1
|
Dwinell MR, Takizawa A, Tutaj M, Malloy L, Schilling R, Endsley A, Demos WM, Smith JR, Wang SJ, De Pons J, Kundurthi A, Geurts AM, Kwitek AE. Establishing the hybrid rat diversity program: a resource for dissecting complex traits. Mamm Genome 2025; 36:25-37. [PMID: 39907792 PMCID: PMC11880076 DOI: 10.1007/s00335-024-10102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
Rat models have been a major model for studying complex disease mechanisms, behavioral phenotypes, environmental factors, and for drug development and discovery. Inbred rat strains control for genetic background and allow for repeated, reproducible, cellular and whole animal phenotyping. The Hybrid Rat Diversity Panel (HRDP) was designed to be a powerful panel of inbred rats with genomic, physiological, and behavioral data to serve as a resource for systems genetics. The HRDP consists of 96-98 inbred rat strains aimed to maximize power to detect specific genetic loci associated with complex traits while maximizing the genetic diversity among strains. The panel consists of 32-34 genetically diverse inbred strains and two panels of recombinant inbred panels. To establish the HRDP program, embryo resuscitation and breeding were done to establish colonies for distribution. Whole genome sequencing was performed to achieve 30X coverage. Genomic, phenotype, and strain information is available through the Hybrid Rat Diversity Panel Portal at the Rat Genome Database ( http://rgd.mcw.edu ).
Collapse
Affiliation(s)
- M R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - A Takizawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Malloy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R Schilling
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Endsley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - W M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J Wang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J De Pons
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Kundurthi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Chen D, Chitre AS, Nguyen KMH, Cohen KA, Peng BF, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A cost-effective, high-throughput, highly accurate genotyping method for outbred populations. G3 (BETHESDA, MD.) 2025; 15:jkae291. [PMID: 39670731 PMCID: PMC11797033 DOI: 10.1093/g3journal/jkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large-scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, nonhuman model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping by sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping by sequencing and more recently generated by low-coverage whole-genome sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21× coverage) and low-coverage whole-genome sequencing data from 8,760 heterogeneous stock rats (mean 0.27× coverage), we can impute 7.32 million biallelic single-nucleotide polymorphisms with a concordance rate > 99.76% compared to high-coverage (mean 33.26× coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping by sequencing or low-coverage whole-genome sequencing for accurate genotyping and demonstrate techniques that may also be useful for other genetic studies in nonhuman subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Katerina A Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Beverly F Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thiago M Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Okamoto F, Chitre AS, Missfeldt Sanches T, Chen D, Munro D, Aron AT, Beeson A, Bimschleger HV, Eid M, Garcia Martinez AG, Han W, Holl K, Jackson T, Johnson BB, King CP, Kuhn BN, Lamparelli AC, Netzley AH, Nguyen KMH, Peng BF, Tripi JA, Wang T, Ziegler KS, Adams DJ, Baud A, Carrette LLG, Chen H, de Guglielmo G, Dorrestein P, George O, Ishiwari K, Jablonski MM, Jhou TC, Kallupi M, Knight R, Meyer PJ, Solberg Woods LC, Polesskaya O, Palmer AA. Y and mitochondrial chromosomes in the heterogeneous stock rat population. G3 (BETHESDA, MD.) 2024; 14:jkae213. [PMID: 39250761 PMCID: PMC11540319 DOI: 10.1093/g3journal/jkae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial (MT) Chromosomes. We genotyped the Y and MT Chromosomes in heterogeneous stock (HS) rats (Rattus norvegicus), an outbred population created from 8 inbred strains. We identified 8 distinct Y and 4 distinct MT Chromosomes among the 8 founders. However, only 2 types of each nonrecombinant chromosome were observed in our modern HS rat population (generations 81-97). Despite the relatively large sample size, there were virtually no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and MT Chromosomes were strongly associated with the expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern HS rats there are no Y and MT Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and MT Chromosomes that do not appear in modern HS rats, nor do they address effects that may exist in other rat populations, or in other species.
Collapse
Affiliation(s)
- Faith Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Angela Beeson
- Department of Internal Medicine, Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hannah V Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angel G Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wenyan Han
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tyler Jackson
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander C Lamparelli
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alesa H Netzley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Beverly F Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amelie Baud
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Monica M Jablonski
- Department of Ophthalmology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Thomas C Jhou
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Munshi-South J, Garcia JA, Orton D, Phifer-Rixey M. The evolutionary history of wild and domestic brown rats ( Rattus norvegicus). Science 2024; 385:1292-1297. [PMID: 39298602 DOI: 10.1126/science.adp1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models.
Collapse
Affiliation(s)
- Jason Munshi-South
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Joseph A Garcia
- Departments of Medicine and Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David Orton
- BioArCh, Department of Archaeology, University of York, York, UK
| | | |
Collapse
|
5
|
Chen D, Chitre AS, Nguyen KMH, Cohen K, Peng B, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A Cost-effective, High-throughput, Highly Accurate Genotyping Method for Outbred Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603984. [PMID: 39071405 PMCID: PMC11275765 DOI: 10.1101/2024.07.17.603984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Apurva S. Chitre
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Khai-Minh H. Nguyen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Katarina Cohen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Beverly Peng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Kendra S. Ziegler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Benjamin B. Johnson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Thiago M. Sanches
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
6
|
Horvath S, Singh K, Raj K, Khairnar SI, Sanghavi A, Shrivastava A, Zoller JA, Li CZ, Herenu CB, Canatelli-Mallat M, Lehmann M, Habazin S, Novokmet M, Vučković F, Solberg Woods LC, Martinez AG, Wang T, Chiavellini P, Levine AJ, Chen H, Brooke RT, Gordevicius J, Lauc G, Goya RG, Katcher HL. Reversal of biological age in multiple rat organs by young porcine plasma fraction. GeroScience 2024; 46:367-394. [PMID: 37875652 PMCID: PMC10828479 DOI: 10.1007/s11357-023-00980-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA.
- Altos Labs, Cambridge, UK.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | - Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, India
| | | | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Claudia B Herenu
- Institute for Experimental Pharmacology of Cordoba (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | | | | | | - Leah C Solberg Woods
- Wake Forest University School of Medicine, Medical Center Drive, Winston Salem, NC, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata-Histology B, Pathology B, School of Medicine, University of La Plata, La Plata, Argentina
| | | |
Collapse
|
7
|
Okamoto F, Chitre AS, Missfeldt Sanches T, Chen D, Munro D, Polesskaya O, Palmer AA. Y and Mitochondrial Chromosomes in the Heterogeneous Stock Rat Population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.566473. [PMID: 38076923 PMCID: PMC10705385 DOI: 10.1101/2023.11.29.566473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial Chromosomes. We genotyped the Y and mitochondrial chromosomes in heterogeneous stock rats (Rattus norvegicus), which were created in 1984 by intercrossing eight inbred strains and have subsequently been maintained as an outbred population for 100 generations. As the Y and mitochondrial Chromosomes do not recombine, we determined which founder had contributed these chromosomes for each rat, and then performed association analysis for all complex traits (n=12,055; intersection of 12,116 phenotyped and 15,042 haplotyped rats). We found the eight founders had 8 distinct Y and 4 distinct mitochondrial Chromosomes, however only two of each were observed in our modern heterogeneous stock rat population (Generations 81-97). Despite the unusually large sample size, the p-value distribution did not deviate from expectations; there were no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and mitochondrial Chromosomes were strongly associated with expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern heterogeneous stock rats there are no Y and mitochondrial Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and mitochondrial Chromosomes that do not appear in modern heterogeneous stock rats, nor do they address effects that may exist in other rat populations, or in other species.
Collapse
Affiliation(s)
- Faith Okamoto
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Thiago Missfeldt Sanches
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | | | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
8
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Lehmler HJ, Wang K, Grobe JL, Dwinell MR, Raff H, Kwitek AE. The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease. Endocrinology 2023; 164:bqad157. [PMID: 37882530 PMCID: PMC10637104 DOI: 10.1210/endocr/bqad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (eg, adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. N/NIH Heterogeneous Stock (HS) rats are a genetically heterogeneous outbred population developed for genetic studies of complex traits. Genetic mapping studies in adult HS rats identified loci associated with cardiometabolic risks, such as glucose intolerance, insulin resistance, and increased body mass index. This study determined underappreciated metabolic health traits and the associated endocrine glands within available substrains of the HS rat founders. We hypothesize that the genetic diversity of the HS rat founder strains causes a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks. ACI/EurMcwi, BN/NHsdMcwi, BUF/MnaMcwi, F344/StmMcwi, M520/NRrrcMcwi, and WKY/NCrl rats of both sexes were studied from birth until 13 weeks of age. Birth weight was recorded, body weight was measured weekly, metabolic characteristics were assessed, and blood and tissues were collected. Our data show wide variation in endocrine traits and metabolic health states in ACI, BN, BUF, F344, M520, and WKY rat strains. This is the first report to compare birth weight, resting metabolic rate, endocrine gland weight, hypothalamic-pituitary-thyroid axis hormones, and brown adipose tissue weight in these rat strains. Importantly, this work unveils new potential for the HS rat population to model early life adversity and adrenal and thyroid pathophysiology. The HS population likely inherited risk alleles for these strain-specific traits, making the HS rat a powerful model to investigate interventions on endocrine and metabolic health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI 53233, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Gage GA, Muench MA, Jee C, Kearns DN, Chen H, Tunstall BJ. Intermittent-access operant alcohol self-administration promotes binge-like drinking and drinking despite negative consequences in male and female heterogeneous stock rats. Neuropharmacology 2023; 235:109564. [PMID: 37149215 PMCID: PMC10247413 DOI: 10.1016/j.neuropharm.2023.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The study of Alcohol Use Disorders (AUD) in preclinical models is hampered by difficulty in training rodents to voluntarily consume high levels of alcohol. The intermittency of alcohol access/exposure is well known to modulate alcohol consumption (e.g., alcohol deprivation effect, intermittent-access two-bottle-choice) and recently, intermittent access operant self-administration procedures have been used to produce more intense and binge-like self-administration of intravenous psychostimulant and opioid drugs. In the present study, we sought to systematically manipulate the intermittency of operant self-administered alcohol access to determine the feasibility of promoting more intensified, binge-like alcohol consumption. To this end, 24 male and 23 female NIH Heterogeneous Stock rats were trained to self-administer 10% w/v ethanol, before being split into three different-access groups. Short Access (ShA) rats continued receiving 30-min training sessions, Long Access (LgA) rats received 16-h sessions, and Intermittent Access (IntA) rats received 16-h sessions, wherein the hourly alcohol-access periods were shortened over sessions, down to 2 min. IntA rats demonstrated an increasingly binge-like pattern of alcohol drinking in response to restriction of alcohol access, while ShA and LgA rats maintained stable intake. All groups were tested on orthogonal measures of alcohol-seeking and quinine-punished alcohol drinking. The IntA rats displayed the most punishment-resistant drinking. In a separate experiment, we replicated our main finding, that intermittent access promotes a more binge-like pattern of alcohol self-administration using 8 male and 8 female Wistar rats. In conclusion, intermittent access to self-administered alcohol promotes more intensified self-administration. This approach may be useful in developing preclinical models of binge-like alcohol consumption in AUD.
Collapse
Affiliation(s)
- Grey A Gage
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marissa A Muench
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David N Kearns
- Psychology Department, American University, Washington, DC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Dwinell MR, Lehmler HJ, Raff H, Grobe JL, Kwitek AE. Genetic background in the rat affects endocrine and metabolic outcomes of bisphenol F exposure. Toxicol Sci 2023; 194:84-100. [PMID: 37191987 PMCID: PMC10306406 DOI: 10.1093/toxsci/kfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin 53233, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
11
|
Keele GR. Which mouse multiparental population is right for your study? The Collaborative Cross inbred strains, their F1 hybrids, or the Diversity Outbred population. G3 (BETHESDA, MD.) 2023; 13:jkad027. [PMID: 36735601 PMCID: PMC10085760 DOI: 10.1093/g3journal/jkad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.
Collapse
Affiliation(s)
- Gregory R Keele
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
12
|
Hong-Le T, Crouse WL, Keele GR, Holl K, Seshie O, Tschannen M, Craddock A, Das SK, Szalanczy AM, McDonald B, Grzybowski M, Klotz J, Sharma NK, Geurts AM, Key CCC, Hawkins G, Valdar W, Mott R, Solberg Woods LC. Genetic Mapping of Multiple Traits Identifies Novel Genes for Adiposity, Lipids, and Insulin Secretory Capacity in Outbred Rats. Diabetes 2023; 72:135-148. [PMID: 36219827 PMCID: PMC9797320 DOI: 10.2337/db22-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.
Collapse
Affiliation(s)
- Thu Hong-Le
- Genetics Institute, University College London, London, U.K
| | - Wesley L. Crouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Katie Holl
- Medical College of Wisconsin, Milwaukee, WI
| | - Osborne Seshie
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Ann Craddock
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Swapan K. Das
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexandria M. Szalanczy
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bailey McDonald
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | | | - Neeraj K. Sharma
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Chia-Chi Chuang Key
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gregory Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard Mott
- Genetics Institute, University College London, London, U.K
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
13
|
Olguín V, Durán A, Las Heras M, Rubilar JC, Cubillos FA, Olguín P, Klein AD. Genetic Background Matters: Population-Based Studies in Model Organisms for Translational Research. Int J Mol Sci 2022; 23:7570. [PMID: 35886916 PMCID: PMC9316598 DOI: 10.3390/ijms23147570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.
Collapse
Affiliation(s)
- Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Francisco A. Cubillos
- Departamento de Biología, Santiago, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Santiago 7500565, Chile
| | - Patricio Olguín
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| |
Collapse
|
14
|
de Jong TV, Chen H, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Hudson EA, Sumlut MH, Smith ML, Kalbfleisch TS, Doris PA. mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiol Genomics 2022; 54:251-260. [PMID: 35543507 PMCID: PMC9236863 DOI: 10.1152/physiolgenomics.00017.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat genomic tools have been slower to emerge than for those of humans and mice and have remained less thorough and comprehensive. The arrival of a new and improved rat reference genome, mRatBN7.2, in late 2020 is a welcome event. This assembly, like predecessor rat reference assemblies, is derived from an inbred Brown Norway rat. In this "user" survey we hope to provide other users of this assembly some insight into its characteristics and some assessment of its improvements as well as a few caveats that arise from the unique aspects of this assembly. mRatBN7.2 was generated by the Wellcome Sanger Institute as part of the large Vertebrate Genomes Project. This rat assembly has now joined human, mouse, chicken, and zebrafish in the National Center for Biotechnology Information (NCBI)'s Genome Reference Consortium, which provides ongoing curation of the assembly. Here we examine the technical procedures by which the assembly was created and assess how this assembly constitutes an improvement over its predecessor. We also indicate the technical limitations affecting the assembly, providing illustrations of how these limitations arise and the impact that results for this reference assembly.
Collapse
Affiliation(s)
- Tristan V. de Jong
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wesley A. Brashear
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Andrew E. Hillhouse
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Yaming Zhu
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Isha S. Dhande
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Elizabeth A. Hudson
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Mary H. Sumlut
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Melissa L. Smith
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Theodore S. Kalbfleisch
- 5Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Peter A. Doris
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| |
Collapse
|
15
|
Long PN, Cook VJ, Majumder A, Barbour AG, Long AD. The utility of a closed breeding colony of Peromyscus leucopus for dissecting complex traits. Genetics 2022; 221:iyac026. [PMID: 35143664 PMCID: PMC9071557 DOI: 10.1093/genetics/iyac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Deermice of the genus Peromyscus are well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and their ability to serve as disease vectors. Here, we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a nontraditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals and subsequently maintained for ∼40-60 generations. From 405 low-pass short-read sequenced deermice we accurate impute genotypes at 16 million single nucleotide polymorphisms. Conditional on observed genotypes simulations were conducted in which three different sized quantitative trait loci contribute to a complex trait under three different genetic models. Using a stringent significance threshold power was modest, largely a function of the percent variation attributable to the simulated quantitative trait loci, with the underlying genetic model having only a subtle impact. We additionally simulated 2,000 pseudo-individuals, whose genotypes were consistent with those observed in the genotyped cohort and carried out additional power simulations. In experiments employing more than 1,000 mice power is high to detect quantitative trait loci contributing greater than 2.5% to a complex trait, with a localization ability of ∼100 kb. We finally carried out a Genome-Wide Association Study on two demonstration traits, bleeding time and body weight, and uncovered one significant region. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice and similar colonies in other systems using easily obtained genotypes from low-pass sequencing.
Collapse
Affiliation(s)
- Phillip N Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2525, USA
| | - Vanessa J Cook
- Departments of Microbiology & Molecular Genetics and Medicine, School of Medical Sciences, University of California Irvine, Irvine, CA 92687-2525, USA
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2525, USA
| | - Alan G Barbour
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2525, USA
- Departments of Microbiology & Molecular Genetics and Medicine, School of Medical Sciences, University of California Irvine, Irvine, CA 92687-2525, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
16
|
Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genet 2022; 18:e1010234. [PMID: 35639796 PMCID: PMC9187121 DOI: 10.1371/journal.pgen.1010234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat populations. Despite this, the genetic characteristics of SD rats have not been clearly described, and SD rats are rarely used for experiments aimed at exploring genotype-phenotype relationships. In order to use SD rats to perform a genome-wide association study (GWAS), we collected behavioral data from 4,625 SD rats that were predominantly obtained from two commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality genotypes at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the variation present in Charles River vs. Harlan SD rats. We found that the two populations are highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor, there was strong population structure across breeding facilities and even between rooms at the same facility. We performed multiple separate GWAS by fitting a linear mixed model that accounted for population structure and using meta-analysis to jointly analyze all cohorts. Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses the propensity for rats to attribute incentive salience to reward-associated cues. We identified 46 significant associations for the various metrics used to define PavCA. The surprising degree of population structure among SD rats from different sources has important implications for their use in both genetic and non-genetic studies. Outbred Sprague Dawley rats are among the most commonly used rats for neuroscience, physiology and pharmacological research; in the year 2020, 4,188 publications contained the keyword “Sprague Dawley”. Rats identified as “Sprague Dawley” are sold by several commercial vendors, including Charles River Laboratories and Harlan Sprague Dawley Inc. (now Envigo). Despite their widespread use, little is known about the genetic diversity of SD. We genotyped more than 4,000 SD rats, which we used for a genome-wide association study (GWAS) and to characterize genetic differences between SD rats from Charles River Laboratories and Harlan. Our analysis revealed extensive population structure both between and within vendors. The GWAS for Pavlovian conditioned approach (PavCA) identified a number of genome-wide significant loci for that complex behavioral trait. Our results demonstrate that, despite sharing an identical name, SD rats that are obtained from different vendors are very different. Future studies should carefully define the exact source of SD rats being used and may exploit their genetic diversity for genetic studies of complex traits.
Collapse
|
17
|
Carrette LLG, Corral C, Boomhower B, Brennan M, Crook C, Ortez C, Shankar K, Simpson S, Maturin L, Solberg Woods LC, Palmer AA, de Guglielmo G, George O. Leptin Protects Against the Development and Expression of Cocaine Addiction-Like Behavior in Heterogeneous Stock Rats. Front Behav Neurosci 2022; 16:832899. [PMID: 35316955 PMCID: PMC8934439 DOI: 10.3389/fnbeh.2022.832899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Cocaine affects food intake, metabolism and bodyweight. It has been hypothesized that feeding hormones like leptin play a role in this process. Preclinical studies have shown a mutually inhibitory relationship between leptin and cocaine, with leptin also decreasing the rewarding effects of cocaine intake. But prior studies have used relatively small sample sizes and did not investigate individual differences in genetically heterogeneous populations. Here, we examined whether the role of individual differences in bodyweight and blood leptin level are associated with high or low vulnerability to addiction-like behaviors using data from 306 heterogeneous stock rats given extended access to intravenous self-administration of cocaine and 120 blood samples from 60 of these animals, that were stored in the Cocaine Biobank. Finally, we tested a separate cohort to evaluate the causal effect of exogenous leptin administration on cocaine seeking. Bodyweight was reduced due to cocaine self-administration in males during withdrawal and abstinence, but was increased in females during abstinence. However, bodyweight was not correlated with addiction-like behavior vulnerability. Blood leptin levels after ∼6 weeks of cocaine self-administration did not correlate with addiction-like behaviors, however, baseline blood leptin levels before any access to cocaine negatively predicted addiction-like behaviors 6 weeks later. Finally, leptin administration in a separate cohort of 59 animals reduced cocaine seeking in acute withdrawal and after 7 weeks of protracted abstinence. These results demonstrate that high blood leptin level before access to cocaine may be a protective factor against the development of cocaine addiction-like behavior and that exogenous leptin reduces the motivation to take and seek cocaine. On the other hand, these results also show that blood leptin level and bodyweight changes in current users are not relevant biomarkers for addiction-like behaviors.
Collapse
Affiliation(s)
| | - Cristina Corral
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Brent Boomhower
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Molly Brennan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Caitlin Crook
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Clara Ortez
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Sierra Simpson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Lisa Maturin
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Hitzemann R, Lockwood DR, Ozburn AR, Phillips TJ. On the Use of Heterogeneous Stock Mice to Map Transcriptomes Associated With Excessive Ethanol Consumption. Front Psychiatry 2021; 12:725819. [PMID: 34712155 PMCID: PMC8545898 DOI: 10.3389/fpsyt.2021.725819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
We and many others have noted the advantages of using heterogeneous (HS) animals to map genes and gene networks associated with both behavioral and non-behavioral phenotypes. Importantly, genetically complex Mus musculus crosses provide substantially increased resolution to examine old and new relationships between gene expression and behavior. Here we report on data obtained from two HS populations: the HS/NPT derived from eight inbred laboratory mouse strains and the HS-CC derived from the eight collaborative cross inbred mouse strains that includes three wild-derived strains. Our work has focused on the genes and gene networks associated with risk for excessive ethanol consumption, individual variation in ethanol consumption and the consequences, including escalation, of long-term ethanol consumption. Background data on the development of HS mice is provided, including advantages for the detection of expression quantitative trait loci. Examples are also provided of using HS animals to probe the genes associated with ethanol preference and binge ethanol consumption.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R. Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
21
|
Wagner VA, Clark KC, Carrillo-Sáenz L, Holl KA, Velez-Bermudez M, Simonsen D, Grobe JL, Wang K, Thurman A, Solberg Woods LC, Lehmler HJ, Kwitek AE. Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicol Sci 2021; 181:246-261. [PMID: 33755180 PMCID: PMC8163043 DOI: 10.1093/toxsci/kfab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bisphenol F (BPF) is increasingly substituting bisphenol A in manufacturing polycarbonates and consumer products. The cardiometabolic effects of BPF in either humans or model organisms are not clear, and no studies to date have investigated the role of genetic background on susceptibility to BPF-induced cardiometabolic traits. The primary goal of this project was to determine if BPF exposure influences growth and adiposity in male N:NIH heterogeneous stock (HS) rats, a genetically heterogeneous population. Littermate pairs of male HS rats were randomly exposed to either vehicle (0.1% ethanol) or 1.125 µg/ml BPF in 0.1% ethanol for 5 weeks in drinking water starting at 3 weeks-of-age. Water consumption and body weight was measured weekly, body composition was determined using nuclear magnetic resonance, urine and feces were collected in metabolic cages, and blood and tissues were collected at the end of the study. BPF-exposed rats showed significantly increased body growth and abdominal adiposity, risk factors for cardiometabolic disease. Urine output was increased in BPF-exposed rats, driving a trend in increased creatinine clearance. We also report the first relationship between a bisphenol metabolizing enzyme and a bisphenol-induced phenotype. Preliminary heritability estimates of significant phenotypes suggest that BPF exposure may alter trait variation. These findings support BPF exposure as a cardiometabolic disease risk factor and indicate that the HS rat will be a useful model for dissecting gene by BPF interactions on metabolic health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Diabetes and Metabolism and Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| | - Katie A Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Miriam Velez-Bermudez
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | - Derek Simonsen
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew Thurman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anne E Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
22
|
Abu Y, Roy S. Prenatal opioid exposure and vulnerability to future substance use disorders in offspring. Exp Neurol 2021; 339:113621. [PMID: 33516730 PMCID: PMC8012222 DOI: 10.1016/j.expneurol.2021.113621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/06/2023]
Abstract
The heightened incidence of opioid use during pregnancy has resulted in unprecedented rates of neonates prenatally exposed to opioids. Prenatal opioid exposure (POE) results in significantly adverse medical, developmental, and behavioral outcomes in offspring. Of growing interest is whether POE contributes to future vulnerability to substance use disorders. The effects of POE on brain development is difficult to assess in humans, as the timing, dose, and route of drug exposure together with complex genetic and environmental factors affect susceptibility to addiction. Preclinical models of POE have allowed us to avoid methodological difficulties and confounding factors of POE in humans. Here, we review the effects of maternal opioid exposure on the developing brain with an emphasis on the neurobiological basis of drug addiction and on preclinical models of POE and their limitations. These studies have indicated that POE increases self-administration of drugs, reward-driven behaviors in the conditioned place paradigm, and locomotor sensitization. While addiction is multifaceted and vulnerability to drug addiction is still inconclusive in human studies of prenatally exposed infants, animal studies do provide a noteworthy corroboration of negative behavioral outcomes.
Collapse
Affiliation(s)
- Yaa Abu
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Krueger LD, Chang SE, Motoc M, Chojecki M, Freeman ZT, Flagel SB. Effects of Pair Housing on Patency of Jugular Catheters in Rats ( Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:357-364. [PMID: 33863401 DOI: 10.30802/aalas-jaalas-20-000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic vascular access devices are widely used in a variety of species for repeated blood sampling or substance administration. Jugular catheters are commonly used for studying addiction-related behaviors in rats. Rats with catheters have historically been individually housed for the duration of the study to prevent cage mates from damaging the catheter. The 2 goals of this study were to determine 1) the effects of pair housing on catheter patency and 2) the effects of pair housing on catheter patency of rats in a study of opioid self-administration and cue-induced reinstatement of opioid-seeking behavior. The latter study also represented an opportunity for experimental refinement as it evaluated the temporary use of a barrier that allowed for pair-housed rats to be physically separated. Male Heterogeneous Stock (HS; n = 24) and Sprague-Dawley (SD; n = 121) rats were allocated to either single- or pair-housed condition. To assess the effect of social housing on catheter patency, rats (HS, n = 24; SD, n = 36) were monitored in their assigned housing condition for one month, with scheduled evaluation of catheter patency and structural damage. To examine the effect of social housing on catheter patency during a study of opioid self-administration and cue-induced reinstatement of opioid-seeking behavior, rats (SD, n = 85) were monitored in their assigned housing condition with similar routine patency evaluations. Catheter patency rates between single- and pairhoused rats were not statistically different in the first experiment, and pair-housed animals were successfully maintained on an infusion study in the second experiment. The use of a barrier between pair-housed rats after surgery allowed continued social contact with no observed adverse effects. These results suggest that, pair housing is a viable option for rats with chronic vascular implants, and may improve their wellbeing by allowing them to display species-typical social behaviors.
Collapse
Affiliation(s)
- Lauren D Krueger
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan; Office of Comparative Medicine, University of Utah, Salt Lake City, Utah;,
| | - Stephen E Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Michael Motoc
- Undergraduate Biology, Health, and Society Program, University of Michigan, Ann Arbor, Michigan
| | - Maurice Chojecki
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Timmermans S, Libert C. Ratpost: a searchable database of protein-inactivating sequence variations in 40 sequenced rat-inbred strains. Mamm Genome 2021; 32:1-11. [PMID: 33481094 DOI: 10.1007/s00335-020-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Rat-inbred strains are essential as scientific tools. We have analyzed the publicly available genome sequences of 40 rat-inbred strains and provide an overview of sequence variations leading to amino acid changes in protein-coding genes, premature STOP codons or loss of STOP codons, and short in-frame insertions and deletions of all protein-coding genes across all these inbred lines. We provide an overview of the predicted impact on protein function of all these affected proteins in the database, by comparing their sequence with the sequences of the rat reference strain BN/SsNHsdMcwi. We also investigate the flaws of the protein-coding sequences of this reference strain itself, by comparing them with a consensus genome. These data can be retrieved via a searchable website (Ratpost.be) and allow a global, better interpretation of genetic background effects and a source of naturally defective alleles in these 40 sequenced classical and high-priority rat-inbred strains.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
25
|
Gileta AF, Gao J, Chitre AS, Bimschleger HV, St Pierre CL, Gopalakrishnan S, Palmer AA. Adapting Genotyping-by-Sequencing and Variant Calling for Heterogeneous Stock Rats. G3 (BETHESDA, MD.) 2020; 10:2195-2205. [PMID: 32398234 PMCID: PMC7341140 DOI: 10.1534/g3.120.401325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
The heterogeneous stock (HS) is an outbred rat population derived from eight inbred rat strains. HS rats are ideally suited for genome wide association studies; however, only a few genotyping microarrays have ever been designed for rats and none of them are currently in production. To address the need for an efficient and cost effective method of genotyping HS rats, we have adapted genotype-by-sequencing (GBS) to obtain genotype information at large numbers of single nucleotide polymorphisms (SNPs). In this paper, we have outlined the laboratory and computational steps we took to optimize double digest genotype-by-sequencing (ddGBS) for use in rats. We evaluated multiple existing computational tools and explain the workflow we have used to call and impute over 3.7 million SNPs. We have also compared various rat genetic maps, which are necessary for imputation, including a recently developed map specific to the HS. Using our approach, we obtained concordance rates of 99% with data obtained using data from a genotyping array. The principles and computational pipeline that we describe could easily be adapted for use in other species for which reliable reference genome sets are available.
Collapse
Affiliation(s)
- Alexander F Gileta
- Department of Psychiatry
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, 92093
| | | | | | | | | | - Shyam Gopalakrishnan
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, and
| | - Abraham A Palmer
- Department of Psychiatry,
- Natural History Museum of Denmark, University of Copenhagen, 2200 København N, Denmark
| |
Collapse
|
26
|
Kallupi M, Carrette LLG, Kononoff J, Solberg Woods LC, Palmer AA, Schweitzer P, George O, de Guglielmo G. Nociceptin attenuates the escalation of oxycodone self-administration by normalizing CeA-GABA transmission in highly addicted rats. Proc Natl Acad Sci U S A 2020; 117:2140-2148. [PMID: 31932450 PMCID: PMC6994987 DOI: 10.1073/pnas.1915143117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Approximately 25% of patients who are prescribed opioids for chronic pain misuse them, and 5 to 10% develop an opioid use disorder. Although the neurobiological target of opioids is well known, the molecular mechanisms that are responsible for the development of addiction-like behaviors in some but not all individuals are poorly known. To address this issue, we used a unique outbred rat population (heterogeneous stock) that better models the behavioral and genetic diversity that is found in humans. We characterized individual differences in addiction-like behaviors using an addiction index that incorporates the key criteria of opioid use disorder: escalated intake, highly motivated responding, and hyperalgesia. Using in vitro electrophysiological recordings in the central nucleus of the amygdala (CeA), we found that rats with high addiction-like behaviors (HA) exhibited a significant increase in γ-aminobutyric acid (GABA) transmission compared with rats with low addiction-like behaviors (LA) and naive rats. The superfusion of CeA slices with nociceptin/orphanin FQ peptide (N/OFQ; 500 nM), an endogenous opioid-like peptide, normalized GABA transmission in HA rats. Intra-CeA levels of N/OFQ were lower in HA rats than in LA rats. Intra-CeA infusions of N/OFQ (1 μg per site) reversed the escalation of oxycodone self-administration in HA rats but not in LA rats. These results demonstrate that the downregulation of N/OFQ levels in the CeA may be responsible for hyper-GABAergic tone in the CeA that is observed in individuals who develop addiction-like behaviors. Based on these results, we hypothesize that small molecules that target the N/OFQ system might be useful for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Jenni Kononoff
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Leah C Solberg Woods
- Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Paul Schweitzer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093;
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093;
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
27
|
de Guglielmo G, Kallupi M, Sedighim S, Newman AH, George O. Dopamine D 3 Receptor Antagonism Reverses the Escalation of Oxycodone Self-administration and Decreases Withdrawal-Induced Hyperalgesia and Irritability-Like Behavior in Oxycodone-Dependent Heterogeneous Stock Rats. Front Behav Neurosci 2020; 13:292. [PMID: 31992976 PMCID: PMC6971096 DOI: 10.3389/fnbeh.2019.00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Prescription opioids, such as oxycodone, are highly effective analgesics for clinical pain management, but approximately 25% of patients who are prescribed opioids misuse them, and 5%–10% develop an opioid use disorder (OUD). Effective therapies for the prevention and treatment of opioid abuse and addiction need to be developed. The present study evaluated the effects of the highly selective dopamine D3 receptor antagonist VK4-116 ([R]-N-[4-(4-[3-chloro-5-ethyl-2-methoxyphenyl]piperazin-1-yl)-3-hydroxybutyl]-1H-indole-2-carboxamide) on oxycodone addictive-like behaviors. We used a model of extended access to oxycodone self-administration and tested the effects of VK4-116 on the escalation of oxycodone self-administration and withdrawal-induced hyperalgesia and irritability-like behavior in male and female rats. Pretreatment with VK4-116 (5–25 mg/kg, i.p.) dose-dependently decreased the escalation of oxycodone self-administration and reduced withdrawal-induced hyperalgesia and irritability-like behavior in opioid-dependent rats. These findings demonstrate a key role for D3 receptors in both the motivation to take opioids and negative emotional states that are associated with opioid withdrawal and suggest that D3 receptor antagonism may be a viable therapeutic approach for the treatment of OUD.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Sharona Sedighim
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Amy H Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019; 13:262. [PMID: 31849622 PMCID: PMC6895146 DOI: 10.3389/fnbeh.2019.00262] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a neuropsychiatric disorder with grave personal consequences that has an extraordinary global economic impact. Despite decades of research, the options available to treat addiction are often ineffective because our rudimentary understanding of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational design of successful therapies. This understanding will arise first from animal models of addiction where experimentation at the level of circuits and molecular biology is possible. We will review the most common preclinical models of addictive behavior and discuss the advantages and disadvantages of each. This includes non-contingent models in which animals are passively exposed to rewarding substances, as well as widely used contingent models such as drug self-administration and relapse. For the latter, we elaborate on the different ways of mimicking craving and relapse, which include using acute stress, drug administration or exposure to cues and contexts previously paired with drug self-administration. We further describe paradigms where drug-taking is challenged by alternative rewards, such as appetitive foods or social interaction. In an attempt to better model the individual vulnerability to drug abuse that characterizes human addiction, the field has also established preclinical paradigms in which drug-induced behaviors are ranked by various criteria of drug use in the presence of negative consequences. Separation of more vulnerable animals according to these criteria, along with other innate predispositions including goal- or sign-tracking, sensation-seeking behavior or impulsivity, has established individual genetic susceptibilities to developing drug addiction and relapse vulnerability. We further examine current models of behavioral addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after reviewing the face validity of the aforementioned models, we consider the most common standardized tests used by pharmaceutical companies to assess the addictive potential of a drug during clinical trials.
Collapse
Affiliation(s)
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
29
|
Ramdas S, Ozel AB, Treutelaar MK, Holl K, Mandel M, Woods LCS, Li JZ. Extended regions of suspected mis-assembly in the rat reference genome. Sci Data 2019; 6:39. [PMID: 31015470 PMCID: PMC6478900 DOI: 10.1038/s41597-019-0041-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
We performed whole-genome sequencing for eight inbred rat strains commonly used in genetic mapping studies. They are the founders of the NIH heterogeneous stock (HS) outbred colony. We provide their sequences and variant calls to the rat genomics community. When analyzing the variant calls we identified regions with unusually high levels of heterozygosity. These regions are consistent across the eight inbred strains, including Brown Norway, which is the basis of the rat reference genome. These regions show higher read depths than other regions in the genome and contain higher rates of apparent tri-allelic variant sites. The evidence suggests that these regions may correspond to duplicated segments that were incorrectly overlaid as a single segment in the reference genome. We provide masks for these regions of suspected mis-assembly as a resource for the community to flag potentially false interpretations of mapping or functional results.
Collapse
Affiliation(s)
- Shweta Ramdas
- Program in Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katie Holl
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Myrna Mandel
- National Institutes of Health, Bethesda, Maryland, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Abstract
Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.
Collapse
Affiliation(s)
- Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
31
|
R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations. Genetics 2018; 211:495-502. [PMID: 30591514 PMCID: PMC6366910 DOI: 10.1534/genetics.118.301595] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely-used R/qtl software package to include multiparental populations, better handles modern high-dimensional data.... R/qtl2 is an interactive software environment for mapping quantitative trait loci (QTL) in experimental populations. The R/qtl2 software expands the scope of the widely used R/qtl software package to include multiparent populations derived from more than two founder strains, such as the Collaborative Cross and Diversity Outbred mice, heterogeneous stocks, and MAGIC plant populations. R/qtl2 is designed to handle modern high-density genotyping data and high-dimensional molecular phenotypes, including gene expression and proteomics. R/qtl2 includes the ability to perform genome scans using a linear mixed model to account for population structure, and also includes features to impute SNPs based on founder strain genomes and to carry out association mapping. The R/qtl2 software provides all of the basic features needed for QTL mapping, including graphical displays and summary reports, and it can be extended through the creation of add-on packages. R/qtl2, which is free and open source software written in the R and C++ programming languages, comes with a test framework.
Collapse
|
32
|
Social and anxiety-like behaviors contribute to nicotine self-administration in adolescent outbred rats. Sci Rep 2018; 8:18069. [PMID: 30584246 PMCID: PMC6305389 DOI: 10.1038/s41598-018-36263-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Both emotional and social traits interact with genetic factors to influence smoking behavior. We previously established a socially acquired nicotine intravenous self-administration model where social learning of a nicotine-associated odor cue reversed conditioned flavor aversion and promoted nicotine intake. In this study, we first phenotyped ~800 adolescent heterogeneous stock rats in open field, novel object interaction, social interaction, elevated plus maze, and marble burying behaviors. These rats were then phenotyped on socially acquired nicotine self-administration. We found 243 significant correlations between different behavioral tests. Principal component regression analysis found that ~10-20% of the variance in nicotine-related measures, such as intake during the first or the last three fixed-ratio sessions, the progressive ratio session, and reinstatement behavior, can be explained by variations in behavioral traits. Factors corresponding to social behavior and anxiety were among the strongest predictors of nicotine intake and reinstatement of nicotine-seeking behavior. We also found many sex differences in behavioral measures. These data indicated that the genetic diversity of this population, in combination with social behaviour and anxiety, are significant contributors to the divergent nicotine self-administration behavior and indicated a high probability of discovering sex-specific genetic mechanisms for nicotine intake in future genome-wide association studies.
Collapse
|
33
|
Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, Register TC, Craft S, McClain DA, Yadav H. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Front Microbiol 2018; 9:2897. [PMID: 30555441 PMCID: PMC6283898 DOI: 10.3389/fmicb.2018.02897] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gut microbiome plays a fundamental role in several aspects of host health and diseases. There has been an exponential surge in the use of animal models that can mimic different phenotypes of the human intestinal ecosystem. However, data on host species-specific signatures of gut microbiome and its metabolites like short-chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) and lactate in these models and their similarities/differences from humans remain limited, due to high variability in protocols and analyses. Here, we analyze the fecal microbiota composition and the fecal levels of SCFAs and lactate in three of the most-widely used animal models, i.e., mice, rats, and non-human primates (NHPs) and compare them with human subjects, using data generated on a single platform with same protocols. The data show several species-specific similarities and differences in the gut microbiota and fecal organic acids between these species groups. Based on β-diversity, the gut microbiota in humans seems to be closer to NHPs than to mice and rats; however, among rodents, mice microbiota appears to be closer to humans than rats. The phylum-level analyses demonstrate higher Firmicutes-Bacteroidetes ratio in humans and NHPs vs. mice and rats. Human microbiota is dominated by Bacteroides followed by Ruminococcaceae and Clostridiales. Mouse gut is predominated by members of the family S24-7 followed by those from the order Clostridiales, whereas rats and NHPs have higher abundance of Prevotella compared with mice and humans. Also, fecal levels of lactate are higher in mice and rats vs. NHPs and humans, while acetate is highest in human feces. These data of host species-specific gut microbiota signatures in some of the most widely used animal models in context to the human microbiota might reflect disparities in host factors, e.g., diets, genetic origin, gender and age, and hence call for prospective studies investigating the features of gut microbiome in such animal models by controlling for these host elements.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Osborne Seshie
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Stephanie T Chung
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carol A Shively
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas C Register
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| |
Collapse
|
34
|
Yuan JT, Gatti DM, Philip VM, Kasparek S, Kreuzman AM, Mansky B, Sharif K, Taterra D, Taylor WM, Thomas M, Ward JO, Holmes A, Chesler EJ, Parker CC. Genome-wide association for testis weight in the diversity outbred mouse population. Mamm Genome 2018; 29:310-324. [PMID: 29691636 DOI: 10.1007/s00335-018-9745-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
Testis weight is a genetically mediated trait associated with reproductive efficiency across numerous species. We sought to evaluate the genetically diverse, highly recombinant Diversity Outbred (DO) mouse population as a tool to identify and map quantitative trait loci (QTLs) associated with testis weight. Testis weights were recorded for 502 male DO mice and the mice were genotyped on the GIGAMuga array at ~ 143,000 SNPs. We performed a genome-wide association analysis and identified one significant and two suggestive QTLs associated with testis weight. Using bioinformatic approaches, we developed a list of candidate genes and identified those with known roles in testicular size and development. Candidates of particular interest include the RNA demethylase gene Alkbh5, the cyclin-dependent kinase inhibitor gene Cdkn2c, the dynein axonemal heavy chain gene Dnah11, the phospholipase D gene Pld6, the trans-acting transcription factor gene Sp4, and the spermatogenesis-associated gene Spata6, each of which has a human ortholog. Our results demonstrate the utility of DO mice in high-resolution genetic mapping of complex traits, enabling us to identify developmentally important genes in adult mice. Understanding how genetic variation in these genes influence testis weight could aid in the understanding of mechanisms of mammalian reproductive function.
Collapse
Affiliation(s)
- Joshua T Yuan
- Department of Computer Science, Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Daniel M Gatti
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Steven Kasparek
- Department of Psychology, Middlebury College, Middlebury, VT, 05753, USA
| | - Andrew M Kreuzman
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Benjamin Mansky
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Kayvon Sharif
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Dominik Taterra
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Walter M Taylor
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Mary Thomas
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Jeremy O Ward
- Department of Biology, Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), US National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elissa J Chesler
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Clarissa C Parker
- Department of Psychology, Middlebury College, Middlebury, VT, 05753, USA. .,Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|