1
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
2
|
Gstöttner C, Haselberg R, Wuhrer M, Somsen GW, Domínguez-Vega E. Assessment of Macro- and Microheterogeneity of Monoclonal Antibodies Using Capillary Zone Electrophoresis Hyphenated with Mass Spectrometry. Methods Mol Biol 2022; 2531:125-142. [PMID: 35941483 DOI: 10.1007/978-1-0716-2493-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter focuses on the application of capillary zone electrophoresis hyphenated with mass spectrometry (CZE-MS) for the characterization of monoclonal antibodies (mAbs). mAbs are complex molecules comprising different glycoforms and many other posttranslational modifications. In addition to this inherent microheterogeneity, misassembling of antibodies can take place during production contributing to their macroheterogeneity. CZE-MS is a versatile and powerful technique which has demonstrated high potential for the assessment of both micro- and macroheterogeneity of mAbs. In this chapter, technical and practical considerations for the characterization of mAbs by CZE-MS are described. CE-MS interfacing, capillary coatings for the prevention of mAb adsorption, and sample preparation considerations are covered in detail. The assessment of the macro- and microheterogeneity is discussed and exemplified through three different approaches involving analysis of intact, enzymatically digested, and reduced antibodies. The examples also illustrate the use of two commercially available interfacing techniques (i.e., sheath liquid and sheathless) as well as different types of capillary coatings (positively charged and neutral coatings).
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Gstöttner C, Vergoossen DLE, Wuhrer M, Huijbers MGM, Domínguez-Vega E. Sheathless CE-MS as a tool for monitoring exchange efficiency and stability of bispecific antibodies. Electrophoresis 2020; 42:171-176. [PMID: 32901958 DOI: 10.1002/elps.202000166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 01/17/2023]
Abstract
Bispecific monoclonal antibodies (BsAbs) are receiving great attention due to their extensive benefits as biopharmaceuticals and their involvement in IgG4 mediated autoimmune diseases. While the production of BsAbs is getting more accessible, their analytical characterization remains challenging. We explored the potential of sheathless CE-MS for monitoring exchange efficiency and stability of in-house produced bispecific antibodies. Two IgG4 bispecific antibodies with different molecular characteristics were prepared using controlled Fragment antigen binding (Fab)-arm exchange. Separation of BsAbs from their parent monospecific antibodies was achieved using a polyethyleniimine (PEI)-coated capillary and acidic background electrolytes permitting reliable assessment of the exchange efficiency. This was especially valuable for a Fab-glycosylated BsAb where the high glycan heterogeneity resulted in an overlap of masses with the monospecific parent antibody, hindering their discrimination by MS only. The method showed also good capabilities to monitor the stability of the generated BsAbs under different storage conditions. The levels of degradation products were different for the studied antibodies indicating pronounced differences in stability. Overall, the proposed method represents a useful analytical tool for exchange efficiency and stability studies of bispecific antibodies.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G M Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Analysis of Hordeins in Barley Grain and Malt by Capillary Electrophoresis-Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01648-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Mikšík I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci 2018; 42:385-397. [PMID: 30238606 DOI: 10.1002/jssc.201800817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix-assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications-mainly bottom-up and top-down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.
Collapse
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| |
Collapse
|
6
|
Belov AM, Zang L, Sebastiano R, Santos MR, Bush DR, Karger BL, Ivanov AR. Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis - mass spectrometry. Electrophoresis 2018; 39:2069-2082. [PMID: 29749064 DOI: 10.1002/elps.201800067] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
High-resolution capillary zone electrophoresis - mass spectrometry (CZE-MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle-down and intact CZE-MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post-translational modifications (PTMs) and glycosylation structures. Middle-down and intact CZE separations were performed in an acidified methanol-water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle-down analysis of the IdeS-digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X-deamidated, 1X-deamidated, and non-deamidated forms at baseline resolution. In the course of the middle-down CZE-MS analysis, separation of glycoforms of the FC /2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE-MS2 . Incorporation of TCEP-HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE-MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X-glycosylated, 1X-glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE-MS represents a complementary approach to the more conventional liquid-chromatography - mass spectrometry-based approaches.
Collapse
Affiliation(s)
- Arseniy M Belov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Li Zang
- Analytical Development Department, Biogen, Cambridge, MA, USA
| | - Roberto Sebastiano
- Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Polytechnic of Milan, Milan, Italy
| | | | | | - Barry L Karger
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Ramautar R. Metabolic Profiling of Urine by Capillary Electrophoresis-Mass Spectrometry Using Non-covalently Coated Capillaries. Methods Mol Biol 2018; 1730:295-304. [PMID: 29363083 DOI: 10.1007/978-1-4939-7592-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the field of metabolomics, capillary electrophoresis-mass spectrometry (CE-MS) can be considered a very useful analytical tool for the profiling of polar and charged metabolites. However, variability of migration time is an important issue in CE. An elegant way to minimize this problem is the use of non-covalently coated capillaries that is dynamic coating of the bare fused-silica capillary with solutions of charged polymers. In this protocol, an improved strategy for the profiling of cationic metabolites in urine by CE-MS using multilayered non-covalent capillary coatings is presented. Capillaries are coated with a bilayer of polybrene (PB) and poly(vinyl sulfonate) (PVS) or with a triple layer of PB, dextran sulfate (DS), and PB. The bilayer- and triple-layer-coated capillaries have a negative and positive outside layer, respectively. It is shown that the use of such capillaries provides very repeatable migration times.
Collapse
Affiliation(s)
- Rawi Ramautar
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Lubeckyj RA, McCool EN, Shen X, Kou Q, Liu X, Sun L. Single-Shot Top-Down Proteomics with Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry for Identification of Nearly 600 Escherichia coli Proteoforms. Anal Chem 2017; 89:12059-12067. [PMID: 29064224 DOI: 10.1021/acs.analchem.7b02532] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has been recognized as an invaluable platform for top-down proteomics. However, the scale of top-down proteomics using CZE-MS/MS is still limited due to the low loading capacity and narrow separation window of CZE. In this work, for the first time we systematically evaluated the dynamic pH junction method for focusing of intact proteins during CZE-MS. The optimized dynamic pH junction-based CZE-MS/MS approached a 1 μL loading capacity, 90 min separation window, and high peak capacity (∼280) for characterization of an Escherichia coli proteome. The results represent the largest loading capacity and the highest peak capacity of CZE for top-down characterization of complex proteomes. Single-shot CZE-MS/MS identified about 2800 proteoform-spectrum matches, nearly 600 proteoforms, and 200 proteins from the Escherichia coli proteome with spectrum-level false discovery rate (FDR) less than 1%. The number of identified proteoforms in this work is over three times higher than that in previous single-shot CZE-MS/MS studies. Truncations, N-terminal methionine excision, signal peptide removal, and some post-translational modifications including oxidation and acetylation were detected.
Collapse
Affiliation(s)
- Rachele A Lubeckyj
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N McCool
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qiang Kou
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis , 719 Indiana Avenue, Indianapolis, Indiana 46202, United States
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis , 719 Indiana Avenue, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , 410 W. 10th Street, Indianapolis, Indiana 46202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|