1
|
Aly A, Eliwa N, Abd El-Megid M, Maraei R. Impact of low-doses gamma radiation on phytochemicals and bioactive compounds in barley microgreens. Int J Radiat Biol 2025:1-12. [PMID: 40358249 DOI: 10.1080/09553002.2025.2494613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/03/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE Microgreens have gained wide acceptance among consumers due to their low calorie content and rich composition of micronutrients and antioxidants, making them one of the best microgreen options. Therefore, this research is intended to investigate the effect of γ-rays on its growth and functional components and to confirm the possibility of using barley microgreens as a complementary and efficient food source. MATERIAL AND METHODS Barley grains were exposed to various doses (10, 20, 30, and 40 Gy) of gamma rays, as well as the un-irradiated sample is considered as the control. The stimulating effects on growth and biochemical components of barley microgreens were evaluated. RESULTS The results revealed that plant height increased significantly in response to gamma radiation exposure, and the maximum increase (23.87 cm) was obtained at a dose of 30 Gy. Otherwise, Ch a, Ch b, and carotenoid significantly increased (1.33, 0.941, and 0.181 mg/g FW), respectively at 30 Gy compared to the control (0.937, 0.448, and 0.132 mg/g FW), respectively. Also, the soluble sugars, proteins, and total free amino acids content were enhanced by increasing the dose level, and the maximum increase was noticed at 40 Gy of gamma rays. A remarkable increase was observed in the phenolic and flavonoid contents at 40 Gy (5.65 and 2.65 mg/g FW), respectively compared to control (4.57 and 2.16 mg/g FW). In the amino acids profile, glutamic acid was predominant, and the amino acids group was improved markedly by gamma rays compared with the control, and the dose of 40 Gy gave the greatest contents (141.60 µg/g DW), followed by 30 Gy (139.58 µg/g DW) in the control (121.34 µg/g DW). Current findings indicated that γ-rays have negative effects on γ-tocopherol, cholesterol, and stigmasterol, and the maximum decrease was observed with 40 Gy (21.774, 199.335, and 722.778 mg/kg DW), respectively. In contrast, it had positive effects on the values of ergosterol, α-tocopherol, and β-sitosterol (3580.674, 5255.511, and 5281.320 mg/kg DW), respectively. CONCLUSIONS The results showed that treatment of barley grain with low doses of gamma rays stimulated; growth, biochemical compound, and antioxidants production, increasing the nutritional value of barley microgreens, improving microgreens defense and supporting the use of these grains as a complementary and efficient food.
Collapse
Affiliation(s)
- Amina Aly
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noha Eliwa
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Abd El-Megid
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rabab Maraei
- Natural Products Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Sumi MJ, Jahan N, Thamid SS, Tarik MEI, Hassannejad S, Rahimi M, Imran S. LED light effect on growth, pigments, and antioxidants of lettuce (Lactuca sativa L.) baby greens. BMC PLANT BIOLOGY 2025; 25:582. [PMID: 40319250 PMCID: PMC12048945 DOI: 10.1186/s12870-025-06621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Red and green lettuce baby greens provide additional health benefits because they are high in nutrients, pigments, and antioxidants. This study examines red coral lettuce (Lactuca sativa L. var. cripsa) and green lettuce (Lactuca sativa L. var. longifolia) baby greens grown for 20 days in a soil-vermicompost-compost (50:30:20) mixture to determine how different LED light spectra affect their growth, pigment accumulation, and antioxidant qualities. Plant height, biomass, and other growth parameters were evaluated manually, while pigments, phenolics, and flavonoids were analyzed using spectrophotometric techniques. In terms of growth, green lettuce fared better than red lettuce, with a biomass of 5.90 ± 0.35 g/ 100 plant and a plant height of 6.86 ± 0.23 cm, particularly during exposure to red + blue light. Red + blue as well as red light caused a considerable decrease in chlorophyll concentration; under red light, green lettuce's chlorophyll content dropped by up to 59.61%. Both species' phenolic (100%) and flavonoid (100%) contents were increased by white light, but red light produced the lowest levels. Blue light maintained the highest levels of carotenoid concentration while all other treatments saw a decline. With white light maximizing antioxidant content and red + blue light encouraging growth, principal component analysis (PCA) analysis demonstrated the substantial impact of light treatments on pigment and biochemical composition. Overall, the study concludes that treatments with LED light have a significant impact on red and green lettuce baby greens' development, pigment buildup, and antioxidant qualities.
Collapse
Affiliation(s)
- Mousumi Jahan Sumi
- Department of Crop Botany, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Noushin Jahan
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Syed Sakib Thamid
- Faculty of Agriculture, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Emon Ibne Tarik
- Faculty of Agriculture, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Sahar Hassannejad
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh.
| |
Collapse
|
3
|
Truschi S, Marini L, Cacciari I, Baldi A, Bruschi P, Lenzi A, Baales J, Zeisler-Diehl VV, Schreiber L, Marvasi M. Relationship between Salmonella enterica attachment and leaf hydrophobicity, roughness, and epicuticular waxes: a focus on 30 baby-leaf salads. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9287-9296. [PMID: 39030951 DOI: 10.1002/jsfa.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The first step in the contamination of leafy vegetables by human pathogens is their attachment to the leaf surface. The success of this is influenced strongly by the physical and chemical characteristics of the surface itself (number and size of stomata, presence of trichomes and veins, epicuticular waxes, hydrophobicity, etc.). This study evaluated the attachment of Salmonella enterica to 30 baby-leaf salads and tested whether the differences found among them were related to the following leaf traits: hydrophobicity, roughness, and epicuticular waxes. RESULTS Differences in susceptibility to contamination by S. enterica were found between the 30 baby-leaf salads investigated. The lowest attachment was found in wild lettuce (Lactuca serriola L.) and lamb's lettuce 'Trophy F1' (Valerianella locusta [L.] Laterr.), with values of 1.63 ± 0.39 Log(CFU/cm2) and 1.79 ± 0.54 Log(CFU/cm2), respectively. Attachment was correlated with hydrophobicity (measured as contact angle) (r = -0.39) and epicuticular waxes (r = -0.81) but not with roughness (r = 0.24). The most important wax components for attachment were alcohols and, in particular, the three-dimensional (3D) wax crystals of C26 alcohol, but fatty acids probably also had a role. Both these compounds increased hydrophobicity. The presence of thymol, whose antimicrobial properties are well known, was found in lamb's lettuce. CONCLUSIONS The findings of this study can help to predict and control the attachment and contamination of leafy salads by enterobacteria. They also provide useful information for breeding programs aiming to develop cultivars that are less susceptible to human pathogens, enhancing the food safety of vegetables. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefania Truschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Lorenzo Marini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ilaria Cacciari
- CNR, Institute of Applied Physics 'Nello Carrara', Sesto Fiorentino, Italy
| | - Ada Baldi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Piero Bruschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Johanna Baales
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Bonn, Germany
| | | | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Šola I, Vujčić Bok V, Popović M, Gagić S. Phytochemical Composition and Functional Properties of Brassicaceae Microgreens: Impact of In Vitro Digestion. Int J Mol Sci 2024; 25:11831. [PMID: 39519385 PMCID: PMC11546364 DOI: 10.3390/ijms252111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi (Brassica oleracea var. acephala gongylodes), Savoy cabbage (B. oleracea sabauda), Brussels sprouts (B. oleracea gemmifera), cauliflower (B. oleracea botrytis), radish (Raphanus sativus) and garden cress (Lepidium sativum) microgreens for their antioxidant and hypoglycemic potential. In addition, we applied an in vitro-simulated system of human digestion in order to track the bioaccessibility of the selected phenolic representatives, and the stability of the microgreens' antioxidant and hypoglycemic potential in terms of α-amylase and α-glucosidase inhibition after each digestion phase. Using spectrophotometric and RP-HPLC methods with statistical analyses, we found that garden cress had the lowest soluble sugar content, while Savoy cabbage and Brussels sprouts had the highest glucosinolate levels (76.21 ± 4.17 mg SinE/g dm and 77.73 ± 3.33 mg SinE/g dm, respectively). Brussels sprouts were the most effective at inhibiting protein glycation (37.98 ± 2.30% inhibition). A very high positive correlation (r = 0.830) between antiglycation potential and conjugated sinapic acid was recorded. For the first time, the antidiabetic potential of microgreens after in vitro digestion was studied. Kohlrabi microgreens best inhibited α-amylase in both initial and intestinal digestion (60.51 ± 3.65% inhibition and 62.96 ± 3.39% inhibition, respectively), and also showed the strongest inhibition of α-glucosidase post-digestion (19.22 ± 0.08% inhibition). Brussels sprouts, cauliflower, and radish had less stable α-glucosidase than α-amylase inhibitors during digestion. Kohlrabi, Savoy cabbage, and garden cress retained inhibition of both enzymes after digestion. Kohlrabi antioxidant capacity remained unchanged after digestion. The greatest variability was seen in the original samples, while the intestinal phase resulted in the most convergence, indicating that digestion reduced differences between the samples. In conclusion, this study highlights the potential of various microgreens as sources of bioactive compounds with antidiabetic and antiglycation properties. Notably, kohlrabi microgreens demonstrated significant enzyme inhibition after digestion, suggesting their promise in managing carbohydrate metabolism and supporting metabolic health.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Sanja Gagić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Bafumo RF, Alloggia FP, Ramirez DA, Maza MA, Fontana A, Moreno DA, Camargo AB. Optimal Brassicaceae family microgreens from a phytochemical and sensory perspective. Food Res Int 2024; 193:114812. [PMID: 39160037 DOI: 10.1016/j.foodres.2024.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.
Collapse
Affiliation(s)
- Roberto F Bafumo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Florencia P Alloggia
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Daniela A Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Marcos A Maza
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Catedra de Enología I, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain.
| | - Alejandra B Camargo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
6
|
Castellaneta A, Höring M, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI, Matysik S, Liebisch G. Exploration of the Lipid Profile of Edible Oleaginous Microgreens by Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11438-11451. [PMID: 38728027 DOI: 10.1021/acs.jafc.3c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 μmol/g of DW, respectively), followed by flax (ca. 20 and 3 μmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. β-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Marcus Höring
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Beniamino Leoni
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Pietro Santamaria
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Silke Matysik
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
D'Imperio M, Bonelli L, Mininni C, Renna M, Montesano FF, Parente A, Serio F. Soilless cultivation systems to produce tailored microgreens for specific nutritional needs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3371-3380. [PMID: 38092699 DOI: 10.1002/jsfa.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The awareness of the importance of following dietary recommendations that meet specific biological requirements related to an individual's health status has significantly increased interest in personalized nutrition. The aim of this research was to test agronomic protocols based on soilless cultivation for providing consumers with new dietary sources of iodine (I), as well as alternative vegetable products to limit dietary potassium (K) intake; proposed cultivation techniques were evaluated according to their suitability to obtain such products without compromising agronomic performance. RESULTS Two independent experiments, focused on I and K respectively, were conducted in a commercial greenhouse specializing in soilless production. Four different species were cultivated using three distinct concentrations of I (0, 1.5 and 3 mg L-1 ) and K (0, 60 and 120 mg L-1 ). Microgreens grown in I-rich nutrient solution accumulate more I, and the increase is dose-dependent. Compared to unbiofortified microgreens, the treatments with 1.5 and 3 mg L-1 of I resulted in 4.5 and 14 times higher I levels, respectively. Swiss chard has the highest levels of K (14 096 mg kg-1 of FW), followed by rocket, pea and radish. In radish, rocket and Swiss chard, a total reduction of K content in the nutrient solution (0 mg L-1 ) resulted in an average reduction of 45% in K content. CONCLUSION It is possible to produce I-biofortified microgreens to address I deficiency, and K-reduced microgreens for chronic kidney disease-affected people. Species selection is crucial to customize nutritional profiles according to specific dietary requirements due to substantial mineral content variations across different species. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Massimiliano D'Imperio
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | - Lucia Bonelli
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | | | - Massimiliano Renna
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Angelo Parente
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, CNR - National Research Council of Italy, Bari, Italy
| |
Collapse
|
8
|
García-Tenesaca M, Llugany M, Boada R, Sánchez-Martín MJ, Valiente M. Phytochemical Profile, Bioactive Properties, and Se Speciation of Se-Biofortified Red Radish ( Raphanus sativus), Green Pea ( Pisum sativum), and Alfalfa ( Medicago sativa) Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4947-4957. [PMID: 38393752 PMCID: PMC10921463 DOI: 10.1021/acs.jafc.3c08441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 μM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.
Collapse
Affiliation(s)
- Marilyn
M. García-Tenesaca
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant
Physiology Group (BABVE), Faculty of Biosciences, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Boada
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María-Jesús Sánchez-Martín
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuel Valiente
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Dey S, Raychaudhuri SS. Selenium biofortification improves bioactive composition and antioxidant status in Plantago ovata Forsk., a medicinal plant. Genes Environ 2023; 45:38. [PMID: 38111072 PMCID: PMC10729483 DOI: 10.1186/s41021-023-00293-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient for humans, but its deficiency as well as toxicity affects large number of people worldwide. Plantago ovata, a commercially important medicinal plant, is mainly cultivated in western regions of India, where elevated levels of Se have been found in soil. Thus, we evaluated the potential of Se biofortification in P. ovata via phytoremediation and its effect on the bioactive composition. RESULTS The results showed a significant alteration in various morphological and physiological parameters in a dose-dependent manner. The 10 µM Se dose improved seedling height, biomass and total chlorophyll content. There was a gradual increase in total Se content, with highest accumulation of 457.65 µg/g FW at 500 µM Se treatment. Se positively affected the antioxidative metabolism which was measured from the change in total antioxidant capacity, radical scavenging activity and Metallothionein 2 expression. Increasing levels of Se also affected the PAL activity, total polyphenol and flavonoid content. Caffeic acid, Coumaric acid and Rutin were found to be the most abundant phenolic compounds. CONCLUSIONS Low levels of selenium (below 50 µM) can successfully improve Se accumulation and elicit production of various polyphenols without hampering plant growth. Thus, Se fortification of P. ovata seedlings via phytoremediation appears to be a feasible and efficient way to enhance its nutraceutical value in dietary products.
Collapse
Affiliation(s)
- Sankalan Dey
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
10
|
Tilahun S, Baek MW, An KS, Choi HR, Lee JH, Hong JS, Jeong CS. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1236055. [PMID: 37780508 PMCID: PMC10536316 DOI: 10.3389/fpls.2023.1236055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Growing microgreens on trays without substrate in a vertical multilayered growing unit offers several advantages over traditional agriculture methods. This study investigated the yield performance and nutritional quality of five selections of radish microgreens grown in sprouting trays, without a substrate using only water, in an indoor multilayer cultivation system using artificial light. Various parameters were measured, including fresh weight, dry matter, chlorophyll, minerals, amino acids, phenolics, flavonoids, anthocyanins, vitamin C, glucosinolates, and antioxidant activity with four different in vitro assays. After ten days, the biomass had increased by 6-10 times, and the dry matter varied from 4.75-7.65%. The highest yield was obtained from 'Asia red', while the lowest was from 'Koregon red'. However, 'Koregon red' and 'Asia red' had the highest dry matter. 'Asia red' was found to have the highest levels of both Chls and vitamin C compared to the other cultivars, while 'Koregon red' exhibited the highest levels of total phenolics and flavonoids. Although variations in the levels of individual glucosinolates were observed, there were no significant differences in the total content of glucosinolates among the five cultivars. 'Asia purple' had the highest anthocyanin content, while 'Asia green 2' had the lowest. The K, Mg, and Na concentrations were significantly highest in 'Asia green 2', and the highest Ca was recorded in 'Asia purple'. Overall, 'Asia purple' and 'Koregon red' were the best cultivars in terms of nutritional quality among the tested radish microgreens. These cultivars exhibited high levels of dry weight, total phenolics, flavonoids, anthocyanins, essential and total amino acids, and antioxidant activities. Moreover, the implementation of this vertical cultivation method for microgreens, which relies solely on water and seeds known for their tall shoots during the sprouting could hold promise as a sustainable approach. This method can effectively be utilized for cultivar screening and fulfilling the nutritional and functional needs of the population while minimizing the environmental impacts associated with traditional agriculture practices.
Collapse
Affiliation(s)
- Shimeles Tilahun
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Min Woo Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Seok An
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon National University Eco-friendly Agricultural Product Safety Center, Chuncheon, Republic of Korea
| | - Han Ryul Choi
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Jong Hwan Lee
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheon Soon Jeong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Castellaneta A, Losito I, Leoni B, Renna M, Mininni C, Santamaria P, Calvano CD, Cataldi TRI, Liebisch G, Matysik S. A targeted GC-MS/MS approach for the determination of eight sterols in microgreen and mature plant material. J Steroid Biochem Mol Biol 2023; 232:106361. [PMID: 37419395 DOI: 10.1016/j.jsbmb.2023.106361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Over the past decades, a remarkable number of scientific studies supported the correlation between an adequate dietary intake of phytosterols (PS) and the reduced risk of cardiovascular diseases. PS are known to inhibit the intestinal absorption of cholesterol, thus promoting the reduction of the low-density lipoproteins (LDL) amount in the bloodstream. Despite the fact that a non-negligible atherogenicity was recognized to PS, thus requiring a careful risk-benefits assessment for plant sterol supplementation, the potential role of PS as cholesterol-lowering agents has been contributing to the spreading awareness of the health benefits associated with the consumption of plant-based foods. In recent years, this has been fueling the market of innovative vegetable products, such as microgreens. Surprisingly, the recent literature concerning microgreens exhibited the lack of studies focusing on the characterization of PS. To fill this gap, a validated analytical method based on the hyphenation of gas chromatography and tandem mass spectrometry is proposed here for the quantitative analysis of eight phytosterols, namely β-sitosterol, campesterol, stigmasterol, brassicasterol, isofucosterol, and cholesterol, lathosterol and lanosterol. The method was exploited for the characterization of the PS content in 10 microgreen crops, i.e., chia, flax, soybean, sunflower, rapeseed, garden cress, catalogna chicory, endive, kale and broccoli raab. Finally, these results were compared to the PS content of mature forms of kale and broccoli raab. A remarkable amount of PS was detected in chia, flax, rapeseed, garden cress, kale, and broccoli raab microgreens. 100 g (wet weight) of these microgreen crops were found to contain from 20 to 30 mg of the investigated PS. Interestingly, in the case of kale and broccoli raab microgreens, the overall PS content was higher than the one measured in the edible parts of the corresponding mature forms. Additionally, a symmetric change of the PS inner profile was observed between the two growth stages of the latter two crops. Here, the overall decrease of the PS sterol content in the mature forms was associated with the increase of the relative amount of β-sitosterol and campesterol at the expense of minor PS species, such as brassicasterol.
Collapse
Affiliation(s)
- A Castellaneta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - I Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - B Leoni
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - M Renna
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - C Mininni
- Ortogourmet Società Agricola S.r.l., S.C. 14 Madonna delle Grazie, 74014 Laterza, Italy
| | - P Santamaria
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - T R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - G Liebisch
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - S Matysik
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Poudel P, Duenas AEK, Di Gioia F. Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. FRONTIERS IN PLANT SCIENCE 2023; 14:1229157. [PMID: 37469787 PMCID: PMC10352662 DOI: 10.3389/fpls.2023.1229157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Microgreens are emerging specialty crops becoming increasingly popular for their rich nutrient profile and variety of colors, flavors, and textures. The growing medium is a significant key factor in microgreen yield, quality, and sustainability. The widespread use of peat-based media raises questions regarding the environmental sustainability of microgreens production, and new substrates that are more sustainable are required. To this purpose, a study was designed with the objective of comparing eight alternative growing media evaluating their physicochemical properties and effect on yield, mineral profile, and nutritional quality of peas and radish microgreens. Tested substrates included a standard peat and perlite mixture (PP), coconut coir (CC), spent mushroom compost (SMC), organic waste compost (CMP), and 50:50 (v:v) mixes of PP and SMC, PP and CMP, CC and SMC, and CC and CMP. The physicochemical properties widely differed among the alternative substrates tested. SMC had high electrical conductivity and salt concentration, which resulted in poor seed germination. Growing media tested significantly influenced the production and nutritional quality of both microgreen species and variations were modulated by the species. With a 39.8% fresh yield increase or a small yield decrease (-14.9%) in radish and peas, respectively, PP+CMP (50:50, v/v) mix provided microgreens of similar or higher nutritional quality than PP, suggesting the potential of substituting at least in part peat with CMP. Using locally available CMP in mix with PP could reduce the microgreens industry reliance on peat while reducing costs and improving the sustainability of the production of microgreens. Further research is needed to evaluate also the potential economic and environmental benefits of using locally available organic materials like CMP as alternative growing media and peat-substitute to produce microgreens.
Collapse
Affiliation(s)
- Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Anela E. K. Duenas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- College of Natural and Applied Sciences, University of Guam, Mangilao, GU, United States
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
13
|
Deng W, Gibson KE. Microgreen Variety Impacts Leaf Surface Persistence of a Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:82-88. [PMID: 36151506 DOI: 10.1007/s12560-022-09536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Human norovirus (HuNoV) is a pathogenic agent that is frequently associated with foodborne disease outbreaks linked to fresh produce. Within microgreen production systems, understanding of virus transmission routes and persistence is limited. To investigate virus persistence on microgreen leaf surfaces, this study mimicked virus contaminations caused during microgreen handling by farm workers or during overhead irrigation with contaminated water. Specifically, approximately 5 log PFU of Tulane virus (TV)-a HuNoV surrogate-was inoculated on sunflower (SF) and pea shoot (PS) microgreen leaves at 7-day age. The virus reduction on SF was significantly higher than PS (p < 0.05). On day 10, total TV reduction for SF and PS were 3.70 ± 0.10 and 2.52 ± 0.30 log PFU/plant, respectively. Under the environmental scanning electron microscope (ESEM) observation, the leaf surfaces of SF were visually smoother than PS, while their specific effect on virus persistence were not further characterized. Overall, this study revealed that TV persistence on microgreen leaves was plant variety dependent. In addition, this study provided a preliminary estimation on the risk of HuNoV contamination in a microgreen production system which will aim the future development of prevention and control measures.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA.
| |
Collapse
|
14
|
Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 2023; 14:1053810. [PMID: 36760994 PMCID: PMC9905132 DOI: 10.3389/fgene.2023.1053810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, etc.) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
Collapse
Affiliation(s)
- Astha Gupta
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| | - Tripti Sharma
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India
| | - Archana Bhardwaj
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Deepti Srivastava
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| |
Collapse
|
15
|
Poudel P, Di Gioia F, Lambert JD, Connolly EL. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. FRONTIERS IN PLANT SCIENCE 2023; 14:1177844. [PMID: 37139105 PMCID: PMC10150129 DOI: 10.3389/fpls.2023.1177844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023]
Abstract
Micronutrient deficiencies caused by malnutrition and hidden hunger are a growing concern worldwide, exacerbated by climate change, COVID-19, and conflicts. A potentially sustainable way to mitigate such challenges is the production of nutrient-dense crops through agronomic biofortification techniques. Among several potential target crops, microgreens are considered suitable for mineral biofortification because of their short growth cycle, high content of nutrients, and low level of anti-nutritional factors. A study was conducted to evaluate the potential of zinc (Zn) biofortification of pea and sunflower microgreens via seed nutri-priming, examining the effect of different Zn sources (Zn sulfate, Zn-EDTA, and Zn oxide nanoparticles) and concentrations (0, 25, 50, 100, and 200 ppm) on microgreen yield components; mineral content; phytochemical constituents such as total chlorophyll, carotenoids, flavonoids, anthocyanin, and total phenolic compounds; antioxidant activity; and antinutrient factors like phytic acid. Treatments were arranged in a completely randomized factorial block design with three replications. Seed soaked in a 200 ppm ZnSO4 solution resulted in higher Zn accumulation in both peas (126.1%) and sunflower microgreens (229.8%). However, an antagonistic effect on the accumulation of other micronutrients (Fe, Mn, and Cu) was seen only in pea microgreens. Even at high concentrations, seed soaking in Zn-EDTA did not effectively accumulate Zn in both microgreens' species. ZnO increased the chlorophyll, total phenols, and antioxidant activities compared to Zn-EDTA. Seed soaking in ZnSO4 and ZnO solutions at higher concentrations resulted in a lower phytic acid/Zn molar ratio, suggesting the higher bioaccessibility of the biofortified Zn in both pea and sunflower microgreens. These results suggest that seed nutrient priming is feasible for enriching pea and sunflower microgreens with Zn. The most effective Zn source was ZnSO4, followed by ZnO. The optimal concentration of Zn fertilizer solution should be selected based on fertilizer source, target species, and desired Zn-enrichment level.
Collapse
Affiliation(s)
- Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Francesco Di Gioia,
| | - Joshua D. Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Erin L. Connolly
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
16
|
Lenzi A, Baldi A, Lombardelli L, Truschi S, Marvasi M, Bruschi P. Contamination of microalgae by Salmonella enterica and Escherichia coli is influenced by selection breeding in chicory ( Cichorium intybus L.). FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The aim of this study was to assess whether selection breeding in chicory (Cichorium intybus L.) led changes in the susceptibility to Salmonella enterica and Escherichia coli contamination and whether the anatomical traits of the leaves are involved in the possible changes.
Materials and Methods
Five chicory genotypes subjected to different intensities of selection were compared at the microgreen stage. Bacterial retention was evaluated after leaf incubation for 1.5 h on the surface of the bacterial suspension, followed by rinsing, grinding, plating on selective media, and CFU counting. The density of stomata and trichomes, total stomatal length and width, stomatal pit width, surface roughness and sharpness were evaluated.
Results
The intensively selected genotype (Witloof) was significantly more prone to contamination ((2.9±0.3) lg CFU/cm 2) as the average of the two bacteril types than the wild accession (Wild) ((2.3±0.4) lg CFU/cm 2) and the moderately selected genotypes (two leaf chicories, Catalogna type, and root chicory ‘Magdeburg’) (on average, (1.9±0.3) lg CFU/cm 2). Witloof microgreens also showed larger stomata (on average + 34% for stoma width and + 44% for pit width), which could justify, at least in part, the higher susceptibility to enterobacteria contamination. In fact, when contamination was performed in the dark (closed stomata), the bacterial retention in Witloof was significantly reduced in comparison with the opened stomata (-44%) and in Wild (-26%). Differences in retention between Witloof and Wild were still observed after UV treatment. The hierarchical clustering performed by grouping the leaf anatomical features was consistent with the chicory genetic groups.
Conclusions
Our results suggest that the domestication process can affect the safety of produce and that the micromorphological traits of the leaves may be involved.
Collapse
Affiliation(s)
- Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ada Baldi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Letizia Lombardelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Stefania Truschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | | - Piero Bruschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| |
Collapse
|
17
|
Kaur N, Singh B, Kaur A, Yadav MP. Impact of growing conditions on proximate, mineral, phenolic composition, amino acid profile, and antioxidant properties of black gram, mung bean, and chickpea microgreens. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nancydeep Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Balwinder Singh
- P.G. Department of Biotechnology Khalsa College Amritsar India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Madhav P. Yadav
- United States Department of Agriculture Eastern Regional Research Center, Agricultural Research Service Wyndmoor Pennsylvania USA
| |
Collapse
|
18
|
Ebert AW. Sprouts and Microgreens-Novel Food Sources for Healthy Diets. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040571. [PMID: 35214902 PMCID: PMC8877763 DOI: 10.3390/plants11040571] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops' wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers.
Collapse
Affiliation(s)
- Andreas W Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
19
|
Kaur N, Singh B, Kaur A. Influence of wheatgrass and mung bean microgreens incorporation on physicochemical, textural, sensory, antioxidant properties and phenolic profile of gluten‐free eggless rice muffins. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nancydeep Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Balwinder Singh
- P.G. Department of Biotechnology Khalsa College Amritsar Punjab 143002 India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
20
|
Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microgreens are considered products of high biological value because they contain natural and beneficial metabolites and antioxidants in high amounts; also, consumers appreciate them very much for their aromas. In this work, we focused our attention on the volatile organic compounds (VOCs) emitted from whole fresh leaves of two Chinese basil varieties (Perilla frutescens var. frutescens and var. crispa) at the microgreens stage; to show that the emission is microgreens specific we tested whether this capacity remains during subsequent growth of the plants. We found differences between the VOCs produced by the leaves of the two varieties at the microgreens stage and significantly reduced emission after development (additional four weeks of growth) particularly for the green variety (var. frutescens). The main volatiles emitted by whole leaves were D-Limonene for the red variety (crispa) and 2-Hexanoylfuran for the green one. In addition, the total phenolic content (TPC) and antioxidant power increase in adult leaves. These results clearly indicate that the particular smell of microgreens Perilla leaves depends on the specific variety and is not related to the amount of total phenols or antioxidant capacity of the leaves.
Collapse
|
21
|
O'Brien R, Simon JE, Tepper BJ. How do trained panelists characterize baby leafy greens? A comparison of descriptive analysis and Napping. J Food Sci 2021; 87:396-414. [PMID: 34935130 DOI: 10.1111/1750-3841.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Baby leafy greens are one of the fastest growing segments of the salad green market. Baby leafy greens are generally more mild tasting than their fully-mature counterparts. Nevertheless, a diversity of plant species can be grown as baby greens, which exhibit a wide range of sensory attributes. Sensory profiles of baby leaf varieties have not been well described in the literature. This study aimed to describe the differences between several baby leafy green varieties from the plant family Brassicaceae and those which were non-Brassicaceae, and to compare two descriptive methods, traditional descriptive analysis (DA) and Napping, a rapid profiling technique. Both methods used the same trained panelists. In the first study, the panel (n = 11) developed a lexicon for and evaluated four samples grown in a controlled aeroponic environment. In the second study, 12 commercially available samples were evaluated with DA (n = 8) and Napping (n = 11). Panelists identified differences in the pungency, bitterness, and ''green'' attributes across all samples. Principal component analysis (PCA) was used to model associations between the samples and the sensory attributes. The PCA extracted three factors. PC1 ranged from pungent qualities to sweet/grassy, PC2 included green color, and PC3 included saltiness and sourness. The Napping showed similar sample separation (RV = 0.67), but included relevant textural terms (''chewy''; ''rubbery'') not used in the DA. The current lexicon can be applied to a large range of baby leafy greens. Napping showed good correspondence with DA and can be deployed with agricultural products where time and other resources may be limited. PRACTICAL APPLICATION: Sensory evaluation methods have traditionally been applied in the food industry with processed products.While traditional methods such as descriptive analysis have been used to profile products, rapid and inexpensive profiling methods should be screened for their value in describing agricultural products. The results of this study can be applied to breeding and grow-out programs to aid in optimization of the processing,storage, and quality control for the rapidly expanding baby leafy green market.
Collapse
Affiliation(s)
- Regina O'Brien
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Center for Sensory Science & Innovation, New Brunswick, New Jersey, USA
| | - James E Simon
- Center for Sensory Science & Innovation, New Brunswick, New Jersey, USA.,New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA.,Center for Agricultural Food Ecosystems, The New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Beverly J Tepper
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Center for Sensory Science & Innovation, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Aqueous and gaseous plasma applications for the treatment of mung bean seeds. Sci Rep 2021; 11:19681. [PMID: 34608179 PMCID: PMC8490402 DOI: 10.1038/s41598-021-97823-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Germination assessments were performed in a test tube set-up filled with glass beads and the produced irrigation water. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.
Collapse
|
23
|
Niroula A, Amgain N, Kc R, Adhikari S, Acharya J. Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chem 2021; 354:129491. [PMID: 33756330 DOI: 10.1016/j.foodchem.2021.129491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023]
Abstract
The study was aimed to evaluate if deetiolation of barley and wheat microgreens after cultivaton in dark (for 5, 7 and 9 days) can enhance the contents of pigments, ascorbic acid, polyphenols, and equivalent antioxidant capacities (EAC) (measured by DPPH and FRAP assay) in correlation to other. Chlorophylls and carotenoids were higher in microgreens that were exposed more to daylight. In contrast, ascorbic acid, polyphenols and EAC of microgreens could be enhanced by 5-7 days of etiolation. However, prolonged etiolation reduced overall antioxidant capacities of microgreens. All evaluated parameters could be satisfactorily represented by regression expressions for the given number of days of etiolation and growth. The ascorbic acid and total carotenoids content had higher correlations with total chlorophyll contents, while the antioxidant capacities were highly correlated to total polyphenols content. The study confirms the potential of deetiolated cultivation of microgreens to enhance selective phytochemicals content and EAC of microgreens.
Collapse
|
24
|
Islam MZ, Park B, Lee Y. Bioactive Phytochemicals and Antioxidant Capacity of Wheatgrass Treated with Salicylic Acid under Organic Soil Cultivation. Chem Biodivers 2021. [DOI: 10.1002/cbdv.202000861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mohammad Zahirul Islam
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Buem‐Jun Park
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Young‐Tack Lee
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| |
Collapse
|
25
|
Antioxidant activity of various plant sprouts extracts depending on the processing method of plant material – an in vitro study. HERBA POLONICA 2020. [DOI: 10.2478/hepo-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Summary
Introduction: Due to the content of nutrients and taste attributes, the plant sprouts could become a valuable component of a healthy diet.
Objective: The aim of the study was to evaluate the antioxidant potential of various sprouts extracts depending on the processing method of the plant material.
Methods: The extracts in 96%(v/v) ethanol were prepared from fresh, frozen, dry and homogenized sprouts of alfalfa, broccoli, radish, lentil, mung bean, beetroot, sunflower, and kale, using ultrasound-assisted extraction. The antioxidant potential and total polyphenols content were evaluated by the in vitro methods.
Results: The highest antioxidant activity was observed for beetroot and kale as well as broccoli sprouts extracts. The lower potential, in general, was observed in the case of alfalfa, lentil, and mung bean sprouts samples. The lowest activity was observed most frequently for the extracts from dry material, whereas the highest for homogenized as well as frozen and fresh.
Conclusion: The plant sprouts, particularly beetroot, kale, and broccoli, could be a valuable source of natural antioxidants.
Collapse
|
26
|
Abstract
Microgreens are gaining increasing recognition among consumers, acclaimed for their freshness and health promoting properties associated with densely fortified secondary metabolites. These immature greens enhance human diet and enrich it with sharp colors and flavors. While numerous species are being tested for agronomic and nutritional suitability, consumer acceptance of appearance, texture, and flavor is critical for the microgreens’ marketplace success. This study investigates whether sensory attributes and visual appearance affect consumer preference for microgreens and their willingness to consume them. By means of a consumer test, the sensory attributes of 12 microgreens species were evaluated, wherein a partial least squares structural equation model was developed to link sensorial attributes to willingness to eat the product. The results showed that although visual appearance of the microgreens was largely appreciated, consumer acceptance overall was mainly determined by flavor and texture. In particular, the lower the astringency, sourness, and bitterness, the higher the consumer acceptability of microgreens. Among the 12 examined species, mibuna and cress scored the lowest acceptance by consumers, while Swiss chard and coriander were the most appreciated, being therefore good candidates to be introduced in Western country markets. In addition, both Swiss chard and coriander have been identified by previous literature as good dietary source of phenolic antioxidants.
Collapse
|
27
|
Influence of Plasma Treatment on the Polyphenols of Food Products—A Review. Foods 2020; 9:foods9070929. [PMID: 32674387 PMCID: PMC7404721 DOI: 10.3390/foods9070929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
The consumption of bioactive compounds, especially phenolic compounds, has been associated with health benefits such as improving the health status and reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. However, the preservation of natural bioactive compounds in food products is a major challenge for the food industry. Due to the major impact of conventional thermal processing, nonthermal technologies such as cold plasma have been proposed as one of the most promising solutions for the food industry. This review will cover the current knowledge about the effects of cold plasma in polyphenols found in food products. The increasing number of studies in the last years supports the continuous search for specific treatment conditions for each type of food and the central role of plasma treatments as a food-processing technology.
Collapse
|
28
|
D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4075-4097. [PMID: 32181658 PMCID: PMC7997367 DOI: 10.1021/acs.jafc.0c00172] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.
Collapse
Affiliation(s)
- Roberto D’Amato
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Luca Regni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Beatrice Falcinelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Simona Mattioli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Paolo Benincasa
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Alessandro Dal Bosco
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Pablo Pacheco
- Instituto
de Química de San Luis, INQUISAL, Centro Científico-Tecnológico
de San Luis (CCT-San Luis), Consejo Nacional
de Investigaciones Científicas − Universidad Nacional
de San Luis, Chacabuco y Pedernera, Ciudad de San Luis 5700, Argentina
| | - Primo Proietti
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Elisabetta Troni
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| | - Claudio Santi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06123, Italy
| | - Daniela Businelli
- Department
of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
29
|
El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Giordano M, Ritieni A, De Pascale S, Rouphael Y. Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity. Antioxidants (Basel) 2020; 9:antiox9040300. [PMID: 32260224 PMCID: PMC7222179 DOI: 10.3390/antiox9040300] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Rising life expectancy and the demanding modern lifestyle drive the growing appeal of healthy and balanced diets centered on vegetable and fruit consumption. Functional, phytonutrient-packed and principally raw food is in high demand. Microgreens constitute such a novel functional food that combines a high sensory and bioactive value, which invites comparison to their mature-leaf counterparts. For this purpose, a controlled environment chamber experiment was carried out to compare the mineral, phytochemical and antioxidant capacity attributes of two-pigmented Lactuca sativa L. var. capitata cultivars (green and red Salanova®) harvested at the microgreens and the mature-leaf stage. Macronutrients were assessed through ion chromatography, while carotenoids and polyphenols were assessed and quantified through HPLC-DAD and UHPLC-Q-Orbitrap HRMS, respectively. Calcium and magnesium were higher in microgreens irrespective of the cultivar; conversely, phosphorous, potassium and nitrate where higher in mature leaves. All pigments including chlorophyll, lutein and β-carotene augmented at advanced maturity stage and were more concentrated in the red pigmented cultivar at both stages. Total polyphenols accumulated more densely in red Salanova, particularly in the microgreens stage; whereas, in green Salanova, the accumulation was significant but less pronounced in the mcirogreens stage. Chlorogenic acid, quercetin malonyl glucoside, rutin and coumaroyl quinic acid were the most concentrated phenolic acids in microgreens, while feruloyl tartaric acid was predominant in mature leaves. Finally, when a high carotenoids content is sought, mature lettuce leaves should be the prime culinary choice, whereas high polyphenolic content is dictated by both the cultivar and the harvest stage, with red Salanova microgreens being the most nutrient-packed choice.
Collapse
Affiliation(s)
- Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
- Correspondence: ; Tel.: +39-081-2539-134
| |
Collapse
|
30
|
Lenzi A, Orlandini A, Bulgari R, Ferrante A, Bruschi P. Antioxidant and Mineral Composition of Three Wild Leafy Species: A Comparison Between Microgreens and Baby Greens. Foods 2019; 8:E487. [PMID: 31614816 PMCID: PMC6835962 DOI: 10.3390/foods8100487] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Wild plants may play an important role in human nutrition and health and, among them, many are the leafy species. We hypothesized that the wild greens could be profitably grown as microgreens and baby greens, specialty products whose market is increasing. We compared three wild leafy species (Sanguisorba minor Scop., Sinapis arvensis L., and Taraxacum officinale Weber ex F. H. Wigg.) harvested at the microgreen and baby green stages. Seedlings were grown hydroponically in a half-strength Hoagland nutrient solution under controlled climatic conditions. At harvest, the yield was assessed, and chlorophylls, carotenoids, anthocyanins, phenolic index, nitrate, and mineral elements were measured in the two types of product. The potential contribution to human mineral intake was calculated, and the possible risk due to the presence of metals potentially detrimental for health was estimated. Results showed that micro/baby greens of the studied wild plants achieved competitive yields and could contribute to the dietary intake of macroelements, microelements, and non-nutrient bioactive compounds. On the other hand, the wild greens showed high amounts of nitrate and traces of some metals potentially detrimental for health, suggesting the need for caution in the use of wild species for producing microgreens and baby leaves.
Collapse
Affiliation(s)
- Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy.
| | - Alessandro Orlandini
- CREA Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics, 51017 Pescia, Italy.
| | - Roberta Bulgari
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, 20133 Milano, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, 20133 Milano, Italy.
| | - Piero Bruschi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy.
| |
Collapse
|
31
|
D'Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D. Selenium Biofortification in Rice ( Oryza sativa L.) Sprouting: Effects on Se Yield and Nutritional Traits with Focus on Phenolic Acid Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4082-4090. [PMID: 29619819 DOI: 10.1021/acs.jafc.8b00127] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The contents of total Se and of inorganic and organic Se species, as well as the contents of proteins, chlorophylls, carotenoids, and phenolic acids, were measured in 10-day old sprouts of rice ( Oryza sativa L.) obtained with increasing levels (15, 45, 135, and 405 mg Se L-1) of sodium selenite and sodium selenate and with distilled water as control. Increasing Se levels increased organic and inorganic Se contents of sprouts, as well as the content of phenolic acids, especially in their soluble conjugated forms. Moderate levels of sodium selenite (i.e., not higher that 45 mg L-1) appeared the best compromise to obtain high Se and phenolic acid yields together with high proportion of organic Se while limiting residual Se in the germination substrate waste. Se biofortification of rice sprouts appears a feasible and efficient way to promote Se and phenolic acid intake in human diet, with well-known health benefits.
Collapse
Affiliation(s)
- Roberto D'Amato
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Food Process , Università Cattolica del Sacro Cuore of Piacenza , 29100 Piacenza , Italy
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| | - Gian Maria Beone
- Department for Sustainable Food Process , Università Cattolica del Sacro Cuore of Piacenza , 29100 Piacenza , Italy
| | - Elisabetta Bravi
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| | - Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| | - Daniela Businelli
- Department of Agricultural, Food and Environmental Sciences , University of Perugia , 06121 Perugia , Italy
| |
Collapse
|