1
|
Lam KC, Goldszmid RS. Single-cell RNA flow cytometry to assess intratumoral production of cytokines/chemokines. Methods Cell Biol 2024; 191:221-246. [PMID: 39824558 DOI: 10.1016/bs.mcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes. However, cytokines and chemokines have varied expression across cell types, tumors, and host conditions. Therefore, approaches to effectively study the production of these proteins at the single-cell level in the TME are needed to fully elucidate the mechanisms governing the anti-cancer immune response. Here, we detail a protocol to assess the production of cytokines/chemokines across leukocyte populations in mouse tumors using RNA flow cytometry. Importantly, this method can be adapted with minimal changes to study various mouse and human tumors, other RNA analytes, and non-tumor tissues.
Collapse
Affiliation(s)
- Khiem C Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States; Computational Biology, Bioinformatics and Genomics, Biological Sciences, University of Maryland, College Park, MD, United States
| | - Romina S Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States.
| |
Collapse
|
2
|
Fritsch N, Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. TOXICS 2024; 12:802. [PMID: 39590982 PMCID: PMC11598016 DOI: 10.3390/toxics12110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024]
Abstract
T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury, co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity, which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood. These include priming and lymphocyte proliferation tests and, most recently, activation-induced marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory risk assessment.
Collapse
Affiliation(s)
- Nele Fritsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Biotechnology, Technical University of Berlin, 10115 Berlin, Germany
| | - Marina Aparicio-Soto
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Caterina Curato
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Franziska Riedel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Hermann-Josef Thierse
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| |
Collapse
|
3
|
Gunes ME, Wolbrom DH, Nygaard ED, Manell E, Jordache P, Qudus S, Cadelina A, Weiner J, Nowak G. OMIP-108: 22-color flow cytometry panel for detection and monitoring of chimerism and immune reconstitution in porcine-to-baboon models of operational xenotransplant tolerance studies. Cytometry A 2024; 105:800-806. [PMID: 39291632 PMCID: PMC11567788 DOI: 10.1002/cyto.a.24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Affiliation(s)
- M. Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Daniel H. Wolbrom
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Emilie Ditlev Nygaard
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Susan Qudus
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Alexander Cadelina
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Greg Nowak
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Lam KC, Chen Q, Goldszmid RS. Use of optimized single-cell RNA flow cytometry protocol identifies monocytes as main producers of type I interferon in mouse syngeneic tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604694. [PMID: 39372774 PMCID: PMC11451617 DOI: 10.1101/2024.07.23.604694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes. However, cytokines and chemokines have varied expression across cell types, tumors, and host conditions. Therefore, approaches to effectively study the production of these proteins at the single-cell level in the TME are needed to fully elucidate the mechanisms governing the anti-cancer immune response. Here, we detail a protocol to assess the production of cytokines/chemokines across leukocyte populations in mouse tumors using RNA flow cytometry. Importantly, this method can be adapted with minimal changes to study various mouse and human tumors, other RNA analytes, and non-tumor tissues. With this approach, we characterize single-cell production of Ifnb1, Xcl1 and Ccl5 in mouse tumors and identify monocytes and monocyte-derived macrophages as the main producers of type I interferon transcript Ifnb1 consistent across 4 different syngeneic tumor models.
Collapse
Affiliation(s)
- Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Computational Biology, Bioinformatics and Genomics, Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Moorton M, Tng PYL, Inoue R, Netherton CL, Gerner W, Schmidt S. Investigation of activation-induced markers (AIM) in porcine T cells by flow cytometry. Front Vet Sci 2024; 11:1390486. [PMID: 38868498 PMCID: PMC11168203 DOI: 10.3389/fvets.2024.1390486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Activation-induced markers (AIMs) are frequently analyzed to identify re-activated human memory T cells. However, in pigs the analysis of AIMs is still not very common. Based on available antibodies, we designed a multi-color flow cytometry panel comprising pig-specific or cross-reactive antibodies against CD25, CD69, CD40L (CD154), and ICOS (CD278) combined with lineage/surface markers against CD3, CD4, and CD8α. In addition, we included an antibody against tumor necrosis factor alpha (TNF-α), to study the correlation of AIM expression with the production of this abundant T cell cytokine. The panel was tested on peripheral blood mononuclear cells (PBMCs) stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, Staphylococcus enterotoxin B (SEB) or PBMCs from African swine fever virus (ASFV) convalescent pigs, restimulated with homologous virus. PMA/ionomycin resulted in a massive increase of CD25/CD69 co-expressing T cells of which only a subset produced TNF-α, whereas CD40L expression was largely associated with TNF-α production. SEB stimulation triggered substantially less AIM expression than PMA/ionomycin but also here CD25/CD69 expressing T cells were identified which did not produce TNF-α. In addition, CD40L-single positive and CD25+CD69+CD40L+TNF-α- T cells were identified. In ASFV restimulated T cells TNF-α production was associated with a substantial proportion of AIM expressing T cells but also here ASFV-reactive CD25+CD69+TNF-α- T cells were identified. Within CD8α+ CD4 T cells, several CD25/CD40L/CD69/ICOS defined phenotypes expanded significantly after ASFV restimulation. Hence, the combination of AIMs tested will allow the identification of primed T cells beyond the commonly used cytokine panels, improving capabilities to identify the full breadth of antigen-specific T cells in pigs.
Collapse
Affiliation(s)
- Madison Moorton
- The Pirbright Institute, Woking, United Kingdom
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
6
|
Trauet J, Bourgoin P, Schuldt J, Lefèvre G, Labalette M, Busnel JM, Demaret J. Studying antigen-specific T cells through a streamlined, whole blood-based extracellular approach. Cytometry A 2024; 105:288-296. [PMID: 38149360 DOI: 10.1002/cyto.a.24818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Techniques currently used for the study of antigen-specific T-cell responses are either poorly informative or require a heavy workload. Consequently, many perspectives associated with the broader study of such approaches remain mostly unexplored in translational research. However, these could benefit many fields including but not limited to infectious diseases, oncology, and vaccination. Herein, the main objective of this work was to develop a standardized flow cytometry-based approach that would combine ease of use together with a relevant study of antigen-specific T-cell responses so that they could be more often included in clinical research. To this extent, a streamlined approach relying on 1/ the use of whole blood instead of peripheral blood mononuclear cells and 2/ solely based on the expression of extracellular activation-induced markers (AIMs), called whole blood AIM (WAIM), was developed and further compared to more conventional techniques such as enzyme-linked immunospot (ELISpot) and flow cytometry-based intracellular cytokine staining (ICS). Based on a cohort of 20 individuals receiving the COVID-19 mRNA vaccine and focusing on SARS-CoV-2 and cytomegalovirus (CMV)-derived antigen T-cell-specific responses, a significant level of correlation between the three techniques was found. Based on the use of whole blood and on the expression of extracellular activation-induced markers (CD154, CD137, and CD107a), the WAIM technique appears to be very simple to implement and yet allows interesting patient stratification capabilities as the chosen combination of extracellular markers exhibited higher orthogonality than cytokines that are commonly considered in ICS (IFN-γ, TNF-α, and IL-2).
Collapse
Affiliation(s)
- Jacques Trauet
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Penelope Bourgoin
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Jana Schuldt
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Guillaume Lefèvre
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Myriam Labalette
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| | - Jean-Marc Busnel
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Julie Demaret
- CHU Lille, Institut d'Immunologie, U1286 - INFINITE - Institute for Translational Research in Inflammation Inserm Univ. Lille, Lille, France
| |
Collapse
|
7
|
Maecker HT. Multiparameter Flow Cytometry Monitoring of T Cell Responses. Methods Mol Biol 2024; 2807:325-342. [PMID: 38743238 DOI: 10.1007/978-1-0716-3862-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multiparameter flow cytometry is a common tool for assessing responses of T, B, and other cells to pathogens or vaccines. Such responses are likely to be important for predicting the efficacy of an HIV vaccine, despite the elusive findings in HIV vaccine trials to date. Fortunately, flow cytometry has evolved to be capable of readily measuring 30-40 parameters, providing the ability to dissect detailed phenotypes and functions that may be correlated with disease protection. Nevertheless, technical hurdles remain, and standardization of assays is still largely lacking. Here an optimized protocol for antigen-specific T cell monitoring is presented, with specific variations for particular markers. It covers the analysis of multiple cytokines, cell surface proteins, and other functional markers such as CD107, CD154, CD137, etc. References are given to published panels of 8-28 colors.
Collapse
Affiliation(s)
- Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Lin D, Maecker HT. CyTOF Intracellular Cytokine Assays for Antigen-Specific T Cells. Methods Mol Biol 2024; 2779:395-405. [PMID: 38526796 DOI: 10.1007/978-1-0716-3738-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cells specific for a single antigen tend to be rare, even after expansion of memory cells. They are commonly detected by in vitro stimulation with peptides or protein, followed by staining for intracellular cytokines. In this protocol, CyTOF® mass cytometry is used to collect single-cell data on a large number of cytokines/chemokines, as well as cell-surface proteins that characterize T cells and other immune cells. A method for magnetic bead enrichment of antigen-stimulated T cells, based on their expression of CD154 and CD69, is also included. Coupling magnetic enrichment with highly multiparameter mass cytometry, this method enables the ability to dissect the frequency, phenotype, and function of antigen-specific T cells in greater detail than previously possible. Rare cell subsets can be examined, while minimizing run times on the CyTOF.
Collapse
Affiliation(s)
| | - Holden T Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Aguilera J, Konvinse K, Lee A, Maecker H, Prunicki M, Mahalingaiah S, Sampath V, Utz PJ, Yang E, Nadeau KC. Air pollution and pregnancy. Semin Perinatol 2023; 47:151838. [PMID: 37858459 PMCID: PMC10843016 DOI: 10.1016/j.semperi.2023.151838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Increased fossil fuel usage and extreme climate change events have led to global increases in greenhouse gases and particulate matter with 99% of the world's population now breathing polluted air that exceeds the World Health Organization's recommended limits. Pregnant women and neonates with exposure to high levels of air pollutants are at increased risk of adverse health outcomes such as maternal hypertensive disorders, postpartum depression, placental abruption, low birth weight, preterm birth, infant mortality, and adverse lung and respiratory effects. While the exact mechanism by which air pollution exerts adverse health effects is unknown, oxidative stress as well as epigenetic and immune mechanisms are thought to play roles. Comprehensive, global efforts are urgently required to tackle the health challenges posed by air pollution through policies and action for reducing air pollution as well as finding ways to protect the health of vulnerable populations in the face of increasing air pollution.
Collapse
Affiliation(s)
- Juan Aguilera
- Department of Health Promotion and Behavioral Sciences, University of Texas Health Science Center at Houston, School of Public Health, El Paso, Texas
| | | | - Alexandra Lee
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Palo Alto, CA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA
| | - Mary Prunicki
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA; Division of Reproductive Endocrinology and Infertility, Department of OB/GYN, Massachusetts General Hospital, Boston, MA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Paul J Utz
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Emily Yang
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA.
| |
Collapse
|
10
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
11
|
Schroeder SM, Nelde A, Walz JS. Viral T-cell epitopes - Identification, characterization and clinical application. Semin Immunol 2023; 66:101725. [PMID: 36706520 DOI: 10.1016/j.smim.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.
Collapse
Affiliation(s)
- Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Department for Otorhinolaryngology, Head, and Neck Surgery, University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany; Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany; Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Phoksawat W, Nithichanon A, Lerdsamran H, Wongratanacheewin S, Meesing A, Pipattanaboon C, Kanthawong S, Aromseree S, Yordpratum U, Laohaviroj M, Lulitanond V, Chareonsudjai S, Puthavathana P, Kamuthachad L, Kamsom C, Thapphan C, Salao K, Chonlapan A, Nawawishkarun P, Prasertsopon J, Overgaard HJ, Edwards SW, Phanthanawiboon S. Phenotypic and functional changes of T cell subsets after CoronaVac vaccination. Vaccine 2022; 40:6963-6970. [PMID: 36283898 PMCID: PMC9595408 DOI: 10.1016/j.vaccine.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The pandemic coronavirus disease 2019 (COVID-19) is a major global public health concern and several protective vaccines, or preventive/therapeutic approaches have been developed. Sinovac-CoronaVac, an inactivated whole virus vaccine, can protect against severe COVID-19 disease and hospitalization, but less is known whether it elicits long-term T cell responses and provides prolonged protection. METHODS This is a longitudinal surveillance study of SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels, neutralizing antibody levels (NAb), T cell subsets and activation, and memory B cells of 335 participants who received two doses of CoronaVac. SARS-CoV-2 RBD-specific IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), while NAb were measured against two strains of SARS-CoV-2, the Wuhan and Delta variants. Activated T cells and subsets were identified by flow cytometry. Memory B and T cells were evaluated by enzyme-linked immune absorbent spot (ELISpot). FINDINGS Two doses of CoronaVac elicited serum anti-RBD antibody response, elevated B cells with NAb capacity and CD4+ T cell-, but not CD8+ T cell-responses. Among the CD4+ T cells, CoronaVac activated mainly Th2 (CD4+ T) cells. Serum antibody levels significantly declined three months after the second dose. INTERPRETATION CoronaVac mainly activated B cells but T cells, especially Th1 cells, were poorly activated. Activated T cells were mainly Th2 biased, demonstrating development of effector B cells but not long-lasting memory plasma cells. Taken together, these results suggest that protection with CoronaVac is short-lived and that a third booster dose of vaccine may improve protection.
Collapse
Affiliation(s)
- Wisitsak Phoksawat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Hatairat Lerdsamran
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Thailand
| | | | - Atibordee Meesing
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chonlatip Pipattanaboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Umaporn Yordpratum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Marut Laohaviroj
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Viraphong Lulitanond
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Thailand
| | - Ludthawun Kamuthachad
- Medical Microbiology Program, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chatcharin Kamsom
- Medical Microbiology Program, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chakrit Thapphan
- Medical Microbiology Program, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Arunya Chonlapan
- Service and Research Laboratory, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Punnapat Nawawishkarun
- Service and Research Laboratory, Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Thailand
| | - Hans J. Overgaard
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Steven W. Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Corresponding author at: Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Elias G, Meysman P, Bartholomeus E, De Neuter N, Keersmaekers N, Suls A, Jansens H, Souquette A, De Reu H, Emonds MP, Smits E, Lion E, Thomas PG, Mortier G, Van Damme P, Beutels P, Laukens K, Van Tendeloo V, Ogunjimi B. Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination. eLife 2022; 11:68388. [PMID: 35074048 PMCID: PMC8824481 DOI: 10.7554/elife.68388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022] Open
Abstract
Antigen recognition through the T cell receptor (TCR) αβ heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRβ repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRβ sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination. Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals’ memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.
Collapse
Affiliation(s)
- George Elias
- Laboratory of Experimental Hematology (LEH), University of Antwerp
| | - Pieter Meysman
- Biomedical Informatics Research Network Antwerp, Department of Mathematics and Informatics, University of Antwerp
| | | | - Nicolas De Neuter
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Nina Keersmaekers
- Centre for Health Economics Research & Modeling Infectious Diseases, University of Antwerp
| | - Arvid Suls
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Hilde Jansens
- Department of Clinical Microbiology, Antwerp University Hospital
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital
| | - Hans De Reu
- Laboratory of Experimental Hematology, University of Antwerp
| | | | - Evelien Smits
- Laboratory of Experimental Hematology, University of Antwerp
| | - Eva Lion
- Laboratory of Experimental Hematology, University of Antwerp
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital
| | - Geert Mortier
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Pierre Van Damme
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Philippe Beutels
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Viggo Van Tendeloo
- Janssen Research and Development, Immunosciences WWDA, Johnson and Johnson
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| |
Collapse
|
14
|
Bhat DK, Olkhanud PB, Gangaplara A, Seifuddin F, Pirooznia M, Biancotto A, Fantoni G, Pittman C, Francis B, Dagur PK, Saxena A, McCoy JP, Pfeiffer RM, Fitzhugh CD. Early Myeloid Derived Suppressor Cells (eMDSCs) Are Associated With High Donor Myeloid Chimerism Following Haploidentical HSCT for Sickle Cell Disease. Front Immunol 2021; 12:757279. [PMID: 34917079 PMCID: PMC8669726 DOI: 10.3389/fimmu.2021.757279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a widely available curative option for patients with sickle cell disease (SCD). Our original non-myeloablative haplo-HSCT trial employing post-transplant (PT) cyclophosphamide had a low incidence of GVHD but had high rejection rates. Here, we aimed to evaluate immune reconstitution following haplo-HSCT and identify cytokines and cells associated with graft rejection/engraftment. 50 cytokines and 10 immune cell subsets were screened using multiplex-ELISA and flow cytometry, respectively, at baseline and PT-Days 30, 60, 100, and 180. We observed the most significant differences in cytokine levels between the engrafted and rejected groups at PT-Day 60, corresponding with clinical findings of secondary graft rejection. Of the 44 cytokines evaluated, plasma concentrations of 19 cytokines were different between the two groups at PT-Day 60. Factor analysis suggested two independent factors. The first factor (IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, and TGFb1 contributed significantly) was strongly associated with engraftment with OR = 2.7 (95%CI of 1.4 to 5.4), whereas the second factor (GROa and IL-18 contributed significantly) was not significantly associated with engraftment. Sufficient donor myeloid chimerism (DMC) is critical for the success of HSCT; here, we evaluated immune cells among high (H) DMC (DMC≥20%) and low (L) DMC (DMC<20%) groups along with engrafted and rejected groups. We found that early myeloid-derived suppressor cell (eMDSC) frequencies were elevated in engrafted patients and patients with HDMC at PT-Day 30 (P< 0.04 & P< 0.003, respectively). 9 of 20 patients were evaluated for the source of eMDSCs. The HDMC group had high mixed chimeric eMDSCs as compared to the LDMC group (P< 0.00001). We found a positive correlation between the frequencies of eMDSCs and Tregs at PT-Day 100 (r=0.72, P <0.0007); eMDSCs at BSL and Tregs at PT-Day 100 (r=0.63, P <0.004). Of 10 immune regulatory cells and 50 cytokines, we observed mixed chimeric eMDSCs and IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, TGFb1 as potential hits which could serve as prognostic markers in predicting allograft outcome towards engraftment following haploidentical HSCT employing post-transplant cyclophosphamide. The current findings need to be replicated and further explored in a larger cohort.
Collapse
Affiliation(s)
- Deepali K Bhat
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Angélique Biancotto
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovanna Fantoni
- Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Corinne Pittman
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Berline Francis
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda MD, United States
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
15
|
Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res 2021; 11:2276-2301. [PMID: 33611770 DOI: 10.1007/s13346-021-00923-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has been at the forefront of therapeutic interventions for many different tumor types over the last decade. While the discovery of immunotherapeutics continues to occur at an accelerated rate, their translation is often hindered by a lack of strategies to deliver them specifically into solid tumors. Accordingly, significant scientific efforts have been dedicated to understanding the underlying mechanisms that govern their delivery into tumors and the subsequent immune modulation. In this review, we aim to summarize the efforts focused on overcoming tumor-associated biological barriers and enhancing the potency of immunotherapy. We summarize the current understanding of biological barriers that limit the entry of intravascularly administered immunotherapies into the tumors, in vitro techniques developed to investigate the underlying transport processes, and delivery strategies developed to overcome the barriers. Overall, we aim to provide the reader with a framework that guides the rational development of technologies for improved solid tumor immunotherapy.
Collapse
Affiliation(s)
- Anvay Ukidve
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Katharina Cu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Ninad Kumbhojkar
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Department of Material Science & Engineering, Department of Macromolecular Science & Engineering, Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samir Mitragotri
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Li M, Wang H, Li W, Xu XG, Yu Y. Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. SCIENCE ADVANCES 2020; 6:eabc8482. [PMID: 33268354 PMCID: PMC7821875 DOI: 10.1126/sciadv.abc8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 05/02/2023]
Abstract
The activation of Toll-like receptor heterodimer 1/2 (TLR1/2) by microbial components plays a critical role in host immune responses against pathogens. TLR1/2 signaling is sensitive to the chemical structure of ligands, but its dependence on the spatial distribution of ligands on microbial surfaces remains unexplored. Here, we reveal the quantitative relationship between TLR1/2-triggered immune responses and the spacing of ligand clusters by designing an artificial "phagocytic synapse" nanoarray platform to mimic the cell-microbe interface. The ligand spacing dictates the proximity of receptor clusters on the cell surface and consequently the pro-inflammatory responses of macrophages. However, cell responses reach their maximum at small ligand spacings when the receptor nanoclusters become adjacent to one another. Our study demonstrates the feasibility of using spatially patterned ligands to modulate innate immunity. It shows that the receptor clusters of TLR1/2 act as a driver in integrating the spatial cues of ligands into cell-level activation events.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
18
|
Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. NPJ Vaccines 2020; 5:77. [PMID: 32884842 PMCID: PMC7450042 DOI: 10.1038/s41541-020-00227-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Although traditional egg-based inactivated influenza vaccines can protect against infection, there have been significant efforts to develop improved formats to overcome disadvantages of this platform. Here, we have assessed human CD4 T cell responses to a traditional egg-based influenza vaccine with recently available cell-derived vaccines and recombinant baculovirus-derived vaccines. Adults were administered either egg-derived Fluzone®, mammalian cell-derived Flucelvax® or recombinant HA (Flublok®). CD4 T cell responses to each HA protein were assessed by cytokine EliSpot and intracellular staining assays. The specificity and magnitude of antibody responses were quantified by ELISA and HAI assays. By all criteria, Flublok vaccine exhibited superior performance in eliciting both CD4 T cell responses and HA-specific antibody responses, whether measured by mean response magnitude or percent of responders. Although the mechanism(s) underlying this advantage is not yet clear, it is likely that both qualitative and quantitative features of the vaccines impact the response.
Collapse
|
19
|
Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers (Basel) 2020; 12:cancers12020256. [PMID: 31972992 PMCID: PMC7072428 DOI: 10.3390/cancers12020256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms’ tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.
Collapse
|
20
|
Abstract
Intracellular cytokine staining (ICS) utilizing fluorescently labeled, cytokine-specific antibodies is a powerful technique utilized to evaluate cytokine expression that provides resolution at the single cell level. Combined with multi-parameter flow cytometry, ICS can provide detailed information on complex cytokine profiles and cellular phenotypes within the tumor microenvironment, particularly for the CD4+ T helper and CD8+ cytotoxic T cell compartments. This technique provides critical information concerning tumor-infiltrating T cell function that is essential for evaluating existing or therapeutically-induced tumor antigen-specific T cell responses in both preclinical models and cancer patients. In this chapter we will discuss in detail the critical steps necessary for a successful ICS assay and outline common protocols for the evaluation of cytokine production from T cell subsets present within the tumor microenvironment.
Collapse
|
21
|
Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol Lett 2019; 219:1-7. [PMID: 31881234 DOI: 10.1016/j.imlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Identification of antigen specificity of CD4 T cells is instrumental in understanding adaptive immune responses in health and disease. The high diversity of CD4 T cell repertoire combined with the functional heterogeneity of the compartment poses a challenge to the assessment of CD4 T cell responses. In spite of that, multiple technologies allow direct or indirect interrogation of antigen specificity of CD4 T cells. In the last decade, multiple surface proteins have been established as cytokine-independent surrogates of in vitro CD4 T cell activation, and have found applications in the live identification and isolation of antigen-responsive CD4 T cells. Here we review the current knowledge of the surface proteins that permit identification of viable antigen-responsive CD4 T cells with high specificity, including those capable of identifying specialized CD4 T subsets such as germinal center follicular helper T cells and CD4 regulatory T cells.
Collapse
|
22
|
Lauer FT, Parvez F, Factor-Litvak P, Liu X, Santella RM, Islam T, Eunus M, Alam N, Hasan AKMR, Rahman M, Ahsan H, Graziano J, Burchiel SW. Changes in human peripheral blood mononuclear cell (HPBMC) populations and T-cell subsets associated with arsenic and polycyclic aromatic hydrocarbon exposures in a Bangladesh cohort. PLoS One 2019; 14:e0220451. [PMID: 31365547 PMCID: PMC6668812 DOI: 10.1371/journal.pone.0220451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Exposures to environmental arsenic (As) and polycyclic aromatic hydrocarbons (PAH) have been shown to independently cause dysregulation of immune function. Little data exists on the associations between combined exposures to As and PAH with immunotoxicity in humans. In this work we examined associations between As and PAH exposures with lymphoid cell populations in human peripheral blood mononuclear cells (PBMC), as well as alterations in differentiation and activation of B and T cells. Two hundred men, participating in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh, were selected for the present study based on their exposure to As from drinking water and their cigarette smoking status. Blood and urine samples were collected from study participants. We utilized multiparameter flow cytometry in PBMC to identify immune cells (B, T, monocytes, NK) as well as the T-helper (Th) cell subsets (Th1, Th2, Th17, and Tregs) following ex vivo activation. We did not find evidence of interactions between As and PAH exposures. However, individual exposures (As or PAH) were associated with changes to immune cell populations, including Th cell subsets. Arsenic exposure was associated with an increase in the percentage of Th cells, and dose dependent changes in monocytes, NKT cells and a monocyte subset. Within the Th cell subset we found that Arsenic exposure was also associated with a significant increase in the percentage of circulating proinflammatory Th17 cells. PAH exposure was associated with changes in T cells, monocytes and T memory (Tmem) cells and with changes in Th, Th1, Th2 and Th17 subsets all of which were non-monotonic (dose dependent). Alterations of immune cell populations caused by environmental exposures to As and PAH may result in adverse health outcomes, such as changes in systemic inflammation, immune suppression, or autoimmunity.
Collapse
Affiliation(s)
- Fredine T. Lauer
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States of America
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Tariqul Islam
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Mahbubul Eunus
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Nur Alam
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | | | - Mizanour Rahman
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, IL, United States of America
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States of America
| |
Collapse
|
23
|
Roider J, Maehara T, Ngoepe A, Ramsuran D, Muenchhoff M, Adland E, Aicher T, Kazer SW, Jooste P, Karim F, Kuhn W, Shalek AK, Ndung'u T, Morris L, Moore PL, Pillai S, Kløverpris H, Goulder P, Leslie A. High-Frequency, Functional HIV-Specific T-Follicular Helper and Regulatory Cells Are Present Within Germinal Centers in Children but Not Adults. Front Immunol 2018; 9:1975. [PMID: 30258437 PMCID: PMC6143653 DOI: 10.3389/fimmu.2018.01975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 are an effective means of preventing transmission. To better understand the mechanisms by which HIV-specific bnAbs naturally develop, we investigated blood and lymphoid tissue in pediatric infection, since potent bnAbs develop with greater frequency in children than adults. As in adults, the frequency of circulating effector T-follicular helper cells (TFH) in HIV infected, treatment naïve children correlates with neutralization breadth. However, major differences between children and adults were also observed both in circulation, and in a small number of tonsil samples. In children, TFH cells are significantly more abundant, both in blood and in lymphoid tissue germinal centers, than in adults. Second, HIV-specific TFH cells are more frequent in pediatric than in adult lymphoid tissue and secrete the signature cytokine IL-21, which HIV-infected adults do not. Third, the enrichment of IL-21-secreting HIV-specific TFH in pediatric lymphoid tissue is accompanied by increased TFH regulation via more abundant regulatory follicular T-cells and HIV-specific CXCR5+ CD8 T-cells compared to adults. The relationship between regulation and neutralization breadth is also observed in the pediatric PBMC samples and correlates with neutralization breadth. Matching neutralization data from lymphoid tissue samples is not available. However, the distinction between infected children and adults in the magnitude, quality and regulation of HIV-specific TFH responses is consistent with the superior ability of children to develop high-frequency, potent bnAbs. These findings suggest the possibility that the optimal timing for next generation vaccine strategies designed to induce high-frequency, potent bnAbs to prevent HIV infection in adults would be in childhood.
Collapse
Affiliation(s)
- Julia Roider
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Takashi Maehara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Abigail Ngoepe
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Duran Ramsuran
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Maximilian Muenchhoff
- Department of Virology, Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Partner Site Munich, German Center for Infection Research, Munich, Germany
| | - Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
| | - Toby Aicher
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Samuel W. Kazer
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Kimberley, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Warren Kuhn
- Department of Otorhinolaryngology, Stanger Hospital, KwaZulu-Natal, South Africa
| | - Alex K. Shalek
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Department of Chemistry and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Henrik Kløverpris
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
24
|
Shekaramiz E, Doshi R, Wickramasinghe HK. Protein fishing from single live cells. J Nanobiotechnology 2018; 16:67. [PMID: 30205820 PMCID: PMC6134770 DOI: 10.1186/s12951-018-0395-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
Intracellular protein and proteomic studies using mass spectrometry, imaging microscopy, flow cytometry, or western blotting techniques require genetic manipulation, cell permeabilization, and/or cell lysis. We present a biophysical method that employs a nanoaspirator to 'fish' native cytoplasmic or nuclear proteins from single mammalian cells, without compromising cell viability, followed by ex cellulo quantitative detection. Our work paves the way for spatiotemporally-controlled, quantitative, live, single-cell proteomics.
Collapse
Affiliation(s)
- Elaheh Shekaramiz
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA
| | - Rupak Doshi
- Department of Electrical Engineering, University of California Irvine, Irvine, CA USA
- InhibRx LLP, 11025 N Torrey Pines Rd, #200, La Jolla, CA 92037 USA
| | - H. Kumar Wickramasinghe
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA
- Department of Electrical Engineering, University of California Irvine, Irvine, CA USA
| |
Collapse
|
25
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|