1
|
İnci A, Dökmeci S. Extracellular chaperones in lysosomal storage diseases. Mol Genet Metab 2025; 145:109086. [PMID: 40106871 DOI: 10.1016/j.ymgme.2025.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lysosomal storage disorders (LSDs) are a diverse group of inherited metabolic disorders characterized by the accumulation of undegraded substrates within lysosomes due to defective lysosomal function. Recent research has highlighted the pivotal role of extracellular chaperones in the pathophysiology of LSDs, revealing their crucial involvement in modulating disease progression. These chaperones aid in stabilizing and refolding misfolded lysosomal enzymes, enhancing their proper trafficking and function, which in turn reduces substrate accumulation. Furthermore, extracellular chaperones have emerged as promising biomarkers, with their levels in bodily fluids offering potential for disease diagnosis and monitoring. This review explores the current understanding of extracellular chaperones in the context of LSDs, examining their mechanisms of action, biomarker and therapeutic potential, and future directions in clinical application of LSDs.
Collapse
Affiliation(s)
- Aslı İnci
- Gazi University School of Medicine, Department of Pediatric Metabolism, Ankara, Turkey; Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey.
| | - Serap Dökmeci
- Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey
| |
Collapse
|
2
|
Niedowicz DM, Wang W, Prajapati P, Zhong Y, Fister S, Rogers CB, Sompol P, Powell DK, Patel I, Norris CM, Saatman KE, Nelson PT. Nicorandil treatment improves survival and spatial learning in aged granulin knockout mice. Brain Pathol 2025; 35:e13312. [PMID: 39438022 PMCID: PMC11961209 DOI: 10.1111/bpa.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in the human granulin (GRN) gene are associated with multiple diseases, including dementia disorders such as frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). We studied a Grn knockout (Grn-KO) mouse model in order to evaluate a potential therapeutic strategy for these diseases using nicorandil, a commercially available agonist for the ABCC9/Abcc9-encoded regulatory subunit of the "K+ATP" channel that is well-tolerated in humans. Aged (13 months) Grn-KO and wild-type (WT) mice were treated as controls or with nicorandil (15 mg/kg/day) in drinking water for 7 months, then tested for neurobehavioral performance, neuropathology, and gene expression. Mortality was significantly higher for aged Grn-KO mice (particularly females), but there was a conspicuous improvement in survival for both sexes treated with nicorandil. Grn-KO mice performed worse on some cognitive tests than WT mice, but Morris Water Maze performance was improved with nicorandil treatment. Neuropathologically, Grn-KO mice had significantly increased levels of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytosis but not ionized calcium binding adaptor molecule 1 (IBA-1)-immunoreactive microgliosis, indicating cell-specific inflammation in the brain. Expression of several astrocyte-enriched genes, including Gfap, were also elevated in the Grn-KO brain. Nicorandil treatment was associated with a subtle shift in a subset of detected brain transcript levels, mostly related to attenuated inflammatory markers. Nicorandil treatment improved survival outcomes, cognition, and inflammation in aged Grn-KO mice.
Collapse
Affiliation(s)
- Dana M. Niedowicz
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Wang‐Xia Wang
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Paresh Prajapati
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Yu Zhong
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shuling Fister
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Colin B. Rogers
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David K. Powell
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Indumati Patel
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
Li G, Wang A, Tang W, Fu W, Tian Q, Jian J, Lata M, Hettinghouse A, Ding Y, Wei J, Zhao X, Wang M, Dong Q, Liu C, Xu Y. Progranulin deficiency associates with postmenopausal osteoporosis via increasing ubiquitination of estrogen receptor α. Genes Dis 2025; 12:101221. [PMID: 39559258 PMCID: PMC11570241 DOI: 10.1016/j.gendis.2024.101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 11/20/2024] Open
Abstract
Estrogen deficiency is considered the most important cause of postmenopausal osteoporosis. However, the underlying mechanism is still not completely understood. In this study, progranulin (PGRN) was isolated as a key regulator of bone mineral density in postmenopausal women through high throughput proteomics screening. In addition, PGRN-deficient mice exhibited significantly lower bone mass than their littermates in an ovariectomy-induced osteoporosis model. Furthermore, estrogen-mediated inhibition of osteoclastogenesis and bone resorption as well as its protection against ovariectomy-induced bone loss largely depended on PGRN. Mechanistic studies revealed the existence of a positive feedback regulatory loop between PGRN and estrogen signaling. In addition, loss of PGRN led to the reduction of estrogen receptor α, the important estrogen receptor involved in estrogen regulation of osteoporosis, through enhancing its degradation via K48-linked ubiquitination. These findings not only provide a previously unrecognized interplay between PGRN and estrogen signaling in regulating osteoclastogenesis and osteoporosis but may also present a new therapeutic approach for the prevention and treatment of postmenopausal osteoporosis by targeting PGRN/estrogen receptor α.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| | - Aifei Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wei Tang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Michal Lata
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Yuanjing Ding
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Qirong Dong
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Youjia Xu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Osteoporosis Institute of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
4
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Zhang Q, Wu J, Guo D, Ji N, Liu W, Li X, Liu H, Zhang C, Zhao M, Li H, Jin H, Chang S, Wang D. Adipose-derived stem cell transplantation enhances spinal cord regeneration by upregulating PGRN expression. Neuroreport 2024; 35:1019-1029. [PMID: 39292953 DOI: 10.1097/wnr.0000000000002091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
This study aims to investigate the effect of adipose-derived stem cells (ADSCs) transplantation on progranulin (PGRN) expression and functional recovery in rats with spinal cord injury (SCI). ADSCs were isolated from the inguinal adipose tissue of rats. A SCI model was created, and ADSCs were injected into the injured area. Various techniques were used to assess the effects of ADSCs transplantation, including hematoxylin-eosin staining, Masson staining, immunofluorescence staining, electron microscopy, MRI, and motor function assessment. The potential mechanisms of ADSC transplantation were investigated using gene expression analysis and protein analysis. Finally, the safety of this therapy was evaluated through hematoxylin-eosin staining and indicators of liver and kidney damage in serum. PGRN expression increased in the injured spinal cord, and ADSCs transplantation further enhanced PGRN levels. The group that received ADSCs transplantation showed reduced inflammation, decreased scar formation, increased nerve regeneration, and faster recovery of bladder function. Importantly, motor function significantly improved in the ADSC transplantation group. ADSCs transplantation enhances functional regeneration in SCI by upregulating PGRN expression, reducing inflammation and scar formation, and promoting nerve regeneration and myelin repair. These findings suggest that ADSC transplantation is a potential therapy for SCI.
Collapse
Affiliation(s)
- Qiongchi Zhang
- Department of Orthopedics, 521 Hospitai of Norinco Group
| | - Jingtao Wu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Dong Guo
- Department of Orthopedics, Xi 'an Honghui hospital, Xi'an, Shaanxi Province
| | - Ning Ji
- Department of Orthopedics, 521 Hospitai of Norinco Group
| | - Weidong Liu
- Department of Orthopedics, Xi 'an Honghui hospital, Xi'an, Shaanxi Province
| | - Xinyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Hao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Chengyi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Minchao Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Hongxu Jin
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Su'e Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
6
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, Biomarker, and Behavioral Characterization of the Grn R493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol 2024; 61:9708-9722. [PMID: 38696065 PMCID: PMC11496013 DOI: 10.1007/s12035-024-04190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Spencer A Jones
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Subhashis Banerjee
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA.
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA.
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA.
| |
Collapse
|
7
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, biomarker, and behavioral characterization of the GrnR493X mouse model of frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542495. [PMID: 37398305 PMCID: PMC10312473 DOI: 10.1101/2023.05.27.542495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M. Smith
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Geetika Aggarwal
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Michael L. Niehoff
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Spencer A. Jones
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Subhashis Banerjee
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Susan A. Farr
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Andrew D. Nguyen
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| |
Collapse
|
8
|
Poniatowski ŁA, Woźnica M, Wojdasiewicz P, Mela-Kalicka A, Romanowska-Próchnicka K, Purrahman D, Żurek G, Krawczyk M, Nameh Goshay Fard N, Furtak-Niczyporuk M, Jaroszyński J, Mahmoudian-Sani MR, Joniec-Maciejak I. The Role of Progranulin (PGRN) in the Pathogenesis of Glioblastoma Multiforme. Cells 2024; 13:124. [PMID: 38247816 PMCID: PMC10814625 DOI: 10.3390/cells13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive malignant form of brain tumour in adults and is characterized by an extremely poor prognosis with dismal survival rates. Currently, expanding concepts concerning the pathophysiology of GBM are inextricably linked with neuroinflammatory phenomena. On account of this fact, the identification of novel pathomechanisms targeting neuroinflammation seems to be crucial in terms of yielding successful individual therapeutic strategies. In recent years, the pleiotropic growth factor progranulin (PGRN) has attracted significant attention in the neuroscience and oncological community regarding its neuroimmunomodulatory and oncogenic functions. This review of the literature summarizes and updates contemporary knowledge about PGRN, its associated receptors and signalling pathway involvement in GBM pathogenesis, indicating possible cellular and molecular mechanisms with potential diagnostic, prognostic and therapeutic targets in order to yield successful individual therapeutic strategies. After a review of the literature, we found that there are possible PGRN-targeted therapeutic approaches for implementation in GBM treatment algorithms both in preclinical and future clinical studies. Furthermore, PGRN-targeted therapies exerted their highest efficacy in combination with other established chemotherapeutic agents, such as temozolomide. The results of the analysis suggested that the possible implementation of routine determinations of PGRN and its associated receptors in tumour tissue and biofluids could serve as a diagnostic and prognostic biomarker of GBM. Furthermore, promising preclinical applications of PGRN-related findings should be investigated in clinical studies in order to create new diagnostic and therapeutic algorithms for GBM treatment.
Collapse
Affiliation(s)
- Łukasz A. Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036 Neubrandenburg, Germany
| | - Michał Woźnica
- Department of Spine Surgery, 7th Navy Hospital, Polanki 117, 80-305 Gdańsk, Poland;
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
| | - Aneta Mela-Kalicka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
- Department of Systemic Connective Tissue Diseases, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Grzegorz Żurek
- Department of Biostructure, Wrocław University of Health and Sport Sciences, I. J. Paderewskiego 35, 51-612 Wrocław, Poland;
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Najmeh Nameh Goshay Fard
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Marzena Furtak-Niczyporuk
- Department of Public Health, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Janusz Jaroszyński
- Department of Administrative Proceedings, Faculty of Law and Administration, Maria Curie-Skłodowska University of Lublin, Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Ward M, Carter LP, Huang JY, Maslyar D, Budda B, Paul R, Rosenthal A. Phase 1 study of latozinemab in progranulin-associated frontotemporal dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12452. [PMID: 38356474 PMCID: PMC10865485 DOI: 10.1002/trc2.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Heterozygous mutations in the GRN gene lead to reduced progranulin (PGRN) levels in plasma and cerebrospinal fluid (CSF) and are causative of frontotemporal dementia (FTD) with > 90% penetrance. Latozinemab is a human monoclonal immunoglobulin G1 antibody that is being developed to increase PGRN levels in individuals with FTD caused by heterozygous loss-of-function GRN mutations. METHODS A first-in-human phase 1 study was conducted to evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of multiple-dose intravenous administration of latozinemab in eight symptomatic participants with FTD caused by a heterozygous loss-of-function GRN mutation (FTD-GRN). RESULTS Latozinemab demonstrated favorable safety and PK/PD profiles. Multiple-dose administration of latozinemab increased plasma and CSF PGRN levels in participants with FTD-GRN to levels that approximated those seen in healthy volunteers. DISCUSSION Data from the first-in-human phase 1 study support further development of latozinemab for the treatment of FTD-GRN. Highlights GRN mutations decrease progranulin (PGRN) and cause frontotemporal dementia (FTD).Latozinemab is being developed as a PGRN-elevating therapy.Latozinemab demonstrated a favorable safety profile in a phase 1 clinical trial.Latozinemab increased PGRN levels in the CNS of symptomatic FTD-GRN participants.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Paul
- Alector Inc.South San FranciscoCaliforniaUSA
- Present address:
Nine Square Therapeutics, Inc.South San FranciscoCalifornia94080USA
| | | |
Collapse
|
10
|
Saleem S, Imran Z, Samdani A, Khoso B, Zehra S, Azhar A. Mutations in PGRN gene associated with the risk of psoriasis in Pakistan: a case control study. BMC Med Genomics 2023; 16:335. [PMID: 38129828 PMCID: PMC10740244 DOI: 10.1186/s12920-023-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic, autoimmune, papulosquamous skin disorder, characterized by the formation of drop-like papules and silvery-white plaques surrounded by reddened or inflamed skin, existing predominantly on the scalp, knees and elbows. The characteristic inflammation and hyperproliferation of keratinocytes in psoriasis is regulated by progranulin (PGRN), which suppresses the expression and release of inflammatory cytokines, such as TNF-α. METHODOLOGY In this study mutation analysis of the PGRN gene was performed by extracting the genomic DNA from blood samples of 171 diagnosed psoriasis patients and controls through standard salting-out method, followed by amplification and sequencing of the targeted region of exon 5-7 of PGRN gene. RESULTS Three single nucleotide polymorphisms, rs25646, rs850713 and a novel point mutation 805A/G were identified in the PGRN gene with significant association with the disease. The variant alleles of the polymorphisms were significantly distributed among cases and controls, and statistical analysis suggested that the mutant genotypes conferred a higher risk of psoriasis development and progression. Multi-SNP haplotype analysis indicated that the CAA (OR = 8.085, 95% CI = 5.16-12.66) and the CAG (OR = 3.204, 95% CI = 1.97-5.21) haplotypes were significantly associated with psoriasis pathogenesis. CONCLUSIONS These findings demonstrate that polymorphisms in PGRN might act as potential molecular targets for early diagnosis of psoriasis in susceptible individuals.
Collapse
Affiliation(s)
- Saima Saleem
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan.
| | - Zunaira Imran
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Azam Samdani
- Department of Dermatology, National Medical Centre (NMC), Karachi, Pakistan
| | - Bahram Khoso
- Department of Dermatology, Jinnah Sindh Medical University (JSMU), Karachi, Pakistan
| | - Sitwat Zehra
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Abid Azhar
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Díaz M, Mestres-Arenas A, Lerin C, Cereijo R, López-Bermejo A, de Zegher F, Villarroya F, Ibáñez L. Circulating progranulin in human infants: relation to prenatal growth and early postnatal nutrition. Pediatr Res 2023; 94:1189-1194. [PMID: 37031297 DOI: 10.1038/s41390-023-02595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Progranulin (PGRN) displays pleiotropic biological functions and has been proposed as a biomarker for metabolic diseases. We longitudinally assessed PGRN concentrations in infants born appropriate (AGA) or small for gestational age (SGA), the latter being at risk for obesity and type 2 diabetes, especially if they experience an excessive postnatal catch-up in weight and are formula-fed (FF). METHODS The study population consisted of 183 infants who were exclusively breast-fed [(BF), AGA, n = 66; SGA, n = 40], or FF (AGA, n = 31; SGA, n = 46) over the first 4 months. Assessments included auxology, fasting glucose, insulin, IGF-1, high-molecular-weight adiponectin, PGRN and body composition (by DXA), at birth, and at age 4 and 12 months. RESULTS PGRN levels were low at birth and unaffected by prenatal growth. PGRN increased at 4 and 12 months, although to a lesser extent in SGA infants, and was unrelated to the mode of feeding. PGRN correlated with markers of adiposity, inflammation and insulin resistance in both AGA and SGA infants, especially in those FF. CONCLUSIONS The attenuated increase of PGRN levels in SGA infants over the first year of life, along with the association to markers of unhealthy metabolic profile, might point to a role of PGRN in future disease risks. IMPACT Progranulin (PGRN) displays pleiotropic biological functions and has been proposed as a biomarker for metabolic diseases. In healthy infants, PGRN concentrations are low at birth and experience a significant and progressive increase up to age 12 months, which is less marked in infants born small for gestational age (SGA) and is unrelated to the mode of feeding. Circulating PGRN is related to markers of adiposity, inflammation, and insulin sensitivity, especially in formula-fed SGA infants. PGRN may play a role in the metabolic adaptations of SGA infants during early life, potentially contributing to the risk for obesity and type 2 diabetes in this population.
Collapse
Affiliation(s)
- Marta Díaz
- Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - Alberto Mestres-Arenas
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029, Madrid, Spain
| | - Carles Lerin
- Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - Rubén Cereijo
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain
- Research Institute, Hospital de la Santa Creu i de Sant Pau, Barcelona, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007, Girona, Spain
- Girona Institute forBiomedical Research, 17007, Girona, Spain
| | | | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain.
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029, Madrid, Spain.
| | - Lourdes Ibáñez
- Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Ventura E, Belfiore A, Iozzo RV, Giordano A, Morrione A. Progranulin and EGFR modulate receptor-like tyrosine kinase sorting and stability in mesothelioma cells. Am J Physiol Cell Physiol 2023; 325:C391-C405. [PMID: 37399497 PMCID: PMC10393324 DOI: 10.1152/ajpcell.00248.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
- Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
13
|
Chen T, Shi R, Suo Q, Wu S, Liu C, Huang S, Haroon K, Liu Z, He Y, Tian HL, Wang Y, Tang Y, Yang GY, Zhang Z. Progranulin released from microglial lysosomes reduces neuronal ferroptosis after cerebral ischemia in mice. J Cereb Blood Flow Metab 2023; 43:505-517. [PMID: 36514959 PMCID: PMC10063829 DOI: 10.1177/0271678x221145090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cellular redox state is essential for inhibiting ferroptosis. Progranulin (PGRN) plays an important role in maintaining the cellular redox state after ischemic brain injury. However, the effect of PGRN on ferroptosis and its underlying mechanism after cerebral ischemia remains unclear. This study assesses whether PGRN affects ferroptosis and explores its mechanism of action on ferroptosis after cerebral ischemia. We found endogenous PGRN expression in microglia increased on day 3 after ischemia. In addition, PGRN agonists chloroquine and trehalose upregulated PGRN expression, reduced brain infarct volume, and improved neurobehavioral outcomes after cerebral ischemia compared to controls (p < 0.05). Moreover, PGRN upregulation attenuated ferroptosis by decreasing malondialdehyde and increasing Gpx4, Nrf2, and Slc7a11 expression and glutathione content (p < 0.05). Furthermore, chloroquine induced microglial lysosome PGRN release, which was associated with increased neuron survival. Our results indicate that PGRN derived from microglial lysosomes effectively inhibits ferroptosis during ischemic brain injury, identifying it as a promising target for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tingting Chen
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxian Huang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Khan Haroon
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan He
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
15
|
Liu P, Li Y, Li S, Zhang Y, Song Y, Ji T, Li Y, Ma L. Serum progranulin as a potential biomarker for frailty in Chinese older adults. Aging Clin Exp Res 2023; 35:399-406. [PMID: 36562981 DOI: 10.1007/s40520-022-02318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Frailty can increase adverse health outcomes in older adults. Progranulin is a secreted glycoprotein involved in regulating various biological processes. Different perspectives exist on the relationship between progranulin and frailty. AIMS We aimed to evaluate the association of progranulin with frailty in older Chinese adults. METHODS We included 265 older in-patients who were divided into the robust (n = 31), pre-frail (n = 116) and frail (n = 118) groups according to the FRAIL scale. Serum IL-6, CXCL-10, progranulin, and CRP levels were assayed. Spearman's correlation and logistic regression models were used to analyze the association of serum biomarkers with frailty, and ROC was used to evaluate the diagnostic progranulin value for frailty. RESULTS The frail group was older and had lower BMI, higher prevalence of coronary heart disease, worse grip strength and walking speed, and higher IL-6, CXCL-10, progranulin, and CRP serum levels than the robust and pre-frail groups. Progranulin levels were negatively correlated with grip strength (r = - 0.152, p = 0.016) and positively correlated with IL-6 (r = 0.207, p = 0.001) and CXCL-10 (r = 0.160, p = 0.009) after adjusting for age and sex. Furthermore, progranulin remained associated with frailty after adjusting for age, sex, BMI, smoking, chronic diseases, and pro-inflammatory cytokines (OR = 1.003, 95% CI 1.001-1.006, p = 0.022). The AUC of serum progranulin levels for diagnostic frailty was 0.927 (95% CI 0.896-0.958, p < 0.001). CONCLUSION High serum progranulin levels were observed in frail older adults and were associated with worse physical function and increased chronic inflammation. Progranulin may be a potential biomarker for frailty.
Collapse
Affiliation(s)
- Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| | - Shijie Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yaxin Zhang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yu Song
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tong Ji
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Ying Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
16
|
Ventura E, Xie C, Buraschi S, Belfiore A, Iozzo RV, Giordano A, Morrione A. Complexity of progranulin mechanisms of action in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:333. [PMID: 36471440 PMCID: PMC9720952 DOI: 10.1186/s13046-022-02546-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.
Collapse
Affiliation(s)
- Elisa Ventura
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Christopher Xie
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Simone Buraschi
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonino Belfiore
- grid.8158.40000 0004 1757 1969Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Renato V. Iozzo
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonio Giordano
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
17
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
18
|
Pakharukova MY, Mordvinov VA. Similarities and differences among the Opisthorchiidae liver flukes: insights from Opisthorchis felineus. Parasitology 2022; 149:1306-1318. [PMID: 35570685 PMCID: PMC11010525 DOI: 10.1017/s0031182022000397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/08/2022]
Abstract
The foodborne liver trematode Opisthorchis felineus (Rivolta, 1884) is a member of the triad of phylogenetically related epidemiologically important Opisthorchiidae trematodes, which also includes O. viverrini (Poirier, 1886) and Clonorchis sinensis (Loos, 1907). Despite similarity in the life cycle, Opisthorchiidae liver flukes also have marked differences. Two species (O. viverrini and C. sinensis) are recognized as Group 1A biological carcinogens, whereas O. felineus belongs to Group 3A. In this review, we focus on these questions: Are there actual differences in carcinogenicity among these 3 liver fluke species? Is there an explanation for these differences? We provide a recent update of our knowledge on the liver fluke O. felineus and highlight its differences from O. viverrini and C. sinensis. In particular, we concentrate on differences in the climate of endemic areas, characteristics of the life cycle, the range of intermediate hosts, genomic and transcriptomic features of the pathogens, and clinical symptoms and morbidity of the infections in humans. The discussion of these questions can stimulate new developments in comparative studies on the pathogenicity of liver flukes and should help to identify species-specific features of opisthorchiasis and clonorchiasis pathogenesis.
Collapse
Affiliation(s)
- Maria Y. Pakharukova
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Viatcheslav A. Mordvinov
- Laboratory of Molecular Mechanisms of Pathological Processes, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Pan Y, Yang Y, Fan M, Chen C, Jiang R, Liang L, Xian M, Kuang B, Geng N, Feng N, Deng L, Zheng W, Zhang F, Li X, Guo F. Progranulin regulation of autophagy contributes to its chondroprotective effect in osteoarthritis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms 2022; 10:microorganisms10050998. [PMID: 35630441 PMCID: PMC9145319 DOI: 10.3390/microorganisms10050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Gastric cancer, the fourth most common cause of death from tumors in the world, is closely associated with Helicobacter pylori. Timely diagnosis, therefore, is essential to achieve a higher survival rate. In Chile, deaths from gastric cancer are high, mainly due to late diagnosis. Progranulin has reflected the evolution of some cancers, but has been poorly studied in gastric lesions. Aiming to understand the role of progranulin in H. pylori infection and its evolution in development of gastric lesions, we evaluated the genic expression of progranulin in gastric tissue from infected and non-infected patients, comparing it according to the epithelial status and virulence of H. pylori strains. (2) Methods: The genic expression of progranulin by q-PCR was quantified in gastric biopsies from Chilean dyspeptic patients (n = 75) and individuals who were uninfected (n = 75) by H. pylori, after receiving prior informed consent. Bacteria were grown on a medium Columbia agar with equine-blood 7%, antibiotics (Dent 2%, OxoidTM), in a microaerophilic environment, and genetically characterized for the ureC, vacA, cagA, and iceA genes by PCR. The status of the tissue was determined by endoscopic observation. (3) Results: Minor progranulin expression was detected in atrophic tissue, with a sharp drop in the tissue colonized by H. pylori that carried greater virulence, VacAs1m1+CagA+IceA1+. (4) Conclusions: Progranulin shows a differential behavior according to the lesions and virulence of H. pylori, affecting the response of progranulin against gastric inflammation.
Collapse
|
21
|
Shir D, Day GS. Deciphering the contributions of neuroinflammation to neurodegeneration: lessons from antibody-mediated encephalitis and coronavirus disease 2019. Curr Opin Neurol 2022; 35:212-219. [PMID: 35102125 PMCID: PMC8896289 DOI: 10.1097/wco.0000000000001033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Does neuroinflammation promote neurodegeneration? Does neurodegeneration promote neuroinflammation? Or, is the answer to both questions, yes? These questions have proven challenging to answer in patients with typical age-related neurodegenerative diseases in whom the onset of neuroinflammation and neurodegeneration are largely unknown. Patients recovering from diseases associated with abrupt-onset neuroinflammation, including rare forms of antibody-mediated encephalitis (AME) and common complications of novel coronavirus disease 2019 (COVID-19), provide a unique opportunity to untangle the relationship between neuroinflammation and neurodegeneration. This review explores the lessons learned from patients with AME and COVID-19. RECENT FINDINGS Persistent cognitive impairment is increasingly recognized in patients recovering from AME or COVID-19, yet the drivers of impairment remain largely unknown. Clinical observations, neuroimaging and biofluid biomarkers, and pathological studies imply a link between the severity of acute neuroinflammation, subsequent neurodegeneration, and disease-associated morbidity. SUMMARY Data from patients with AME and COVID-19 inform key hypotheses that may be evaluated through future studies incorporating longitudinal biomarkers of neuroinflammation and neurodegeneration in larger numbers of recovering patients. The results of these studies may inform the contributors to cognitive impairment in patients with AME and COVID-19, with potential diagnostic and therapeutic applications in patients with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
22
|
Raffin J, Angioni D, Giudici KV, Valet P, Aggarwal G, Nguyen AD, Morley JE, Guyonnet S, Rolland Y, Vellas B, Barreto PDS. Physical activity, body mass index, and blood progranulin in older adults: cross-sectional associations in the MAPT study. J Gerontol A Biol Sci Med Sci 2022; 77:1141-1149. [PMID: 35037052 DOI: 10.1093/gerona/glac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Physical activity (PA) has been shown to moderate the negative effects of obesity on pro-inflammatory cytokines but its relationship with the adipokine progranulin (PGRN) remains poorly investigated. This study aimed to examine the cross-sectional main and interactive associations of body mass index (BMI) and PA level with circulating PGRN in older adults. Five-hundred and twelve subjects aged 70 years and over involved in the Multidomain Alzheimer Prevention Trial (MAPT) Study who underwent plasma PGRN measurements (ng/ml) were included. Self -reported PA levels were assessed using questionnaires. People were classified into three BMI categories: normal weight, overweight or obesity. Further categorization using PA tertiles was used to define highly active, moderately active and low active individuals. Multiple linear regressions were performed in order to test the associations of BMI, PA level, and their interaction with PGRN levels. Multiple linear regressions adjusted by age, sex, diabetes mellitus status, total cholesterol, creatinine level and MAPT group demonstrated significant interactive associations of BMI status and continuous PA such that in people without obesity, higher PA levels were associated with lower PGRN concentrations, while an opposite pattern was found in individuals with obesity. In addition, continuous BMI was positively associated with circulating PGRN in highly active individuals but not in their less active peers. This cross-sectional study demonstrated reverse patterns in older adults with obesity compared to those without obesity regarding the relationships between PA and PGRN levels. Longitudinal and experimental investigations are required to understand the mechanisms that underlie the present findings.
Collapse
Affiliation(s)
- Jérémy Raffin
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France
| | - Davide Angioni
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France
| | - Kelly V Giudici
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France
| | - Philippe Valet
- Institut RESTORE, UMR, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sophie Guyonnet
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France.,CERPOP UMR, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Yves Rolland
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France.,CERPOP UMR, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Bruno Vellas
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France.,CERPOP UMR, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe de Souto Barreto
- Institut du Vieillissement Gérontopôle de Toulouse, Centre Hospitalo-Universitaire de Toulouse, allées Jules Guesdes, Toulouse, France.,CERPOP UMR, University of Toulouse III, Inserm, UPS, Toulouse, France
| | | |
Collapse
|
23
|
Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 2022; 43:641-652. [PMID: 35039149 DOI: 10.1016/j.tips.2021.11.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023]
Abstract
Progranulin (PGRN, encoded by the GRN gene) plays a key role in the development, survival, function, and maintenance of neurons and microglia in the mammalian brain. It regulates lysosomal biogenesis, inflammation, repair, stress response, and aging. GRN loss-of-function mutations cause neuronal ceroid lipofuscinosis or frontotemporal dementia-GRN (FTD-GRN) in a gene dosage-dependent manner. Mutations that reduce PGRN levels increase the risk for developing Alzheimer's disease, Parkinson's disease, and limbic-predominant age-related transactivation response DNA-binding protein 43 encephalopathy, as well as exacerbate the progression of amyotrophic lateral sclerosis (ALS) and FTD caused by the hexanucleotide repeat expansion in the C9orf72 gene. Elevating and/or restoring PGRN levels is an attractive therapeutic strategy and is being investigated for neurodegenerative diseases through multiple mechanisms of action.
Collapse
Affiliation(s)
- Herve Rhinn
- Alector, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
24
|
Lan YJ, Sam NB, Cheng MH, Pan HF, Gao J. Progranulin as a Potential Therapeutic Target in Immune-Mediated Diseases. J Inflamm Res 2021; 14:6543-6556. [PMID: 34898994 PMCID: PMC8655512 DOI: 10.2147/jir.s339254] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Progranulin (PGRN), a secretory glycoprotein consisting of 593 amino acid residues, is a key actor and regulator of multiple system functions such as innate immune response and inflammation, as well as tissue regeneration. Recently, there is emerging evidence that PGRN is protective in the development of a variety of immune-mediated diseases, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS) by regulating signaling pathways known to be critical for immunology, particularly the tumor necrosis factor alpha/TNF receptor (TNF-α/TNFR) signaling pathway. Whereas, the role of PGRN in psoriasis, systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is controversial. This review summarizes the immunological functions of PGRN and its role in the pathogenesis of several immune-mediated diseases, in order to provide new ideas for developing therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yue-Jiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Napoleon Bellua Sam
- Department of Medical Research and Innovation, School of Medicine, University for Development Studies, Tamale, Ghana
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Winkels H, Ghosheh Y, Kobiyama K, Kiosses WB, Orecchioni M, Ehinger E, Suryawanshi V, Herrera-De La Mata S, Marchovecchio P, Riffelmacher T, Thiault N, Kronenberg M, Wolf D, Seumois G, Vijayanand P, Ley K. Thymus-Derived CD4 +CD8 + Cells Reside in Mediastinal Adipose Tissue and the Aortic Arch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2720-2732. [PMID: 34740961 PMCID: PMC8612987 DOI: 10.4049/jimmunol.2100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Double-positive CD4+CD8αβ+ (DP) cells are thought to reside as T cell progenitors exclusively within the thymus. We recently discovered an unexpected CD4+ and CD8αβ+ immune cell population in healthy and atherosclerotic mice by single-cell RNA sequencing. Transcriptomically, these cells resembled thymic DPs. Flow cytometry and three-dimensional whole-mount imaging confirmed DPs in thymus, mediastinal adipose tissue, and aortic adventitia, but nowhere else. Deep transcriptional profiling revealed differences between DP cells isolated from the three locations. All DPs were dependent on RAG2 expression and the presence of the thymus. Mediastinal adipose tissue DPs resided in close vicinity to invariant NKT cells, which they could activate in vitro. Thymus transplantation failed to reconstitute extrathymic DPs, and frequencies of extrathymic DPs were unaltered by pharmacologic inhibition of S1P1, suggesting that their migration may be locally confined. Our results define two new, transcriptionally distinct subsets of extrathymic DPs that may play a role in aortic vascular homeostasis.
Collapse
Affiliation(s)
- Holger Winkels
- La Jolla Institute for Immunology, La Jolla, CA;
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Dennis Wolf
- University Hospital Freiburg, Freiburg, Germany; and
| | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
26
|
Zhao X, Liberti R, Jian J, Fu W, Hettinghouse A, Sun Y, Liu CJ. Progranulin associates with Rab2 and is involved in autophagosome-lysosome fusion in Gaucher disease. J Mol Med (Berl) 2021; 99:1639-1654. [PMID: 34453183 PMCID: PMC8541919 DOI: 10.1007/s00109-021-02127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Progranulin (PGRN) is a key regulator of lysosomes, and its deficiency has been linked to various lysosomal storage diseases (LSDs), including Gaucher disease (GD), one of the most common LSD. Here, we report that PGRN plays a previously unrecognized role in autophagy within the context of GD. PGRN deficiency is associated with the accumulation of LC3-II and p62 in autophagosomes of GD animal model and patient fibroblasts, resulting from the impaired fusion of autophagosomes and lysosomes. PGRN physically interacted with Rab2, a critical molecule in autophagosome-lysosome fusion. Additionally, a fragment of PGRN containing the Grn E domain was required and sufficient for binding to Rab2. Furthermore, this fragment significantly ameliorated PGRN deficiency-associated impairment of autophagosome-lysosome fusion and autophagic flux. These findings not only demonstrate that PGRN is a crucial mediator of autophagosome-lysosome fusion but also provide new evidence indicating PGRN's candidacy as a molecular target for modulating autophagy in GD and other LSDs in general. KEY MESSAGES : PGRN acts as a crucial factor involved in autophagosome-lysosome fusion in GD. PGRN physically interacts with Rab2, a molecule in autophagosome-lysosome fusion. A 15-kDa C-terminal fragment of PGRN is required and sufficient for binding to Rab2. This PGRN derivative ameliorates PGRN deficiency-associated impairment of autophagy. This study provides new insights into autophagy and may develop novel therapy for GD.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA
| | - Rossella Liberti
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA
| | - Ying Sun
- Division of Human Genetics, The Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, Rm 1608, LOH, 301 East 17th Street, New York, NY, 10003, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
27
|
Shanshan L, Yamei Z, Ling Z, Xin L, Guochun W. Progranulin correlated with rapid progressive interstitial lung disease in dermatomyositis with anti-melanoma differentiation-associated gene 5 antibody. Clin Rheumatol 2021; 41:757-763. [PMID: 34718893 DOI: 10.1007/s10067-021-05816-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study aimed to detect the expression of progranulin (PGRN) and elucidate associations with clinical features in dermatomyositis (DM) patients with anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody. METHODS We enrolled 40 DM patients with anti-MDA5 antibody, 20 patients with antisynthetase syndrome (ASS; disease control), and 20 healthy individuals (healthy control, HC). The clinical features of patients with anti-MDA5 antibody and anti-histidyl-tRNA antibody were collected. The level of PGRN in the serum was tested by ELISA. RESULTS The PGRN levels in DM patients with anti-MDA5 antibody (166.74 ± 97.95 ng/ml) were significantly higher than those in patients with ASS (82.66 ± 40.50 ng/ml; p < 0.001) and in HC (42.34 ± 18.69 ng/ml; p < 0.001). Patients with rapid progressive interstitial lung disease (RP-ILD) in DM with anti-MDA5 antibody (213.57 ± 114.05 ng/ml) had higher levels of PGRN than those without RP-ILD (135.51 ± 72.41 ng/ml; p = 0.012). ROC analysis showed an AUC value at 0.715 (95% CI, 0.541-0.888) for diagnosis of RP-ILD in DM patients with anti-MDA5 antibody. The expression of PGRN was positively correlated with the levels of ALT, AST, CK, LDH and ferritin (all p < 0.05). CONCLUSIONS Our results indicated PGRN had great potential as a valuable serum marker of RP-ILD in DM with anti-MDA5 antibody. Key Points The level of PGRN was elevated in DM patients with anti-MDA5 antibody, especially for those with RP-ILD.
Collapse
Affiliation(s)
- Li Shanshan
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East st, Chaoyang District, Beijing, China
| | - Zhang Yamei
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East st, Chaoyang District, Beijing, China
| | - Zhang Ling
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Xin
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East st, Chaoyang District, Beijing, China
| | - Wang Guochun
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East st, Chaoyang District, Beijing, China.
| |
Collapse
|
28
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
29
|
Hummel R, Lang M, Walderbach S, Wang Y, Tegeder I, Gölz C, Schäfer MKE. Single intracerebroventricular progranulin injection adversely affects the blood-brain barrier in experimental traumatic brain injury. J Neurochem 2021; 158:342-357. [PMID: 33899947 DOI: 10.1111/jnc.15375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Progranulin (PGRN) is a neurotrophic and anti-inflammatory factor with protective effects in animal models of ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury (TBI). Administration of recombinant (r) PGRN prevents exaggerated brain pathology after TBI in Grn-deficient mice, suggesting that local injection of recombinant progranulin (rPGRN) provides therapeutic benefit in the acute phase of TBI. To test this hypothesis, we subjected adult male C57Bl/6N mice to the controlled cortical impact model of TBI, administered a single dose of rPGRN intracerebroventricularly (ICV) shortly before the injury, and examined behavioral and biological effects up to 5 days post injury (dpi). The anti-inflammatory bioactivity of rPGRN was confirmed by its capability to inhibit the inflammation-induced hypertrophy of murine primary microglia and astrocytes in vitro. In C57Bl/6N mice, however, ICV administration of rPGRN failed to attenuate behavioral deficits over the 5-day observation period. (Immuno)histological gene and protein expression analyses at 5 dpi did not reveal a therapeutic benefit in terms of brain injury size, brain inflammation, glia activation, cell numbers in neurogenic niches, and neuronal damage. Instead, we observed a failure of TBI-induced mRNA upregulation of the tight junction protein occludin and increased extravasation of serum immunoglobulin G into the brain parenchyma at 5 dpi. In conclusion, single ICV administration of rPGRN had not the expected protective effects in the acute phase of murine TBI, but appeared to cause an aggravation of blood-brain barrier disruption. The data raise questions about putative PGRN-boosting approaches in other types of brain injuries and disease.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Lang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Simona Walderbach
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yong Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI) of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Schmidleithner L, Bittner S, Pant A, Ritter U, Hehlgans T, Riegel D, Schneider V, Groeber-Becker FK, Eigenberger A, Gebhard C, Strieder N, Fischer A, Rehli M, Hoffmann P, Edinger M, Strowig T, Huehn J, Schmidl C, Werner JM, Prantl L, Brors B, Imbusch CD, Feuerer M. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 2021; 54:702-720.e17. [PMID: 33789089 PMCID: PMC8050210 DOI: 10.1016/j.immuni.2021.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.
Collapse
Affiliation(s)
- Michael Delacher
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany; Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Malte Simon
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data management (ODCF), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Wuttke
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Asmita Pant
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology (RCI)
| | - Verena Schneider
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Florian Kai Groeber-Becker
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Alexander Fischer
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | | | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
31
|
Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis 2021; 153:105314. [PMID: 33636385 DOI: 10.1016/j.nbd.2021.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The granulin protein (also known as, and hereafter referred to as, progranulin) is a secreted glycoprotein that contributes to overall brain health. Heterozygous loss-of-function mutations in the gene encoding the progranulin protein (Granulin Precursor, GRN) are a common cause of familial frontotemporal dementia (FTD). Gene therapy approaches that aim to increase progranulin expression from a single wild-type allele, an area of active investigation for the potential treatment of GRN-dependent FTD, will benefit from the availability of a mouse model that expresses a genomic copy of the human GRN gene. Here we report the development and characterization of a novel mouse model that expresses the entire human GRN gene in its native genomic context as a single copy inserted into a defined locus (Hprt) in the mouse genome. We show that human and mouse progranulin are expressed in a similar tissue-specific pattern, suggesting that the two genes are regulated by similar mechanisms. Human progranulin rescues a phenotype characteristic of progranulin-null mice, the exaggerated and early deposition of the aging pigment lipofuscin in the brain, indicating that the two proteins are functionally similar. Longitudinal behavioural and neuropathological analyses revealed no significant differences between wild-type and human progranulin-overexpressing mice up to 18 months of age, providing evidence that long-term increase of progranulin levels is well tolerated in mice. Finally, we demonstrate that human progranulin expression can be increased in the brain using an antisense oligonucleotide that inhibits a known GRN-regulating micro-RNA, demonstrating that the transgene is responsive to potential gene therapy drugs. Human progranulin-expressing mice represent a novel and valuable tool to expedite the development of progranulin-modulating therapeutics.
Collapse
|
32
|
Guha R, Yue B, Dong J, Banerjee A, Serrero G. Anti-progranulin/GP88 antibody AG01 inhibits triple negative breast cancer cell proliferation and migration. Breast Cancer Res Treat 2021; 186:637-653. [PMID: 33616772 DOI: 10.1007/s10549-021-06120-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is characterized by invasiveness and short survival. Identifying novel TNBC-targeted therapies, to potentiate standard of care (SOC) therapy, is an unmet need. Progranulin (PGRN/GP88) is a biological driver of tumorigenesis, survival, and drug resistance in several cancers including breast cancer (BC). PGRN/GP88 tissue expression is an independent prognostic factor of recurrence while elevated serum PGRN/GP88 level is associated with poor outcomes. Since PGRN/GP88 expression is elevated in 30% TNBC, we investigated the involvement of progranulin on TNBC. METHODS The effect of inhibiting PGRN/GP88 expression in TNBC cells by siRNA was investigated. The effects of a neutralizing anti-human PGRN/GP88 monoclonal antibody AG01 on the proliferation and migration of two TNBC cell lines expressing PGRN/GP88 were then examined in vitro and in vivo. RESULTS Inhibition of GP88 expression by siRNA and AG01 treatment to block PGRN/GP88 action reduced proliferation and migration in a dose-dependent fashion in MDA-MB-231 and HS578-T cells. Western blot analysis showed decreased expression of phosphorylated protein kinases p-Src, p-AKT, and p-ERK upon AG01 treatment, as well as inhibition of tumor growth and Ki67 expression in vivo. CONCLUSION PGRN/GP88 represents a therapeutic target with companion diagnostics. Blocking PGRN/GP88 with antibody treatment may provide novel-targeted solutions in TNBC treatment which could eventually address the issue of toxicity and unresponsiveness associated with SOC.
Collapse
Affiliation(s)
- Rupa Guha
- A&G Pharmaceutical Inc, 9130 Red Branch Rd Suite X, Columbia, MD, 21045, USA.,Graduate Program in Life Sciences, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Binbin Yue
- A&G Pharmaceutical Inc, 9130 Red Branch Rd Suite X, Columbia, MD, 21045, USA
| | - Jianping Dong
- A&G Pharmaceutical Inc, 9130 Red Branch Rd Suite X, Columbia, MD, 21045, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Ginette Serrero
- A&G Pharmaceutical Inc, 9130 Red Branch Rd Suite X, Columbia, MD, 21045, USA. .,University of Maryland Greenebaum Comprehensive Cancer Center, 22 S. Greene St, Baltimore, MD, 21201, USA.
| |
Collapse
|
33
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
35
|
Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020; 11:1235-1251. [PMID: 34095838 PMCID: PMC8126879 DOI: 10.1039/d0md00173b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Conopeptides are a diverse family of peptides found in the venoms of marine cone snails and are used in prey capture and host defence. Because of their potent activity on a range of mammalian targets they have attracted interest as leads in drug design. Until recently most focus had been on studying conopeptides having activity at ion channels and related neurological targets but, with recent discoveries that some conopeptides might play hormonal roles, a new area of conopeptide research has opened. In this article we first summarize the canonical pharmaceutical families of Conus venom peptides and then focus on new research relating to hormone-like conopeptides and their potential applications. Finally, we briefly examine methods of chemically stabilizing conopeptides to improve their pharmacological properties. A summary is presented of conopeptides in clinical trials and a call for future work on hormone-like conopeptides.
Collapse
Affiliation(s)
- Ashlin Turner
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
36
|
Wang Y, Wang X, Li Y, Chen D, Liu Z, Zhao Y, Tu L, Wang S. Regulation of progranulin expression and location by sortilin in oxygen-glucose deprivation/reoxygenation injury. Neurosci Lett 2020; 738:135394. [PMID: 32949659 DOI: 10.1016/j.neulet.2020.135394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Progranulin is a secreted glycoprotein expressed in neurons and microglial cells that is involved in maintaining physiological functions. Many studies have found that progranulin may play a protective role against ischemic brain injury, but little is known about how the expression level and cellular localization status of progranulin is regulated after hypoxia-ischemia. Research has confirmed that sortilin, encoded by SORT1, can bind with progranulin and deliver a mature secretory isoform of progranulin to lysosomes, and progranulin is then cleaved. In the present study, we aimed to figure out whether sortilin could affect the expression and cellular localization of progranulin and regulate cell apoptosis during hypoxia-ischemia. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons was used to mimic hypoxic-ischemic episodes. After OGD/R, the neuroprotective effects of progranulin against hypoxia-ischemia were examined, and primary cortical neurons were transduced with a SORT1 knockdown lentivirus to inhibit the expression of sortilin. The results showed that sortilin inhibition increased PGRN expression and alleviated cell injury induced by hypoxia-ischemia. Additionally, sortilin inhibition was associated with less PGRN localization in lysosomes. All of these findings suggest that sortilin can regulate the expression of PGRN, most likely by transporting it to lysosomes and affecting the cell injury in hypoxia-ischemia.
Collapse
Affiliation(s)
- Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Zhao Liu
- Chongqing General Hospotal, University of Chinese Academy of Science, China
| | - Yu Zhao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Liu Tu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, Deng Q, Holler CJ, Gearing M, Dickson D, Seyfried NT, Kukar T. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathol Commun 2020; 8:163. [PMID: 33028409 PMCID: PMC7541308 DOI: 10.1186/s40478-020-01037-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023] Open
Abstract
Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 (CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegeneration. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn+/+) and Grn knockout (Grn-/-) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysosomal degradation of lipids may be impaired in the Grn-/- brain. Systems biology using weighted correlation network analysis (WGCNA) of the Grn-/- brain proteome identified 26 modules of highly co-expressed proteins. Three modules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated with age in the Grn-/- mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligodendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases and Grn-/- mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which could be targeted to develop effective therapies.
Collapse
|
38
|
Werner G, Damme M, Schludi M, Gnörich J, Wind K, Fellerer K, Wefers B, Wurst W, Edbauer D, Brendel M, Haass C, Capell A. Loss of TMEM106B potentiates lysosomal and FTLD-like pathology in progranulin-deficient mice. EMBO Rep 2020; 21:e50241. [PMID: 32929860 PMCID: PMC7534633 DOI: 10.15252/embr.202050241] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in TMEM106B encoding the lysosomal type II transmembrane protein 106B increase the risk for frontotemporal lobar degeneration (FTLD) of GRN (progranulin gene) mutation carriers. Currently, it is unclear if progranulin (PGRN) and TMEM106B are synergistically linked and if a gain or a loss of function of TMEM106B is responsible for the increased disease risk of patients with GRN haploinsufficiency. We therefore compare behavioral abnormalities, gene expression patterns, lysosomal activity, and TDP‐43 pathology in single and double knockout animals. Grn−/−/Tmem106b−/− mice show a strongly reduced life span and massive motor deficits. Gene expression analysis reveals an upregulation of molecular signature characteristic for disease‐associated microglia and autophagy. Dysregulation of maturation of lysosomal proteins as well as an accumulation of ubiquitinated proteins and widespread p62 deposition suggest that proteostasis is impaired. Moreover, while single Grn−/− knockouts only occasionally show TDP‐43 pathology, the double knockout mice exhibit deposition of phosphorylated TDP‐43. Thus, a loss of function of TMEM106B may enhance the risk for GRN‐associated FTLD by reduced protein turnover in the lysosomal/autophagic system.
Collapse
Affiliation(s)
- Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Martin Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Fellerer
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
39
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
40
|
Shrimpton J, Care MA, Carmichael J, Walker K, Evans P, Evans C, de Tute R, Owen R, Tooze RM, Doody GM. TLR-mediated activation of Waldenström macroglobulinemia B cells reveals an uncoupling from plasma cell differentiation. Blood Adv 2020; 4:2821-2836. [PMID: 32574366 PMCID: PMC7322944 DOI: 10.1182/bloodadvances.2019001279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell-dependent conditions, we obtained CD138+ plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation.
Collapse
Affiliation(s)
- Jennifer Shrimpton
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Matthew A Care
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Jonathan Carmichael
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Kieran Walker
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Charlotte Evans
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Ruth de Tute
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Roger Owen
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Reuben M Tooze
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Leeds, United Kingdom
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom; and
| |
Collapse
|
41
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|
42
|
Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma. Neoplasia 2020; 22:203-216. [PMID: 32244128 PMCID: PMC7118280 DOI: 10.1016/j.neo.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between malignant and neighboring cells contributes to tumor growth. In East Asia, infection with the liver fluke is a major risk factor for cholangiocarcinoma (CCA). The liver fluke Opisthorchis viverrini secretes a growth factor termed liver fluke granulin, a homologue of the human progranulin, which contributes significantly to biliary tract fibrosis and morbidity. Here, extracellular vesicle (EV)-mediated transfer of mRNAs from human cholangiocytes to naïve recipient cells was investigated following exposure to liver fluke granulin. To minimize the influence of endogenous progranulin, its cognate gene was inactivated using CRISPR/Cas9-based gene knock-out. Several progranulin-depleted cell lines, termed ΔhuPGRN-H69, were established. These lines exhibited >80% reductions in levels of specific transcript and progranulin, both in gene-edited cells and within EVs released by these cells. Profiles of extracellular vesicle RNAs (evRNA) from ΔhuPGRN-H69 for CCA-associated characteristics revealed a paucity of transcripts for estrogen- and Wnt-signaling pathways, peptidase inhibitors and tyrosine phosphatase related to cellular processes including oncogenic transformation. Several CCA-specific evRNAs including MAPK/AKT pathway members were induced by exposure to liver fluke granulin. By comparison, estrogen, Wnt/PI3K and TGF signaling and other CCA pathway mRNAs were upregulated in wild type H69 cells exposed to liver fluke granulin. Of these, CCA-associated evRNAs modified the CCA microenvironment in naïve cells co-cultured with EVs from ΔhuPGRN-H69 cells exposed to liver fluke granulin, and induced translation of MAPK phosphorylation related-protein in naïve recipient cells in comparison with control recipient cells. Exosome-mediated crosstalk in response to liver fluke granulin promoted a CCA-specific program through MAPK pathway which, in turn, established a CCA-conducive disposition.
Collapse
|
43
|
Cui Y, Hettinghouse A, Liu CJ. Progranulin: A conductor of receptors orchestra, a chaperone of lysosomal enzymes and a therapeutic target for multiple diseases. Cytokine Growth Factor Rev 2019; 45:53-64. [PMID: 30733059 DOI: 10.1016/j.cytogfr.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN), a widely expressed glycoprotein with pleiotropic function, has been linked to a host of physiological processes and diverse pathological states. A series of contemporary preclinical disease models and clinical trials have evaluated various therapeutic strategies targeting PGRN, highlighting PGRN as a promising therapeutic target. Herein we summarize available knowledge of PGRN targeting in various kinds of diseases, including common neurological diseases, inflammatory autoimmune diseases, cancer, tissue repair, and rare lysosomal storage diseases, with a focus on the functional domain-oriented drug development strategies. In particular, we emphasize the role of extracellular PGRN as a non-conventional, extracellular matrix bound, growth factor-like conductor orchestrating multiple membrane receptors and intracellular PGRN as a chaperone/co-chaperone that mediates the folding and traffic of its various binding partners.
Collapse
Affiliation(s)
- Yazhou Cui
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|