1
|
Johnson H, Tipirneni-Sajja A. Towards Optimizing Neural Network-Based Quantification for NMR Metabolomics. Metabolites 2025; 15:249. [PMID: 40278378 PMCID: PMC12029129 DOI: 10.3390/metabo15040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Quantification of metabolites from nuclear magnetic resonance (NMR) spectra in an accurate, high-throughput manner requires effective data processing tools. Neural networks are relatively underexplored in quantitative NMR metabolomics despite impressive speed and throughput compared to more conventional peak-fitting metabolomics software. Methods: This work investigates practices for dataset and model development in the task of metabolite quantification directly from simulated NMR spectra for three neural network models: the multi-layered perceptron, the convolutional neural network, and the transformer. Model architectures, training parameters, and training datasets are optimized before comparing each model on simulated 400-MHz 1H-NMR spectra of complex mixtures with 8, 44, or 86 metabolites to quantify in spectra ranging from simple to highly complex and overlapping peaks. The optimized models were further validated on spectra at 100- and 800-MHz. Results: The transformer was the most effective network for NMR metabolite quantification, especially as the number of metabolites per spectra increased or target concentrations were low or had a large dynamic range. Further, the transformer was able to accurately quantify metabolites in simulated spectra from 100-MHz up to 800-MHz. Conclusions: The methods developed in this work reveal that transformers have the potential to accurately perform fully automated metabolite quantification in real-time and, with further development with experimental data, could be the basis for automated quantitative NMR metabolomics software.
Collapse
Affiliation(s)
- Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
2
|
Johnson H, Tipirneni-Sajja A. Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics. Metabolites 2024; 14:666. [PMID: 39728446 DOI: 10.3390/metabo14120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The introduction of benchtop NMR instruments has made NMR spectroscopy a more accessible, affordable option for research and industry, but the lower spectral resolution and SNR of a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of spectra. Methods: In this work, we compare the performance of multiple neural network architectures in the task of converting simulated 100 MHz NMR spectra to 400 MHz with the goal of improving the quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are also used to directly quantify metabolites in simulated 100 and 400 MHz spectra for comparison. Results: The transformer network was the only architecture in this study capable of reliably converting the low-field NMR spectra to high-field spectra in mixtures of 21 and 87 metabolites. Multi-layered perceptron-based metabolite quantification was slightly more accurate when directly processing the low-field spectra compared to high-field converted spectra, which, at least for the current study, precludes the need for low-to-high-field spectral conversion; however, this comparison of low and high-field quantification necessitates further research, comparison, and experimental validation. Conclusions: The transformer method of NMR data processing was effective in converting low-field simulated spectra to high-field for metabolomic applications and could be further explored to automate processing in other areas of NMR spectroscopy.
Collapse
Affiliation(s)
- Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
4
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
5
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharm 2022; 19:3685-3699. [PMID: 36037249 PMCID: PMC9644399 DOI: 10.1021/acs.molpharmaceut.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Michael Tobyn
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Lucy E. Hawarden
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Anuji Abraham
- Drug
Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
7
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
8
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
9
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Khalil A, Kashif M. Nuclear Magnetic Resonance Spectroscopy for Quantitative Analysis: A Review for Its Application in the Chemical, Pharmaceutical and Medicinal Domains. Crit Rev Anal Chem 2021; 53:997-1011. [PMID: 34752175 DOI: 10.1080/10408347.2021.2000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Nuclear magnetic resonance (NMR) is a rapid and accurate analytical tool for qualification and quantification. The capacity of NMR of being quantitative can also justify the calibration of other analytical methods. In pharmaceutical domain, quantitative NMR (qNMR) can be applied in the identification and quantification of drug simultaneously. The early drug development stage requires a minimum sample for analysis. Thus, priority should be given to utilize this technique to attain results with least investment, rapid analysis time and minimum sample consumption. This technique is a significant phenomenon to identify impurities, drug substance, residual solvents of in-process control (IPC) samples and characterizing the formulations. From an analyst's perspective, qNMR proved to be a routine practice in pharmaceutical industry to qualify any drug product. The absolute and relative methods offer great help in quantifying the component of interest in the process control samples and finished products. This review highlights the evolution of NMR application in the pharmaceutical industry, where determining the purity of drug substance, drug product and establishing the identity of impurities and its level are the challenging aspects. NMR in medicinal field emerging as a numero uno for Covid-19 severity detection and its dire consequences, accelerated vaccine development and the mapping of SAR-COV-2 RNA and proteins via chemical shift assignments.
Collapse
Affiliation(s)
- Adila Khalil
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Kashif
- Analytical Chemistry Section, Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
11
|
Jaudzems K, Kirsteina A, Schubeis T, Casano G, Ouari O, Bogans J, Kazaks A, Tars K, Lesage A, Pintacuda G. Struktur eines an virusähnliche Partikel gekoppelten Antigens: Analyse einer Impfstoff‐Formulierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV-1006 Lettland
| | - Anna Kirsteina
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Tobias Schubeis
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| | - Gilles Casano
- Institut de Chimie Radicalaire Universität Aix-Marseille F-13013 Marseille Frankreich
| | - Olivier Ouari
- Institut de Chimie Radicalaire Universität Aix-Marseille F-13013 Marseille Frankreich
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Anne Lesage
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| | - Guido Pintacuda
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| |
Collapse
|
12
|
Jaudzems K, Kirsteina A, Schubeis T, Casano G, Ouari O, Bogans J, Kazaks A, Tars K, Lesage A, Pintacuda G. Structural Analysis of an Antigen Chemically Coupled on Virus-Like Particles in Vaccine Formulation. Angew Chem Int Ed Engl 2021; 60:12847-12851. [PMID: 33750007 DOI: 10.1002/anie.202013189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.
Collapse
Affiliation(s)
- Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Anna Kirsteina
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| | - Gilles Casano
- Institut de Chimie Radicalaire, AixMarseille Université, 13013, Marseille, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire, AixMarseille Université, 13013, Marseille, France
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| |
Collapse
|
13
|
Residue-based pharmacophore approaches to study protein-protein interactions. Curr Opin Struct Biol 2021; 67:205-211. [PMID: 33486430 DOI: 10.1016/j.sbi.2020.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023]
Abstract
This review focuses on pharmacophore approaches in researching protein interfaces that bind protein ligands. Pharmacophore descriptions of binding interfaces that employ molecular dynamics simulation can account for effects of solvation and conformational flexibility. In addition, these calculations provide an approximation to entropic considerations and as such, a better approximation of the free energy of binding. Residue-based pharmacophore approaches can facilitate a variety of drug discovery tasks such as the identification of receptor-ligand partners, identifying their binding poses, designing protein interfaces for selectivity, or defining a reduced mutational combinatorial exploration for subsequent experimental engineering techniques by orders of magnitudes.
Collapse
|
14
|
Calculation of the energy transferred by radiation damping from nuclear spin system to receiver coil in NMR. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Czernek J, Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int J Mol Sci 2020; 21:E4907. [PMID: 32664570 PMCID: PMC7404035 DOI: 10.3390/ijms21144907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, Hα) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square #2, 16206 Prague, Czech Republic;
| | | |
Collapse
|
16
|
Li M, Meng F, Tsutsumi Y, Amoureux JP, Xu W, Lu X, Zhang F, Su Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol Pharm 2020; 17:2196-2207. [DOI: 10.1021/acs.molpharmaceut.0c00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fan Meng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
- Bruker Biospin, 34 Rue de l’Industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa Japan
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Jacobowitz JR, Weng JK. Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:631-658. [PMID: 32176525 DOI: 10.1146/annurev-arplant-081519-035634] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.
Collapse
Affiliation(s)
- Joseph R Jacobowitz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Hassan A, Quinn CM, Struppe J, Sergeyev IV, Zhang C, Guo C, Runge B, Theint T, Dao HH, Jaroniec CP, Berbon M, Lends A, Habenstein B, Loquet A, Kuemmerle R, Perrone B, Gronenborn AM, Polenova T. Sensitivity boosts by the CPMAS CryoProbe for challenging biological assemblies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106680. [PMID: 31951864 PMCID: PMC7060763 DOI: 10.1016/j.jmr.2019.106680] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/09/2023]
Abstract
Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.
Collapse
Affiliation(s)
- Alia Hassan
- Bruker Biospin Corporation, Fällanden, Switzerland.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Hanh H Dao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Mélanie Berbon
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | - Alons Lends
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | | | - Antoine Loquet
- CNRS, CBMN, UMR5248, University of Bordeaux, F-33600 Pessac, France
| | | | | | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Gimeno A, Valverde P, Ardá A, Jiménez-Barbero J. Glycan structures and their interactions with proteins. A NMR view. Curr Opin Struct Biol 2019; 62:22-30. [PMID: 31835069 PMCID: PMC7322516 DOI: 10.1016/j.sbi.2019.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Abstract
Carbohydrate molecules are essential actors in key biological events, being involved as recognition points for cell-cell and cell-matrix interactions related to health and disease. Despite outstanding advances in cryoEM, X-ray crystallography and NMR still remain the most employed techniques to unravel their conformational features and to describe the structural details of their interactions with biomolecular receptors. Given the intrinsic flexibility of saccharides, NMR methods are of paramount importance to deduce the extent of motion around their glycosidic linkages and to explore their receptor-bound conformations. We herein present our particular view on the latest advances in NMR methodologies that are permitting to magnify their applications for deducing glycan conformation and dynamics and understanding the recognition events in which there are involved.
Collapse
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
20
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Isotopic Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and Dynamics. Methods Enzymol 2018; 614:37-65. [PMID: 30611431 DOI: 10.1016/bs.mie.2018.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membrane proteins, and especially G-protein coupled receptors (GPCRs), are increasingly important targets of structural biology studies due to their involvement in many biomedically critical pathways in humans. These proteins are often highly dynamic and thus benefit from studies by NMR spectroscopy in parallel with complementary crystallographic and cryo-EM analyses. However, such studies are often complicated by a range of practical concerns, including challenges in preparing suitably isotopically labeled membrane protein samples, large sizes of protein/detergent or protein/lipid complexes, and limitations on sample concentrations and stabilities. Here we describe our approach to addressing these challenges via the use of simple eukaryotic expression systems and modified NMR experiments, using the human adenosine A2A receptor as an example. Protocols are provided for the preparation of U-2H (13C,1H-Ile δ1)-labeled membrane proteins from overexpression in the methylotrophic yeast Pichia pastoris, as well as techniques for studying the fast ns-ps sidechain dynamics of the methyl groups of such samples. We believe that, with the proper optimization, these protocols should be generalizable to other GPCRs and human membrane proteins.
Collapse
|
23
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|