone did not increase EC-supported thrombin generation or fibrin formation, either. Our analyses indicated a subset of individuals express ESR1 and ESR2 transcripts in human aortic ECs. However, overexpression of ESR1 and/or ESR2 in HUVEC and HDMVEC did not facilitate the ability of OC-treated ECs to support procoagulant activity, even in the presence of a pro-inflammatory stimulus. CONCLUSIONS The OC hormones EE and drospirenone do not directly enhance thrombin generation potential of primary ECs in vitro.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Marios Arvanitis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - William O. Osburn
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yaqiu Sang
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Paula Reventun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Homa K. Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, United States of America
| | - Charles J. Lowenstein
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
10
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
11
|
Zhou K, Xiao J, Wang H, Ni B, Huang J, Long X. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway. Heliyon 2023; 9:e14305. [PMID: 36942258 PMCID: PMC10023923 DOI: 10.1016/j.heliyon.2023.e14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death, morbidity, and disability. Recently, it has been reported that gonadal hormones such as estradiol can act on membrane receptors and activate intracellular signaling mechanisms, thereby altering cellular function. This study aims to explore the function and molecular mechanism of estradiol on cardiac microvascular endothelial cells (CMVECs). Estradiol had low toxicity to CMVECs. Hypoxia/reoxygenation (H/R) stimulation inhibited the proliferation and migration of CMVECs, while estradiol significantly promoted proliferation and migration. Estradiol inhibited il-1, IL6, and TNF-α secretion levels after H/R stimulation. Meanwhile, estradiol inhibits oxidative stress and promotes angiogenesis. Further, estradiol upregulated the gene and protein levels of cyclin-dependent kinases 1 (CDK1) and CDK2 after H/R stimulation. When knocking down CDK1 and CDK2 of CMVECs, estradiol did not affect the protein expression of Cyclin E1 and Cyclin D1. Meanwhile, the regulatory effect of estradiol on oxidative stress, angiogenesis, and inflammatory response was significantly weakened or even disappeared. In conclusion, estradiol mediates oxidative stress and angiogenesis of myocardial microvascular endothelial cells by regulating the CDK/cyclin signaling pathway.
Collapse
Affiliation(s)
- Ke Zhou
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
- Corresponding author.
| | - Hao Wang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Bing Ni
- Institute of Immunology of Army Medical University, Chongqing, 400014, China
| | - Jietao Huang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xueyuan Long
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| |
Collapse
|
12
|
Functional Implications of Estrogen and Progesterone Receptors Expression in Adenomyosis, Potential Targets for Endocrinological Therapy. J Clin Med 2022; 11:jcm11154407. [PMID: 35956024 PMCID: PMC9369051 DOI: 10.3390/jcm11154407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Adenomyosis is a common gynaecological disease associated with the presence of endometrial lesions in the uterine myometrium. Estrogens have been proven to be the crucial hormones driving the growth of adenomyosis. Little is known about the distinct mechanisms of progesterone action in adenomyosis. Hence, in this study, we decided to characterize the expression of all nuclear and membrane estrogen and progesterone receptors. Additionally, as a functional investigation, we monitored prolactin production and cell proliferation after estradiol and progesterone treatments. We confirmed the presence of all nuclear and membrane estrogen and progesterone receptors in adenomyotic lesions at gene and protein levels. The expression of membrane progesterone receptors α and β (mPRα, mPRβ) as well as estrogen receptor β (ERβ) was upregulated in adenomyosis compared to normal myometrium. Estradiol significantly increased adenomyotic cell proliferation. Progesterone and cAMP upregulated prolactin secretion in adenomyosis in the same pattern as in the normal endometrium. In the present study, we showed the functional link between estradiol action and adenomyotic cell proliferation, as well as progesterone and prolactin production. Our findings provide novel insights into the sex steroid receptor expression pattern and potential regulated pathways in adenomyosis, suggesting that all receptors play an important role in adenomyosis pathophysiology.
Collapse
|
13
|
Rodriguez-Arias JJ, García-Álvarez A. Sex Differences in Pulmonary Hypertension. FRONTIERS IN AGING 2022; 2:727558. [PMID: 35822006 PMCID: PMC9261364 DOI: 10.3389/fragi.2021.727558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension (PH) includes multiple diseases that share as common characteristic an elevated pulmonary artery pressure and right ventricular involvement. Sex differences are observed in practically all causes of PH. The most studied type is pulmonary arterial hypertension (PAH) which presents a gender bias regarding its prevalence, prognosis, and response to treatment. Although this disease is more frequent in women, once affected they present a better prognosis compared to men. Even if estrogens seem to be the key to understand these differences, animal models have shown contradictory results leading to the birth of the estrogen paradox. In this review we will summarize the evidence regarding sex differences in experimental animal models and, very specially, in patients suffering from PAH or PH from other etiologies.
Collapse
Affiliation(s)
| | - Ana García-Álvarez
- Cardiology Department, Institut Clínic Cardiovascular, Hospital Clínic, IDIBAPS, Madrid, Spain.,Universidad de Barcelona, Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
14
|
Szukiewicz D, Wojdasiewicz P, Watroba M, Szewczyk G. Mast Cell Activation Syndrome in COVID-19 and Female Reproductive Function: Theoretical Background vs. Accumulating Clinical Evidence. J Immunol Res 2022; 2022:9534163. [PMID: 35785029 PMCID: PMC9242765 DOI: 10.1155/2022/9534163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, can affect almost all systems and organs of the human body, including those responsible for reproductive function in women. The multisystem inflammatory response in COVID-19 shows many analogies with mast cell activation syndrome (MCAS), and MCAS may be an important component in the course of COVID-19. Of note, the female sex hormones estradiol (E2) and progesterone (P4) significantly influence mast cell (MC) behavior. This review presents the importance of MCs and the mediators from their granules in the female reproductive system, including pregnancy, and discusses the mechanism of potential disorders related to MCAS. Then, the available data on COVID-19 in the context of hormonal disorders, the course of endometriosis, female fertility, and the course of pregnancy were compiled to verify intuitively predicted threats. Surprisingly, although COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in MCAS, the available clinical data do not provide grounds for treating this mechanism as significantly increasing the risk of abnormal female reproductive function, including pregnancy. Further studies in the context of post COVID-19 condition (long COVID), where inflammation and a procoagulative state resemble many aspects of MCAS, are needed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Watroba
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
16
|
Priyanka HP, Thiyagaraj A, Krithika G, Nair RS, Hopper W, ThyagaRajan S. 17β-Estradiol Concentration and Direct β 2-Adrenoceptor Inhibition Determine Estrogen-Mediated Reversal of Adrenergic Immunosuppression. Ann Neurosci 2022; 29:32-52. [PMID: 35875427 PMCID: PMC9305908 DOI: 10.1177/09727531211070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Sympathetic innervation of lymphoid organs, and the presence of 17β-estradiol (estrogen or E2) and adrenergic receptors (ARs) on lymphocytes, suggests that sympathetic stimulation and hormonal activation may influence immune functions. Purpose: Modeling and simulating these pathways may help to understand the dynamics of neuroendocrine-immune modulation at the cellular and molecular levels. Methods: Dose- and receptor-dependent effects of E2 and AR subtype-specific agonists were established in vitro on lymphocytes from young male Sprague-Dawley rats and were modeled in silico using the MATLAB Simbiology toolbox. Kinetic principles were assigned to define receptor–ligand dynamics, and concentration/time plots were obtained using Ode15s solvers at different time intervals for key regulatory molecules. Comparisons were drawn between in silico and in vitro data for validating the constructed model with sensitivity analysis of key regulatory molecules to assess their individual impacts on the dynamics of the system. Finally, docking studies were conducted with key ligands E2 and norepinephrine (NE) to understand the mechanistic principles underlying their interactions. Results: Adrenergic activation triggered proapoptotic signals, while E2 enhanced survival signals, showing opposing effects as observed in vitro. Treatment of lymphocytes with E2 shows a 10-fold increase in survival signals in a dose-dependent manner. Cyclic adenosine monophosphate (cAMP) activation is crucial for the activation of survival signals through extracellular signal-regulated kinase (p-ERK) and cAMP responsive element binding (p-CREB) protein. Docking studies showed the direct inhibition of ERK by NE and β2-AR by E2 explaining how estrogen signaling overrides NE-mediated immunosuppression in vitro. Conclusion: The cross-talk between E2 and adrenergic signaling pathways determines lymphocyte functions in a receptor subtype and coactivation-dependent manner in health and disease.
Collapse
Affiliation(s)
- Hannah P. Priyanka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - A. Thiyagaraj
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - G. Krithika
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy, Campus, Chennai, Tamil Nadu, India
| | - R. S. Nair
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - W. Hopper
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S. ThyagaRajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
17
|
Hirtz A, Lebourdais N, Rech F, Bailly Y, Vaginay A, Smaïl-Tabbone M, Dubois-Pot-Schneider H, Dumond H. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation. Cells 2021; 10:cells10123438. [PMID: 34943948 PMCID: PMC8699794 DOI: 10.3390/cells10123438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor in adults, which is very aggressive, with a very poor prognosis that affects men twice as much as women, suggesting that female hormones (estrogen) play a protective role. With an in silico approach, we highlighted that the expression of the membrane G-protein-coupled estrogen receptor (GPER) had an impact on GBM female patient survival. In this context, we explored for the first time the role of the GPER agonist G-1 on GBM cell proliferation. Our results suggested that G-1 exposure had a cytostatic effect, leading to reversible G2/M arrest, due to tubulin polymerization blockade during mitosis. However, the observed effect was independent of GPER. Interestingly, G-1 potentiated the efficacy of temozolomide, the current standard chemotherapy treatment, since the combination of both treatments led to prolonged mitotic arrest, even in a temozolomide less-sensitive cell line. In conclusion, our results suggested that G-1, in combination with standard chemotherapy, might be a promising way to limit the progression and aggressiveness of GBM.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Nolwenn Lebourdais
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Yann Bailly
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Athénaïs Vaginay
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France;
| | | | - Hélène Dubois-Pot-Schneider
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (A.H.); (N.L.); (F.R.); (Y.B.); (A.V.); (H.D.-P.-S.)
- Correspondence: ; Tel.: +33-372746115
| |
Collapse
|
18
|
Molecular Proof of a Clinical Concept: Expression of Estrogen Alpha-, Beta-Receptors and G Protein-Coupled Estrogen Receptor 1 (GPER) in Histologically Assessed Common Nevi, Dysplastic Nevi and Melanomas. Medicina (B Aires) 2021; 57:medicina57111228. [PMID: 34833446 PMCID: PMC8621316 DOI: 10.3390/medicina57111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Epidemiologic data show significant differences in melanoma incidence and outcomes between sexes. The role of hormonal receptors in the pathogenesis of melanocytic lesions remains unclear, thus we performed this study aiming to assess estrogen receptors expression in different melanocytic lesions. Materials and Methods: We performed a cross-sectional study that included 73 consecutively excised melanocytic lesions. Estrogen receptor alpha (ERα), beta (ERβ), and G-protein coupled estrogen receptor (GPER) expression was analyzed in melanocytes and keratinocytes of common nevi, dysplastic nevi, melanoma, healthy skin margin, and in sebaceous and sweat gland cells. Results: ERβ expression was higher in dysplastic nevi margin melanocytes compared to common nevi (p = 0.046) and in dysplastic nevi keratinocytes compared to melanoma keratinocytes (p = 0.021). ERβ expression was significantly higher in margin melanocytes compared to melanoma melanocytes (p = 0.009). No difference in ERβ expression was shown between melanocytes of three types of lesions. GPER expression was higher in nuclei and cytoplasm of dysplastic nevi (p = 0.02 and p = 0.036 respectively) and at the margin compared to melanoma. GPER expression was lower in sebaceous glands of tissue surrounding common nevi (p = 0.025) compared to dysplastic nevi. GPER expression was higher in skin margin tissue melanocytes (p = 0.016 nuclear, p = 0.029 cytoplasmic) compared to melanoma melanocytes. There were no differences in ERα expression between the melanocytic lesions. Conclusion: Further large-scale studies are warranted to investigate the potential role of ERβ and GPER in the pathogenesis of melanocytic lesions.
Collapse
|
19
|
Dimauro I, Grazioli E, Antinozzi C, Duranti G, Arminio A, Mancini A, Greco EA, Caporossi D, Parisi A, Di Luigi L. Estrogen-Receptor-Positive Breast Cancer in Postmenopausal Women: The Role of Body Composition and Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9834. [PMID: 34574758 PMCID: PMC8467802 DOI: 10.3390/ijerph18189834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Guglielmo Duranti
- Unit of Biocheminstry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Alessia Arminio
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere (DISMeB), Università Degli Studi di Napoli “Parthenope”, Via F. Acton, 38, 80133 Naples, Italy;
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via Gaetano Salvatore 482, 80145 Naples, Italy
| | - Emanuela A. Greco
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy;
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.G.); (A.P.)
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (C.A.); (A.A.); (E.A.G.); (L.D.L.)
| |
Collapse
|
20
|
The G-Protein-Coupled Membrane Estrogen Receptor Is Present in Horse Cryptorchid Testes and Mediates Downstream Pathways. Int J Mol Sci 2021; 22:ijms22137131. [PMID: 34281183 PMCID: PMC8269005 DOI: 10.3390/ijms22137131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cryptorchidism in horses is a commonly occurring malformation. The molecular basis of this pathology is not fully known. In addition, the origins of high intratesticular estrogen levels in horses remain obscure. In order to investigate the role of the G-protein-coupled membrane estrogen receptor (GPER) and establish histological and biochemical cryptorchid testis status, healthy and cryptorchid horse testes were subjected to scanning electron microscopy analysis, histochemical staining for total protein (with naphthol blue black; NBB), acid content (with toluidine blue O; TBO), and polysaccharide content (with periodic acid-Schiff; PAS). The expression of GPER was analyzed by immunohistochemistry and Western blot. GPER-mediated intracellular cAMP and calcium (Ca2+) signaling were measured immunoenzymatically or colorimetrically. Our data revealed changes in the distribution of polysaccharide content but not the protein and acid content in the cryptorchid testis. Polysaccharides seemed to be partially translocated from the interstitial compartment to the seminiferous tubule compartment. Moreover, the markedly decreased expression of GPER and GPER downstream molecules, cAMP and Ca2+, suggests their potential role in testis pathology. Increased estrogen levels in cryptorchid conditions may be linked to disturbed GPER signaling. We postulate that GPER is a prominent key player in testis development and function and may be used as a new biomarker of horse testis in health and disease.
Collapse
|
21
|
Qie Y, Qin W, Zhao K, Liu C, Zhao L, Guo LH. Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116826. [PMID: 33706245 DOI: 10.1016/j.envpol.2021.116826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Many environmental chemicals have been found to exert estrogenic effects in cells and experimental animals by activating nuclear receptors such as estrogen receptors and estrogen-related receptors. These compounds include bisphenols, pesticides, polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants, phthalates and metalloestrogens. G protein-coupled estrogen receptor (GPER) exists widely in numerous cells/tissues of human and other vertebrates. A number of studies have demonstrated that GPER plays a vital role in mediating the estrogenic effects of environmental pollutants. Even at very low concentrations, these chemicals may activate GPER pathways, thus affect many aspects of cellular functions including proliferation, metastasis and apoptosis, resulting in cancer progression, cardiovascular disorders, and reproductive dysfunction. This review summarized the environmental occurrence and human exposure levels of these pollutants, and integrated current experimental evidence toward revealing the underlying mechanisms of pollutant-induced cellular dysfunction via GPER. The GPER mediated rapid non-genomic actions play an important role in the process leading to the adverse effects observed in experimental animals and even in human beings.
Collapse
Affiliation(s)
- Yu Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weiping Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Keda Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, People's Republic of China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Yang M, Ma F, Guan M. Role of Steroid Hormones in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Metabolites 2021; 11:metabo11050320. [PMID: 34067649 PMCID: PMC8156407 DOI: 10.3390/metabo11050320] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and may progress to cirrhosis or even hepatocellular carcinoma. A number of steroid hormones are important regulators of lipid homeostasis through fine tuning the expression of genes related to lipid synthesis, export, and metabolism. Dysregulation of such pathways has been implicated in the pathogenesis of NAFLD. The aim of this review is to clarify the potential impact of steroid hormones on NAFLD. We also highlight potential interventions through modulating steroid hormone levels or the activities of their cognate receptors as therapeutic strategies for preventing NAFLD.
Collapse
Affiliation(s)
- Meng Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Feng Ma
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: ; Tel.: +86-755-86585232
| |
Collapse
|
23
|
Gu Y, Chen X, Fu S, Liu W, Wang Q, Liu KJ, Shen J. Astragali Radix Isoflavones Synergistically Alleviate Cerebral Ischemia and Reperfusion Injury Via Activating Estrogen Receptor-PI3K-Akt Signaling Pathway. Front Pharmacol 2021; 12:533028. [PMID: 33692686 PMCID: PMC7937971 DOI: 10.3389/fphar.2021.533028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Isoflavones are major neuroprotective components of a medicinal herb Astragali Radix, against cerebral ischemia-reperfusion injury but the mechanisms of neuroprotection remain unclear. Calycosin and formononetin are two major AR isoflavones while daidzein is the metabolite of formononetin after absorption. Herein, we aim to investigate the synergistic neuroprotective effects of those isoflavones of Astragali Radix against cerebral ischemia-reperfusion injury. Calycosin, formononetin and daidzein were organized with different combinations whose effects observed in both in vitro and in vivo experimental models. In the in vitro study, primary cultured neurons were subjected to oxygen-glucose deprivation plus reoxygenation (OGD/RO) or l-glutamate treatment. In the in vivo study, rats were subjected to middle cerebral artery occlusion to induce cerebral ischemia and reperfusion. All three isoflavones pre-treatment alone decreased brain infarct volume and improved neurological deficits in rats, and dose-dependently attenuated neural death induced by l-glutamate treatment and OGD/RO in cultured neurons. Interestingly, the combined formulas of those isoflavones revealed synergistically activated estrogen receptor (estrogen receptors)-PI3K-Akt signaling pathway. Using ER antagonist and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked the neuroprotective effects of those isoflavones. In conclusion, isoflavones could synergistically alleviate cerebral ischemia-reperfusion injury via activating ER-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Shuping Fu
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Jiangang Shen
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,The University of Hong Kong-Shenzhen, Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
24
|
Liu S, Chen F, Zhang Y, Cai L, Qiu W, Yang M. G protein-coupled estrogen receptor 1 mediates estrogen effect in red common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108868. [PMID: 32791253 DOI: 10.1016/j.cbpc.2020.108868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the regulation of non-genomic estrogen effect. However, the research about fish GPER1 is still limited. The present study aims to obtain the full-length sequence of gper1 from red common carp (Cyprinus carpio) and characterize its expression pattern, and to further explore its potential role in regulating the environmental estrogen induced immunotoxicity. We first cloned the full-length mRNA and genomic sequences of gper1 in C. carpio by PCR, and obtained a 1908 bp sequence with a 1062 bp open reading frame encoding GPER1 protein with 353 amino acids. Additionally, qRT-PCR showed that gper1 was expressed across different tissues in C. carpio, with the highest expression in the brain, which is similar to that in zebrafish. Moreover, applying a luciferase reporter system, we found that the promotor sequence of gper1 has strong activity, and similar to GPER1 in other animals, carp GPER1 also has seven-transmembrane domains, indicating its potential functions. We confirmed the binding ability of GPER1 with G1 and G15 in primary macrophages of C. carpio by testing the related gene expression levels after 6 h exposure, and similar to G1, bisphenol A (BPA), a typical environmental estrogen, could interact with GPER1 to increase the Ca2+ concentration in macrophages treated for 30 min. Furthermore, inhibition of GPER1 with GPER1 antagonist G36 rescued the cellular immunotoxicity caused by BPA, which further suggested that carp GPER1 could mediate the estrogen effect. Our findings contribute to better understanding of the role of carp GPER1.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, PRC, Xiamen, Fujian 361005, China.
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
25
|
Ambhore NS, Kalidhindi RSR, Loganathan J, Sathish V. Role of Differential Estrogen Receptor Activation in Airway Hyperreactivity and Remodeling in a Murine Model of Asthma. Am J Respir Cell Mol Biol 2020; 61:469-480. [PMID: 30958966 DOI: 10.1165/rcmb.2018-0321oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that airway hyperresponsiveness (AHR) is a characteristic feature of asthma. Epidemiological studies have confirmed that the severity of asthma is greater in women, suggesting a critical role of female sex steroid hormones (especially estrogen). Very few in vivo studies have examined the role of sex steroid hormones in asthma, and the sequence of events that occur through differential activation of estrogen receptors (ERs) remains to be determined in asthmatic airways. Our recent in vitro findings indicated that ERβ had increased expression in asthmatic airway smooth muscle (ASM), and that its activation by an ERβ-specific agonist downregulated airway remodeling. In this study, we translated the in vitro findings to a murine asthma model and examined the differential role of ER activation in modulating lung mechanics. C57BL/6J male, female, and ovariectomized mice were exposed to mixed allergen (MA) and subcutaneously implanted with sustained-release pellets of placebo, an ERα agonist (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [PPT]), and/or an ERβ agonist (WAY-200070). We then evaluated the effects of these treatments on airway mechanics, biochemical, molecular, and histological parameters. Mice exposed to MA showed a significant increase in airway resistance, elastance, and tissue damping, and a decrease in compliance; pronounced effects were observed in females. Compared with PPT, WAY treatment significantly reversed the MA-induced changes. The increased mRNA/protein expression of ERα, ERβ, and remodeling genes observed in MA-treated mice was significantly reversed in WAY-treated mice. This novel study indicates that activation of ERβ signaling downregulates AHR and airway remodeling, and is a promising target in the development of treatments for asthma.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | | | - Jagadish Loganathan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota; and.,Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Shi D, Zhao P, Cui L, Li H, Sun L, Niu J, Chen M. Inhibition of PI3K/AKT molecular pathway mediated by membrane estrogen receptor GPER accounts for cryptotanshinone induced antiproliferative effect on breast cancer SKBR-3 cells. BMC Pharmacol Toxicol 2020; 21:32. [PMID: 32357920 PMCID: PMC7193699 DOI: 10.1186/s40360-020-00410-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer is the most frequently diagnosed malignancy among women and the second leading cause of cancer death worldwide. Among which nuclear estrogen receptor (nER) negative breast cancer is always with much poor prognosis. Recently, membrane G protein coupled estrogen receptor (GPER), a newly recognized estrogen receptor has been documented to take essential part in the development and treatment of breast cancer. The present study was designed to investigate the anti nER negative breast cancer effect of cryptotanshinone (CPT), an important active compound of traditional Chinese medicine Danshen and its possible molecular pathway. Methods The following in vitro tests were performed in nER negative but GPER positive breast cancer SKBR-3 cells. The effect of CPT on cell proliferation rate and cell cycle distribution was evaluated by MTT cell viability test and flow cytometry assay respectively. The role of PI3K/AKT pathway and the mediated function of GPER were tested by western blot and immunofluorescence. Technique of gene silence and the specific GPER agonist G-1 and antagonist G-15 were employed in the experiments to further verify the function of GPER in mediating the anticancer role of CPT. Results The results showed that proliferation of SKBR-3 cells could be blocked by CPT in a time and dose dependent manner. CPT could also exert antiproliferative activities by arresting cell cycle progression in G1 phase and down regulating the expression level of cyclin A, cyclin B, cyclin D and cyclin-dependent kinase 2 (CDK2). The antiproliferative effect of CPT was further enhanced by G-1 and attenuated by G-15. Results of western blot and immunofluorescence showed that expression of PI3K and p-AKT could be downregulated by CPT and such effects were mediated by GPER which were further demonstrated by gene silence test. Conclusion The current study showed that the antiproliferative action of CPT on SKBR-3 cells was realized by inhibition of GPER mediated PI3K/AKT pathway. These findings provide further validation of GPER serving as useful therapeutic target.
Collapse
Affiliation(s)
- Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| | - Lixia Cui
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Hongbo Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Liping Sun
- School of Life Sciences, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Jianzhao Niu
- School of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng Chen
- School of Traditional Chinese, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
27
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020; 1:51-74. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
28
|
Costa MC, de Barros Fernandes H, Gonçalves GKN, Santos APN, Ferreira GF, de Freitas GJC, do Carmo PHF, Hubner J, Emídio ECP, Santos JRA, Dos Santos JL, Dos Reis AM, Fagundes CT, da Silva AM, Santos DA. 17-β-Estradiol increases macrophage activity through activation of the G-protein-coupled estrogen receptor and improves the response of female mice to Cryptococcus gattii. Cell Microbiol 2020; 22:e13179. [PMID: 32017324 DOI: 10.1111/cmi.13179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/03/2019] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus gattii (Cg) is one of the agents of cryptococcosis, a severe systemic mycosis with a higher prevalence in men than women, but the influence of the female sex hormone, 17-β-estradiol (E2), on cryptococcosis remains unclear. Our study shows that female mice presented delayed mortality, increased neutrophil recruitment in bronchoalveolar lavage fluid, and reduced fungal load after 24 hr of infection compared to male and ovariectomised female mice (OVX). E2 replacement restored OVX female survival. Female macrophages have more efficient fungicidal activity, which was increased by E2 and reversed by the antagonist of G-protein-coupled oestrogen receptor (GPER), which negatively modulates PI3K activation. Furthermore, E2 induces a reduction in Cg cell diameter, cell charge, and antioxidant peroxidase activity. In conclusion, female mice present improved control of Cg infection, and GPER is important for E2 modulation of the female response.
Collapse
Affiliation(s)
- Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | | | - Gleisy K N Gonçalves
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Anderson P N Santos
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Campus Governador Valadares, Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular-UFJF, Juiz de Fora, Brazil
| | - Gustavo J C de Freitas
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Jôsy Hubner
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Elúzia C P Emídio
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | | | | | - Adelina M Dos Reis
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Aristóbolo M da Silva
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, ICB-UFMG, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, ICB-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
A Selective Ligand for Estrogen Receptor Proteins Discriminates Rapid and Genomic Signaling. Cell Chem Biol 2019; 26:1692-1702.e5. [PMID: 31706983 DOI: 10.1016/j.chembiol.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/05/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
Abstract
Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERβ), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.
Collapse
|
31
|
Ambhore NS, Kalidhindi RSR, Pabelick CM, Hawse JR, Prakash YS, Sathish V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway. FASEB J 2019; 33:13935-13950. [PMID: 31638834 DOI: 10.1096/fj.201901340r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Altered airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition in airways are characteristic features of remodeling in asthma. Increased ECM production modulates ASM cell proliferation and leads to airway remodeling. Our previous studies showed that ASM from patients with asthma exhibited increased expression of estrogen receptor (ER)-β, which upon activation down-regulated ASM proliferation, implicating an important role for estrogen signaling in airway physiology. There is no current information on the effect of differential ER activation on ECM production. In this study, we evaluated the effect of ER-α vs. ER-β activation on ECM production, deposition, and underlying pathways. Primary human ASM cells isolated from asthmatics and nonasthmatics were treated with E2, an ER-α agonist [propylpyrazoletriol (PPT)], and an ER-β agonist [WAY-200070 (WAY)] with TNF-α or platelet-derived growth factor (PDGF) followed by evaluation of ECM production and deposition. Expression of proteins and genes corresponding to ECM were measured using Western blotting and quantitative RT-PCR with subsequent matrix metalloproteinase (MMP) activity. Molecular mechanisms of ER activation in regulating ECM were evaluated by luciferase reporter assays for activator protein 1 (AP-1) and NF-κB. TNF-α or PDGF significantly (P < 0.001) increased ECM deposition and MMP activity in human ASM cells, which was significantly reduced with WAY treatment but not with PPT. Furthermore, TNF-α- or PDGF-induced ECM gene expression in ASM cells was significantly reduced with WAY (P < 0.001). Moreover, WAY significantly down-regulated the activation of NF-κB (P < 0.001) and AP-1 (P < 0.01, P < 0.05) in ASM cells from asthmatics and nonasthmatics. Overall, we demonstrate differential ER signaling in controlling ECM production and deposition. Activation of ER-β diminishes ECM deposition via suppressing the NF-κB pathway activity and might serve as a novel target to blunt airway remodeling.-Ambhore, N. S., Kalidhindi, R. S. R., Pabelick, C. M., Hawse, J. R., Prakash, Y. S., Sathish, V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
32
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
33
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
34
|
G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci 2019; 20:ijms20020306. [PMID: 30646517 PMCID: PMC6359026 DOI: 10.3390/ijms20020306] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled estrogen receptor (GPER), an alternate estrogen receptor (ER) with a structure distinct from the two canonical ERs, being ERα, and ERβ, is expressed in 50% to 60% of breast cancer tissues and has been presumed to be associated with the development of tamoxifen resistance in ERα positive breast cancer. On the other hand, triple-negative breast cancer (TNBC) constitutes 15% to 20% of breast cancers and frequently displays a more aggressive behavior. GPER is prevalent and involved in TNBC and can be a therapeutic target. However, contradictory results exist regarding the function of GPER in breast cancer, proliferative or pro-apoptotic. A better understanding of the GPER, its role in breast cancer, and the interactions with the ER and epidermal growth factor receptor will be beneficial for the disease management and prevention in the future.
Collapse
|
35
|
Bauzá-Thorbrügge M, Rodríguez-Cuenca S, Vidal-Puig A, Galmés-Pascual BM, Sbert-Roig M, Gianotti M, Lladó I, Proenza AM. GPER and ERα mediate estradiol enhancement of mitochondrial function in inflamed adipocytes through a PKA dependent mechanism. J Steroid Biochem Mol Biol 2019; 185:256-267. [PMID: 30253224 DOI: 10.1016/j.jsbmb.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023]
Abstract
Obesity is associated with inflammation, dysregulated adipokine secretion, and disrupted adipose tissue mitochondrial function. Estradiol (E2) has been previously reported to increase mitochondrial function and biogenesis in several cell lines, but neither the type of oestrogen receptor (ERα, ERβ and GPER) involved nor the mechanism whereby such effects are exerted have been fully described. Considering the anti-inflammatory activity of E2 as well as its effects in enhancing mitochondrial biogenesis, the aim of this study was to investigate the contribution of ERα, ERβ, and GPER signaling to the E2-mediated enhancement of adipocyte mitochondrial function in a pro-inflammatory situation. 3T3-L1 cells were treated for 24 h with ER agonists (PPT, DPN, and G1) and antagonists (MPP, PHTPP, and G15) in the presence or absence of interleukin 6 (IL6), as a pro-inflammatory stimulus. Inflammation, mitochondrial function and biogenesis markers were analyzed. To confirm the involvement of the PKA pathway, cells were treated with a GPER agonist, a PKA inhibitor, and IL6. Mitochondrial function markers were analyzed. Our results showed that activation of ERα and GPER, but not ERβ, was able to counteract the proinflammatory effects of IL6 treatment, as well as mitochondrial biogenesis and function indicators. Inhibition of PKA prevented the E2- and G1-associated increase in mitochondrial function markers. In conclusion E2 prevents IL6 induced inflammation in adipocytes and promotes mitochondrial function through the combined activation of both GPER and ERα. These findings expand our understanding of ER interactions under inflammatory conditions in female rodent white adipose tissue.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Sergio Rodríguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC-Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
36
|
Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr Neuropharmacol 2019; 17:874-890. [PMID: 30520375 PMCID: PMC7052835 DOI: 10.2174/1570159x17666181206101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic brain injury is a complex network of factors, which is mainly characterized by a decrease in levels of oxygen concentration and blood flow, which lead to an inefficient supply of nutrients to the brain. Hypoxic-ischemic brain injury can be found in perinatal asphyxia and ischemic-stroke, which represent one of the main causes of mortality and morbidity in children and adults worldwide. Therefore, knowledge of underlying mechanisms triggering these insults may help establish neuroprotective treatments. Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators exert several neuroprotective effects, including a decrease of reactive oxygen species, maintenance of cell viability, mitochondrial survival, among others. However, these strategies represent a traditional approach of targeting a single factor of pathology without satisfactory results. Hence, combined therapies, such as the administration of therapeutic hypothermia with a complementary neuroprotective agent, constitute a promising alternative. In this sense, the present review summarizes the underlying mechanisms of hypoxic-ischemic brain injury and compiles several neuroprotective strategies, including Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators, which represent putative agents for combined therapies with therapeutic hypothermia.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Address correspondence to this author at the Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; E-mail:
| | | | | | | | | |
Collapse
|
37
|
Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, Sathish V. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 2018; 476:37-47. [PMID: 29680290 PMCID: PMC6120801 DOI: 10.1016/j.mce.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Wang H, Sun X, Lin MS, Ferrario CM, Van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 2018; 199:39-51. [PMID: 29758174 PMCID: PMC6151279 DOI: 10.1016/j.trsl.2018.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Marina S Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Biomedical Research Service, Oklahoma City VA Healthcare System, Oklahoma City, Oklahoma
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
39
|
Estrogens and prostate cancer. Prostate Cancer Prostatic Dis 2018; 22:185-194. [PMID: 30131606 DOI: 10.1038/s41391-018-0081-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hormonal influences such as androgens and estrogens are known contributors in the development and progression of prostate cancer (CaP). While much of the research to the hormonal nature of CaP has focused on androgens, estrogens also have critical roles in CaP development, physiology as well as a potential therapeutic intervention. METHODS In this review, we provide a critical literature review of the current basic science and clinical evidence for the interaction between estrogens and CaP. RESULTS Estrogenic influences in CaP include synthetic, endogenous, fungi and plant-derived compounds, and represent a family of sex hormones, which cross hydrophobic cell membranes and bind to membrane-associated receptors and estrogen receptors that localize to the nucleus triggering changes in gene expression in various organ systems. CONCLUSIONS Estrogens represent a under-recognized contributor in CaP development and progression. Further research in this topic may provide opportunities for identification of environmental influencers as well as providing novel therapeutic targets in the treatment of CaP.
Collapse
|
40
|
Rocca C, Femminò S, Aquila G, Granieri MC, De Francesco EM, Pasqua T, Rigiracciolo DC, Fortini F, Cerra MC, Maggiolini M, Pagliaro P, Rizzo P, Angelone T, Penna C. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts. Front Physiol 2018; 9:521. [PMID: 29867564 PMCID: PMC5962667 DOI: 10.3389/fphys.2018.00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K+-ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions, including hypertension, reduce the efficacy of ischemic conditioning strategies. However, G1-induced protection can result in significant reduction of I/R injury also female in hypertensive animals. Further studies may ascertain the clinical translation of the present results.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Saveria Femminò
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy
| | - Giorgio Aquila
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Granieri
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | | | - Teresa Pasqua
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy
| | - Damiano C Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Fortini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy
| | - Maria C Cerra
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Tommaso Angelone
- Laboratory of Molecular and Cellular Cardiac Physiology, Department of Biology, Ecology and E.S., University of Calabria, Rende, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Claudia Penna
- Department of Biological and Clinical Sciences, University of Turin, Turin, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
41
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Fábián M, Rencz F, Krenács T, Brodszky V, Hársing J, Németh K, Balogh P, Kárpáti S. Expression of G protein-coupled oestrogen receptor in melanoma and in pregnancy-associated melanoma. J Eur Acad Dermatol Venereol 2017; 31:1453-1461. [PMID: 28467693 DOI: 10.1111/jdv.14304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The hormone sensitivity of melanoma and the role of 'classical' oestrogen receptor (ER) α and β in tumour progression have been intensively studied with rather contradictory results. The presence of 'non-classical' G protein-coupled oestrogen receptor (GPER) has not been investigated on human melanoma tissues. OBJECTIVE To analyse the expression of GPER, ERα and ERβ in pregnancy-associated (PAM) and in non-pregnancy-associated (NPAM) melanomas in correlation with traditional prognostic markers and disease-free survival (DFS). METHODS Receptor protein levels were tested using immunohistochemistry in 81 formalin-fixed paraffin-embedded melanoma tissues. PAMs (n = 38) were compared with age- and Breslow thickness-matched cases (n = 43) including non-pregnant women (NPAM-W) (n = 22) and men (NPAM-M) (n = 21). The association between receptor expression and DFS was analysed by uni- and multivariate Cox proportional hazards regression. RESULTS G protein-coupled oestrogen receptor was detected both in PAMs and NPAMs. In 39 of the 41 (95.1%) GPER-positive melanomas, GPER and ERβ were co-expressed. GPER/ERβ-positive melanomas were significantly more common in PAM compared to NPAM (P = 0.0001) with no significant difference between genders (P = 0.4383). In PAMs, the distribution of GPER and ERβ was similar (78.4% vs. 81.6%; P = 0.8504), while in NPAM, ERβ was the representative ER (60.5% vs. 27.9%; P = 0.0010) without gender difference (59.1% vs. 61.9%). GPER-/ERβ-positive melanomas were associated with lower Breslow thickness, lower mitotic rate and higher presence of peritumoral lymphocyte infiltration (PLI) compared to GPER-/ERβ-negative cases (P = 0.0156, P = 0.0036 and P = 0.0001) predicting a better DFS (HR = 0.785, 95% CI 0.582-1.058). Despite the significantly higher frequency of GPER and ERβ expression in PAM, no significant difference was found in DFS between PAM and NPAM. All but one case failed to show ERα expression. CONCLUSIONS The presence of GPER and its simultaneous expression with ERβ can serve as a new prognostic indicator in a significant subpopulation of melanoma patients.
Collapse
Affiliation(s)
- M Fábián
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - F Rencz
- Department of Health Economics, Corvinus University of Budapest, Budapest, Hungary
| | - T Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,MTA-SE Tumour Progression Research Group, Budapest, Hungary
| | - V Brodszky
- Department of Health Economics, Corvinus University of Budapest, Budapest, Hungary
| | - J Hársing
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - K Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - P Balogh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - S Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Qu TT, Deng JX, Li RL, Cui ZJ, Wang XQ, Wang L, Deng JB. Stress injuries and autophagy in mouse hippocampus after chronic cold exposure. Neural Regen Res 2017; 12:440-446. [PMID: 28469659 PMCID: PMC5399722 DOI: 10.4103/1673-5374.202932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cold exposure is an external stress factor that causes skin frostbite as well as a variety of diseases. Estrogen might participate in neuroprotection after cold exposure, but its precise mechanism remains unclear. In this study, mice were exposed to 10°C for 7 days and 0-4°C for 30 days to induce a model of chronic cold exposure. Results showed that oxidative stress-related c-fos and cyclooxygenase 2 expressions, MAP1LC3-labeled autophagic cells, Iba1-labeled activated microglia, and interleukin-1β-positive pyramidal cells were increased in the hippocampal CA1 area. Chronic cold exposure markedly elevated the levels of estrogen in the blood and the estrogen receptor, G protein-coupled receptor 30. These results indicate that neuroimmunoreactivity is involved in chronic cold exposure-induced pathological alterations, including oxidative stress, neuronal autophagy, and neuroimmunoreactivity. Moreover, estrogen exerts a neuroprotective effect on cold exposure.
Collapse
Affiliation(s)
- Ting-Ting Qu
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China.,Nursing College, Henan Vocational College of Applied Technology, Zhengzhou, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Rui-Ling Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Zhan-Jun Cui
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Xiao-Qing Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
44
|
Zhou K, Sun P, Zhang Y, You X, Li P, Wang T. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling. Steroids 2016; 111:113-120. [PMID: 26850467 DOI: 10.1016/j.steroids.2016.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells.
Collapse
Affiliation(s)
- Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou 510080, People's Republic of China
| | - Peng Sun
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China; Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510080, People's Republic of China
| | - Yaxing Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China
| | - Xinchao You
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China
| | - Ping Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, People's Republic of China.
| |
Collapse
|
45
|
Non-genomic oestrogen receptor signal in B lymphocytes: An approach towards therapeutic interventions for infection, autoimmunity and cancer. Int J Biochem Cell Biol 2016; 76:115-8. [PMID: 27189345 DOI: 10.1016/j.biocel.2016.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 11/21/2022]
Abstract
The non-genomic membrane bound oestrogen receptor (mER) regulates intracellular signals through receptor-ligand interactions. The mER, along with G-protein coupled oestrogen receptor GPR 30 (GPER), induces diverse cell signalling pathways in murine lymphocytes. The mER isoform ER-alpha46 has recently been demonstrated in human B and T lymphocytes as an analogue receptor for chemokine CCL18, the signalling events of which are not clearly understood. Ligand-induced mER and GPER signalling events are shared with BCR, CD19 mediated intracellular signalling through phospholipase C, PIP2/IP3/PI3 mediated activation of Akt, MAP kinase, and mTOR. Oestrogen has the ability to induce CD40-mediated activation of B cells. The complete signalling pathways of mER, GPR30 and their interaction with other signals are targeted areas for novel drug development in B cells during infection, autoimmunity and cancer. Therefore, an in depth investigation is critical for determining shared signal outputs during B cell activation. Here, we focus on the mode of action of membrane bound ER in B cells as therapeutic checkpoints.
Collapse
|