1
|
Zang Y, Yoshimoto M, Igaki T. Programmed cell senescence is required for sensory organ development in Drosophila. iScience 2025; 28:112048. [PMID: 40124515 PMCID: PMC11928871 DOI: 10.1016/j.isci.2025.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/31/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular senescence is an irreversible cell-cycle arrest often associated with cancer and aging, yet its physiological role remains elusive. Here, we show developmentally programmed cellular senescence occurs in Drosophila imaginal epithelium. In developing wing discs, two clusters of cells exhibit hallmarks of cellular senescence such as elevated senescence-associated β-galactosidase activity, cell-cycle arrest, heterochromatinization, upregulation of a cyclin-dependent kinase (CDK) inhibitor Dacapo, cellular hypertrophy, Ras signaling activation, and upregulation of an inflammatory cytokine unpaired3, a possible component of the senescence-associated secretory phenotype. Blocking programmed cell senescence by inhibiting Ras signaling or its downstream transcription factor Pointed (Pnt) results in loss of sensory organ campaniform sensilla. Ras-Pnt signaling causes programmed cell senescence through a transcription factor Zfh2, thereby contributing to campaniform sensilla formation via the achaete-scute complex. Our observations uncover the evolutionary conservation of programmed cell senescence in invertebrates, which is required for the induction of the proper number of sensory organs.
Collapse
Affiliation(s)
- Yiran Zang
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masanari Yoshimoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Tan SE, Strutt D. Tissue shear as a cue for aligning planar polarity in the developing Drosophila wing. Nat Commun 2025; 16:1451. [PMID: 39920191 PMCID: PMC11806038 DOI: 10.1038/s41467-025-56744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Planar polarity establishment in epithelia requires interpretation of directional tissue-level information at cellular and molecular levels. Mechanical forces exerted during tissue morphogenesis are emerging as crucial tissue-level directional cues, yet the mechanisms by which they regulate planar polarity are poorly understood. Using the Drosophila pupal wing, we confirm that tissue stress promotes proximal-distal (PD) planar polarity alignment. Moreover, high tissue stress anisotropy can reduce the rate of accumulation and lower the stability on cell junctions of the core planar polarity protein Frizzled (Fz). Notably, under high tissue stress anisotropy, we see an increased gradient of cell flow, characterised by differential velocities across adjacent cell rows. This promotes core protein turnover at cell-cell contacts parallel to the flow direction, possibly via dissociation of transmembrane complexes by shear forces. We propose that gradients of cell flow play a critical role in establishing and maintaining PD-oriented polarity alignment in the developing pupal wing.
Collapse
Affiliation(s)
- Su Ee Tan
- School of Biosciences, University of Sheffield, Firth Court, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Firth Court, Sheffield, UK.
| |
Collapse
|
3
|
Nissen SB, Weiner AT, Suyama K, Bosch PS, Yu M, Song S, Gu Y, Dunn AR, Axelrod JD. Cluster Assembly Dynamics Drive Fidelity of Planar Cell Polarity Polarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.21.619498. [PMID: 39484486 PMCID: PMC11526938 DOI: 10.1101/2024.10.21.619498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In planar cell polarity (PCP) signaling, distinct molecular subcomplexes segregate to opposite sides of each cell, where they interact across intercellular junctions to form asymmetric clusters. Although proximal-distal asymmetry within PCP clusters is the defining feature of PCP signaling, the mechanism by which this asymmetry develops remains unclear. Here, we developed a method to count the number of monomers of core PCP proteins within individual clusters in live animals and used it to infer the underlying molecular dynamics of cluster assembly and polarization. Measurements over time and space in wild type and in strategically chosen mutants demonstrate that cluster assembly is required for polarization, and together with mathematical modeling provide evidence that clusters become increasingly asymmetric and correctly oriented as they increase in size. We propose that cluster assembly dynamics amplify weak and noisy inputs into a robust cellular output, in this case cell and tissue-level polarization.
Collapse
Affiliation(s)
- Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexis T Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaye Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maiya Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Structural Biology and Molecular and Cellular Physiology, and Graduate program in Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan Gu
- Quantitative Science Unit, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Tran NV, Montanari MP, Gui J, Lubenets D, Fischbach LL, Antson H, Huang Y, Brutus E, Okada Y, Ishimoto Y, Tõnissoo T, Shimmi O. Programmed disassembly of a microtubule-based membrane protrusion network coordinates 3D epithelial morphogenesis in Drosophila. EMBO J 2024; 43:568-594. [PMID: 38263333 PMCID: PMC10897427 DOI: 10.1038/s44318-023-00025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Ngan Vi Tran
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Martti P Montanari
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Jinghua Gui
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Dmitri Lubenets
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | | | - Hanna Antson
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Yunxian Huang
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Erich Brutus
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Yasushi Okada
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Departments of Cell Biology and Physics, University of Tokyo, Tokyo, Japan
| | - Yukitaka Ishimoto
- Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Akita, 015-0055, Japan
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Matamoro-Vidal A, Cumming T, Davidović A, Levillayer F, Levayer R. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium. Curr Biol 2024; 34:376-388.e7. [PMID: 38215743 PMCID: PMC10808510 DOI: 10.1016/j.cub.2023.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
What regulates organ size and shape remains one fundamental mystery of modern biology. Research in this area has primarily focused on deciphering the regulation in time and space of growth and cell division, while the contribution of cell death has been overall neglected. This includes studies of the Drosophila wing, one of the best-characterized systems for the study of growth and patterning, undergoing massive growth during larval stage and important morphogenetic remodeling during pupal stage. So far, it has been assumed that cell death was relatively neglectable in this tissue both during larval stage and pupal stage, and as a result, the pattern of growth was usually attributed to the distribution of cell division. Here, using systematic mapping and registration combined with quantitative assessment of clone size and disappearance as well as live imaging, we outline a persistent pattern of cell death and clone elimination emerging in the larval wing disc and persisting during pupal wing morphogenesis. Local variation of cell death is associated with local variation of clone size, pointing to an impact of cell death on local growth that is not fully compensated by proliferation. Using morphometric analyses of adult wing shape and genetic perturbations, we provide evidence that patterned death locally and globally affects adult wing shape and size. This study describes a roadmap for precise assessment of the contribution of cell death to tissue shape and outlines an important instructive role of cell death in modulating quantitatively local growth and morphogenesis of a fast-growing tissue.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France; PPU program Institut Pasteur, Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Anđela Davidović
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France.
| |
Collapse
|
6
|
Piscitello-Gómez R, Gruber FS, Krishna A, Duclut C, Modes CD, Popović M, Jülicher F, Dye NA, Eaton S. Core PCP mutations affect short-time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing. eLife 2023; 12:e85581. [PMID: 38117039 PMCID: PMC10843330 DOI: 10.7554/elife.85581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.
Collapse
Affiliation(s)
- Romina Piscitello-Gómez
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
| | - Franz S Gruber
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- National Phenotypic Screening Centre, University of DundeeDundeeUnited Kingdom
| | - Abhijeet Krishna
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Charlie Duclut
- Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie, Université PSL, Sorbonne UniversitéParisFrance
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
- Université Paris Cité, Laboratoire Matière et Systèmes ComplexesParisFrance
| | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Marko Popović
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
| | - Frank Jülicher
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Mildred Scheel Nachwuchszentrum P2, Medical Faculty, Technische Universität DresdenDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Biotechnologisches Zentrum, Technische Universität DresdenDresdenGermany
| |
Collapse
|
7
|
Tsuboi A, Fujimoto K, Kondo T. Spatiotemporal remodeling of extracellular matrix orients epithelial sheet folding. SCIENCE ADVANCES 2023; 9:eadh2154. [PMID: 37656799 PMCID: PMC10854429 DOI: 10.1126/sciadv.adh2154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Biological systems are inherently noisy; however, they produce highly stereotyped tissue morphology. Drosophila pupal wings show a highly stereotypic folding through uniform expansion and subsequent buckling of wing epithelium within a surrounding cuticle sac. The folding pattern produced by buckling is generally stochastic; it is thus unclear how buckling leads to stereotypic tissue folding of the wings. We found that the extracellular matrix (ECM) protein, Dumpy, guides the position and direction of buckling-induced folds. Dumpy anchors the wing epithelium to the overlying cuticle at specific tissue positions. Tissue-wide alterations of Dumpy deposition and degradation yielded different buckling patterns. In summary, we propose that spatiotemporal ECM remodeling shapes stereotyped tissue folding through dynamic interactions between the epithelium and its external structures.
Collapse
Affiliation(s)
- Alice Tsuboi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Blanco-Obregon D, El Marzkioui K, Brutscher F, Kapoor V, Valzania L, Andersen DS, Colombani J, Narasimha S, McCusker D, Léopold P, Boulan L. A Dilp8-dependent time window ensures tissue size adjustment in Drosophila. Nat Commun 2022; 13:5629. [PMID: 36163439 PMCID: PMC9512784 DOI: 10.1038/s41467-022-33387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The control of organ size mainly relies on precise autonomous growth programs. However, organ development is subject to random variations, called developmental noise, best revealed by the fluctuating asymmetry observed between bilateral organs. The developmental mechanisms ensuring bilateral symmetry in organ size are mostly unknown. In Drosophila, null mutations for the relaxin-like hormone Dilp8 increase wing fluctuating asymmetry, suggesting that Dilp8 plays a role in buffering developmental noise. Here we show that size adjustment of the wing primordia involves a peak of dilp8 expression that takes place sharply at the end of juvenile growth. Wing size adjustment relies on a cross-organ communication involving the epidermis as the source of Dilp8. We identify ecdysone signaling as both the trigger for epidermal dilp8 expression and its downstream target in the wing primordia, thereby establishing reciprocal hormonal feedback as a systemic mechanism, which controls organ size and bilateral symmetry in a narrow developmental time window. Mechanisms ensuring developmental precision are poorly understood. Here Blanco-Obregon et al. report reciprocal feedback between Dilp8 and Ecdysone, two hormones required during a precise time window of Drosophila development for organ size adjustment.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - K El Marzkioui
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - F Brutscher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - V Kapoor
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Valzania
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D S Andersen
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - J Colombani
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - S Narasimha
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D McCusker
- University of Michigan, Ann Arbor, MI, USA
| | - P Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Boulan
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
9
|
Trébeau C, de Monvel JB, Altay G, Tinevez JY, Etournay R. Extracting multiple surfaces from 3D microscopy images in complex biological tissues with the Zellige software tool. BMC Biol 2022; 20:183. [PMID: 35999534 PMCID: PMC9397159 DOI: 10.1186/s12915-022-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Efficient tools allowing the extraction of 2D surfaces from 3D-microscopy data are essential for studies aiming to decipher the complex cellular choreography through which epithelium morphogenesis takes place during development. Most existing methods allow for the extraction of a single and smooth manifold of sufficiently high signal intensity and contrast, and usually fail when the surface of interest has a rough topography or when its localization is hampered by other surrounding structures of higher contrast. Multiple surface segmentation entails laborious manual annotations of the various surfaces separately. RESULTS As automating this task is critical in studies involving tissue-tissue or tissue-matrix interaction, we developed the Zellige software, which allows the extraction of a non-prescribed number of surfaces of varying inclination, contrast, and texture from a 3D image. The tool requires the adjustment of a small set of control parameters, for which we provide an intuitive interface implemented as a Fiji plugin. CONCLUSIONS As a proof of principle of the versatility of Zellige, we demonstrate its performance and robustness on synthetic images and on four different types of biological samples, covering a wide range of biological contexts.
Collapse
Affiliation(s)
- Céline Trébeau
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | | | - Gizem Altay
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, F-75015, Paris, France.
| | - Raphaël Etournay
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
| |
Collapse
|
10
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Yang S, Wu X, Daoutidou EI, Zhang Y, Shimell M, Chuang KH, Peterson AJ, O'Connor MB, Zheng X. The NDNF-like factor Nord is a Hedgehog-induced extracellular BMP modulator that regulates Drosophila wing patterning and growth. eLife 2022; 11:e73357. [PMID: 35037619 PMCID: PMC8856659 DOI: 10.7554/elife.73357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) and Bone Morphogenetic Proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron-Derived Neurotrophic Factor (NDNF) involved in congenital hypogonadotropic hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass-bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-dependent BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine-tunes both the range and strength of BMP signaling in the developing Drosophila wing.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Euphrosyne I Daoutidou
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Ya Zhang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| |
Collapse
|
12
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
di Pietro F, Herszterg S, Huang A, Bosveld F, Alexandre C, Sancéré L, Pelletier S, Joudat A, Kapoor V, Vincent JP, Bellaïche Y. Rapid and robust optogenetic control of gene expression in Drosophila. Dev Cell 2021; 56:3393-3404.e7. [PMID: 34879263 PMCID: PMC8693864 DOI: 10.1016/j.devcel.2021.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Anqi Huang
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Lucas Sancéré
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Amina Joudat
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Varun Kapoor
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Tan SE, Tan W, Fisher K, Strutt D. QuantifyPolarity, a new tool-kit for measuring planar polarized protein distributions and cell properties in developing tissues. Development 2021; 148:272072. [PMID: 34351416 PMCID: PMC8451067 DOI: 10.1242/dev.198952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
The coordination of cells or structures within the plane of a tissue is known as planar polarization. It is often governed by the asymmetric distribution of planar polarity proteins within cells. A number of quantitative methods have been developed to provide a readout of planar polarized protein distributions. However, previous planar polarity quantification methods can be affected by variation in cell geometry. Hence, we developed a novel planar polarity quantification method based on Principal Component Analysis (PCA) that is shape insensitive. Here, we compare this method with other state-of-the-art methods on simulated models and biological datasets. We found that the PCA method performs robustly in quantifying planar polarity independently of variation in cell geometry and other image conditions. We designed a user-friendly graphical user interface called QuantifyPolarity, equipped with three polarity methods for automated quantification of polarity. QuantifyPolarity also provides tools to quantify cell morphology and packing geometry, allowing the relationship of these characteristics to planar polarization to be investigated. This tool enables experimentalists with no prior computational expertise to perform high-throughput cell polarity and shape analysis automatically and efficiently. Summary: We present a novel planar polarity quantification method based on Principal Component Analysis that performs robustly in quantifying planar polarity independently of variation in cell geometry and other image properties.
Collapse
Affiliation(s)
- Su Ee Tan
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Weijie Tan
- School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
| | - Katherine Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
15
|
Green JE, Cavey M, Médina Caturegli E, Aigouy B, Gompel N, Prud'homme B. Evolution of Ovipositor Length in Drosophila suzukii Is Driven by Enhanced Cell Size Expansion and Anisotropic Tissue Reorganization. Curr Biol 2019; 29:2075-2082.e6. [PMID: 31178315 PMCID: PMC6584362 DOI: 10.1016/j.cub.2019.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Morphological diversity is dominated by variation in body proportion [1], which can be described with scaling relationships and mathematical equations, following the pioneering work of D’Arcy Thompson [2] and Julian Huxley [3]. Yet, the cellular processes underlying divergence in size and shape of morphological traits between species remain largely unknown [4, 5, 6, 7, 8]. Here, we compare the ovipositors of two related species, Drosophila melanogaster and D. suzukii. D. suzukii has switched its egg-laying niche from rotting to ripe fruit [9]. Along with this shift, the D. suzukii ovipositor has undergone a significant change in size and shape [10]. Using an allometric approach, we find that, while adult ovipositor width has hardly changed between the species, D. suzukii ovipositor length is almost double that of D. melanogaster. We show that this difference mostly arises in a 6-h time window during pupal development. We observe that the developing ovipositors of the two species comprise an almost identical number of cells, with a similar profile of cell shapes and orientations. After cell division stops, we find that the ovipositor area continues to grow in both species through the isotropic expansion of cell apical area and the anisotropic cellular reorganization of the tissue. Remarkably, we find that the lengthening of the D. suzukii ovipositor compared to that of D. melanogaster results from the combination of the accelerated expansion of apical cell size and the enhanced anisotropic rearrangement of cells in the tissue. Therefore, the quantitative fine-tuning of morphogenetic processes can drive evolutionary changes in organ size and shape. D. suzukii has evolved a bigger egg-laying organ compared to D. melanogaster The inter-species size difference arises during a short development time window The fine-tuning of shared cellular processes drives this difference in morphogenesis The rate of cell apical area expansion and the tissue shape anisotropy have evolved
Collapse
Affiliation(s)
- Jack E Green
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Matthieu Cavey
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Emmanuelle Médina Caturegli
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Benoit Aigouy
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, 13288 Marseille Cedex 9, France.
| |
Collapse
|
16
|
Coupling between dynamic 3D tissue architecture and BMP morphogen signaling during Drosophila wing morphogenesis. Proc Natl Acad Sci U S A 2019; 116:4352-4361. [PMID: 30760594 PMCID: PMC6410814 DOI: 10.1073/pnas.1815427116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue morphogenesis is a dynamic process often accompanied by cell patterning and differentiation. Although how conserved growth factor signaling affects cell and tissue shapes has been actively studied, much less is known about how signaling and dynamic morphogenesis are mutually coordinated. Our study shows that BMP signaling and 3D morphogenesis of the Drosophila pupal wing are tightly coupled. These findings are highlighted by the fact that the directionality of BMP signal is changed from lateral planar during the inflation stage to interplanar after re-apposition of the dorsal and ventral wing epithelia. We suspect that the dynamic interplay between planar and interplanar signaling linked to tissue shape changes is likely to be used across species in many developing organs. At the level of organ formation, tissue morphogenesis drives developmental processes in animals, often involving the rearrangement of two-dimensional (2D) structures into more complex three-dimensional (3D) tissues. These processes can be directed by growth factor signaling pathways. However, little is known about how such morphological changes affect the spatiotemporal distribution of growth factor signaling. Here, using the Drosophila pupal wing, we address how decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signaling and 3D wing morphogenesis are coordinated. Dpp, expressed in the longitudinal veins (LVs) of the pupal wing, initially diffuses laterally within both dorsal and ventral wing epithelia during the inflation stage to regulate cell proliferation. Dpp localization is then refined to the LVs within each epithelial plane, but with active interplanar signaling for vein patterning/differentiation, as the two epithelia appose. Our data further suggest that the 3D architecture of the wing epithelia and the spatial distribution of BMP signaling are tightly coupled, revealing that 3D morphogenesis is an emergent property of the interactions between extracellular signaling and tissue shape changes.
Collapse
|
17
|
Epithelial Viscoelasticity Is Regulated by Mechanosensitive E-cadherin Turnover. Curr Biol 2019; 29:578-591.e5. [PMID: 30744966 DOI: 10.1016/j.cub.2019.01.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 11/24/2022]
Abstract
Studying how epithelia respond to mechanical stresses is key to understanding tissue shape changes during morphogenesis. Here, we study the viscoelastic properties of the Drosophila wing epithelium during pupal morphogenesis by quantifying mechanical stress and cell shape as a function of time. We find a delay of 8 h between maximal tissue stress and maximal cell elongation, indicating a viscoelastic deformation of the tissue. We show that this viscoelastic behavior emerges from the mechanosensitivity of endocytic E-cadherin turnover. The increase in E-cadherin turnover in response to stress is mediated by mechanosensitive relocalization of the E-cadherin binding protein p120-catenin (p120) from cell junctions to cytoplasm. Mechanosensitivity of E-cadherin turnover is lost in p120 mutant wings, where E-cadherin turnover is constitutively high. In this mutant, the relationship between mechanical stress and stress-dependent cell dynamics is altered. Cells in p120 mutant deform and undergo cell rearrangements oriented along the stress axis more rapidly in response to mechanical stress. These changes imply a lower viscosity of wing epithelium. Taken together, our findings reveal that p120-dependent mechanosensitive E-cadherin turnover regulates viscoelastic behavior of epithelial tissues.
Collapse
|
18
|
Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P, Royer L, Jug F, Myers EW. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 2018; 15:1090-1097. [PMID: 30478326 DOI: 10.1038/s41592-018-0216-7] [Citation(s) in RCA: 543] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.
Collapse
Affiliation(s)
- Martin Weigert
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Uwe Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tobias Boothe
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Alexandr Dibrov
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Akanksha Jain
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benjamin Wilhelm
- Center for Systems Biology Dresden, Dresden, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Coleman Broaddus
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Mauricio Rocha-Martins
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michele Solimena
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jochen Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Loic Royer
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- CZ Biohub, San Francisco, CA, USA.
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Eugene W Myers
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Computer Science, Technical University Dresden, Dresden, Germany
| |
Collapse
|
19
|
Pham MN, Schuweiler M, Ismat A. The extracellular protease AdamTS-B inhibits vein formation in the Drosophila wing. Genesis 2018; 56:e23255. [PMID: 30296002 DOI: 10.1002/dvg.23255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022]
Abstract
Vein patterning in the Drosophila wing provides a powerful tool to study regulation of various signaling pathways. Here we show that the ADAMTS extracellular protease AdamTS-B (CG4096) is expressed in the embryonic wing imaginal disc precursor cells and the wing imaginal disc, and functions to inhibit wing vein formation. Knock-down of AdamTS-B displayed posterior crossveins (PCVs) with either extra branches or deltas, or wider PCVs, and a wandering distal tip of the L5 longitudinal vein. Conversely, over-expression of AdamTS-B resulted in a complete absence of the PCV, an incomplete anterior crossvein, and missing distal end of the L5 longitudinal vein. We conclude that AdamTS-B inhibits wing vein formation through negative regulation of signaling pathways, possibly BMP as well as Egfr, displaying the complexity of roles for this family of extracellular proteases.
Collapse
Affiliation(s)
- Minh Ngoc Pham
- Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Mark Schuweiler
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota
| | - Afshan Ismat
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota
| |
Collapse
|
20
|
Abstract
Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events – occurring on the time scale of hours and days – to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism.
Collapse
Affiliation(s)
- Sandra B Lemke
- Muscle Dynamics Group, Max Planck Institute of Biochemistry;
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry; Aix Marseille University, CNRS, IBDM;
| |
Collapse
|
21
|
Bolatto C, Parada C, Colmenares V. A Rapid and Efficient Method to Dissect Pupal Wings of Drosophila Suitable for Immunodetections or PCR Assays. J Vis Exp 2017. [PMID: 29364201 DOI: 10.3791/55854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Wing development in Drosophila melanogaster is an ideal model for studying morphogenesis at tissue level. These appendages develop from a group of cells named wing imaginal discs formed during embryonic development. In the larval stages the imaginal discs grow, increasing its number of cells and forming monolayered epithelial structures. Inside the pupal case, the imaginal discs bud out and fold into bilayers along a line that becomes the future margin of the wing. During this process, the longitudinal primodia veins originate vein cells on the prospective dorsal and ventral surfaces of the wing. During the pupal stage the stripes of vein cells of each surface communicate in order to generate tight tubes; at the same time, the cross-veins begin their formation. With the help of appropriate molecular markers, it is possible to identify the major elements composing the wing during its development. For this reason, the ability to accurately detect transcripts or proteins in this structure is critical for studying their abundance and localization related to the development process of the wing. The procedure described here focuses on manipulating pupal wings, providing detailed instructions on how to dissect the wing during the pupal stage. The dissection of pupal tissue is more difficult to perform than their counterparts in third instar larvae. This is why this approach was developed, to obtain rapid and efficient high quality samples. Details of how to immunostain and mount these wing samples, to allow the visualization of proteins or cell components, are provided in the protocol. With little expertise it is possible to collect 8-10 high quality pupal wings in a short amount of time.
Collapse
Affiliation(s)
- Carmen Bolatto
- Departamento de Histología y Embriología, Facultad de Medicina, Laboratorio de Biología del Desarrollo;
| | - Cristina Parada
- Departamento de Histología y Embriología, Facultad de Medicina, Laboratorio de Biología del Desarrollo
| | - Victoria Colmenares
- Departamento de Histología y Embriología, Facultad de Medicina, Laboratorio de Biología del Desarrollo
| |
Collapse
|
22
|
Crumbs, Moesin and Yurt regulate junctional stability and dynamics for a proper morphogenesis of the Drosophila pupal wing epithelium. Sci Rep 2017; 7:16778. [PMID: 29196707 PMCID: PMC5711895 DOI: 10.1038/s41598-017-15272-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
The Crumbs (Crb) complex is a key epithelial determinant. To understand its role in morphogenesis, we examined its function in the Drosophila pupal wing, an epithelium undergoing hexagonal packing and formation of planar-oriented hairs. Crb distribution is dynamic, being stabilized to the subapical region just before hair formation. Lack of crb or stardust, but not DPatj, affects hexagonal packing and delays hair formation, without impairing epithelial polarities but with increased fluctuations in cell junctions and perimeter length, fragmentation of adherens junctions and the actomyosin cytoskeleton. Crb interacts with Moesin and Yurt, FERM proteins regulating the actomyosin network. We found that Moesin and Yurt distribution at the subapical region depends on Crb. In contrast to previous reports, yurt, but not moesin, mutants phenocopy crb junctional defects. Moreover, while unaffected in crb mutants, cell perimeter increases in yurt mutant cells and decreases in the absence of moesin function. Our data suggest that Crb coordinates proper hexagonal packing and hair formation, by modulating junction integrity via Yurt and stabilizing cell perimeter via both Yurt and Moesin. The Drosophila pupal wing thus appears as a useful system to investigate the functional diversification of the Crb complex during morphogenesis, independently of its role in polarity.
Collapse
|
23
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
24
|
Abstract
The hostile environment of the microscope stage poses numerous challenges to successful imaging of morphogenesis in live tissues. This review aims to highlight some of the main practical considerations to take into account when embarking on a project to image cell behaviour in the context of cells' normal surroundings. Scrutiny of these activities is likely to be the most informative approach to understanding mechanical morphogenesis but is often confounded by the substantial technical difficulties involved in imaging samples over extended periods of time. Repeated observation of cells in live tissue requires that strategies be adopted to prioritize the stability of the sample, ensuring that it remains viable and develops normally while being held in a manner accessible to microscopic examination. Key considerations when creating reliable protocols for time-lapse imaging may be broken down into three main criteria; labelling, mounting and image acquisition. Choices and compromises made here, however, will directly influence image quality, and even small refinements can substantially improve what information may be extracted from images. Live imaging of tissue is difficult but paying close attention to the basics along with a little innovation is likely to be well rewarded.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Donald M Bell
- The Francis Crick Institute Mill Hill Laboratories, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
25
|
Raja E, Tzavlaki K, Vuilleumier R, Edlund K, Kahata K, Zieba A, Morén A, Watanabe Y, Voytyuk I, Botling J, Söderberg O, Micke P, Pyrowolakis G, Heldin CH, Moustakas A. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling. Oncotarget 2016; 7:1120-43. [PMID: 26701726 PMCID: PMC4811448 DOI: 10.18632/oncotarget.6683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/08/2015] [Indexed: 01/24/2023] Open
Abstract
The protein kinase LKB1 regulates cell metabolism and growth and is implicated in intestinal and lung cancer. Bone morphogenetic protein (BMP) signaling regulates cell differentiation during development and tissue homeostasis. We demonstrate that LKB1 physically interacts with BMP type I receptors and requires Smad7 to promote downregulation of the receptor. Accordingly, LKB1 suppresses BMP-induced osteoblast differentiation and affects BMP signaling in Drosophila wing longitudinal vein morphogenesis. LKB1 protein expression and Smad1 phosphorylation analysis in a cohort of non-small cell lung cancer patients demonstrated a negative correlation predominantly in a subset enriched in adenocarcinomas. Lung cancer patient data analysis indicated strong correlation between LKB1 loss-of-function mutations and high BMP2 expression, and these two events further correlated with expression of a gene subset functionally linked to apoptosis and migration. This new mechanism of BMP receptor regulation by LKB1 has ramifications in physiological organogenesis and disease.
Collapse
Affiliation(s)
- Erna Raja
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kalliopi Tzavlaki
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robin Vuilleumier
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Karolina Edlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Agata Zieba
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anita Morén
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yukihide Watanabe
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Iryna Voytyuk
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - George Pyrowolakis
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
The PCP pathway regulates Baz planar distribution in epithelial cells. Sci Rep 2016; 6:33420. [PMID: 27624969 PMCID: PMC5022056 DOI: 10.1038/srep33420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023] Open
Abstract
The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell.
Collapse
|
27
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
28
|
Guirao B, Rigaud SU, Bosveld F, Bailles A, López-Gay J, Ishihara S, Sugimura K, Graner F, Bellaïche Y. Unified quantitative characterization of epithelial tissue development. eLife 2015; 4. [PMID: 26653285 PMCID: PMC4811803 DOI: 10.7554/elife.08519] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI:http://dx.doi.org/10.7554/eLife.08519.001 In animals, the final size and shape of each tissue is determined by the precise control of when, where and how much individual cells grow, divide, move and die. An important challenge in biology is to understand how the behaviors of each individual cell can act together to generate a large and reproducible change at the scale of entire tissues and organs. Here, Guirao et al. have developed a new approach to provide maps that reveal how much each cell process contributes to the development of tissues. A caterpillar becoming a butterfly is a famous example of insect ‘metamorphosis’. The fruit fly offers another example of such tissue development: within five days, a rice grain-like maggot morphs into an adult fly with long antennae, legs and wings. Guirao et al. used a microscope to observe cells over a period of several hours during the metamorphosis of the adult fruit fly wings and thorax (the region between the neck and abdomen). In both regions, Guirao et al. showed that all the cell processes participate in the formation of the adult tissue. Cell division, cell death, and changes in cell size affect the size of the tissue, while cell division, cell rearrangements, and changes in cell shape alter the shape of the tissue. The relative contributions of these cell processes varied a lot in both space and time. Further experiments then used mutant flies with defects in cell division to analyse the impact of cell division on the other cell processes and the eventual shape of the tissue. Finally, Guirao et al. showed that there are unexpected interactions between the patterns of tissue growth, cell division and the mechanical forces in the tissue. These findings provide a new approach to uncover how animals from different species can have such a variety of shapes and sizes, even though they each start life as a single cell. Ultimately, this may also aid efforts to understand how certain diseases affect the development of tissues. DOI:http://dx.doi.org/10.7554/eLife.08519.002
Collapse
Affiliation(s)
- Boris Guirao
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Stéphane U Rigaud
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Floris Bosveld
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Anaïs Bailles
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Jesús López-Gay
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| | - Shuji Ishihara
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Kaoru Sugimura
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
| | - François Graner
- Laboratoire Matière et Systèmes Complexes (CNRS UMR7057), Université Paris-Diderot, Paris, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit (CNRS UMR3215/Inserm U934), Institut Curie, Paris, France
| |
Collapse
|
29
|
Dean DM, Maroja LS, Cottrill S, Bomkamp BE, Westervelt KA, Deitcher DL. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development. G3 (BETHESDA, MD.) 2015; 6:299-310. [PMID: 26613949 PMCID: PMC4751550 DOI: 10.1534/g3.115.024307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Luana S Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Sarah Cottrill
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Brent E Bomkamp
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | | | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B, Brandl H, Myers G, Salbreux G, Jülicher F, Eaton S. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 2015; 4:e07090. [PMID: 26102528 PMCID: PMC4574473 DOI: 10.7554/elife.07090] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/18/2015] [Indexed: 11/21/2022] Open
Abstract
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.
Collapse
Affiliation(s)
- Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Amitabha Nandi
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoît Aigouy
- Institut de Biologie du Développement de Marseille, Marseille, France
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Lincoln's Inn Fields Laboratories, The Francis Crick Institute, London, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
31
|
Cho B, Pierre-Louis G, Sagner A, Eaton S, Axelrod JD. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle. PLoS Genet 2015; 11:e1005259. [PMID: 25996914 PMCID: PMC4440771 DOI: 10.1371/journal.pgen.1005259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling. Many epithelial cells display a level of organization in which cellular structures or appendages are positioned asymmetrically within the cell along an axis perpendicular to the apical-basal axis of the cell. When the direction of this polarization is coordinated within the plane of the epithelium, this phenomenon is referred to as planar cell polarity (PCP). PCP is organized, at least in part, by a group of molecules that interact across cell-cell junctions and segregate into two groups that localize on opposite sides of each cell. Their asymmetric localization is thought to both produce molecular asymmetry, and to mark polarized domains within the cell for subsequent morphological polarization. In segregating to produce molecular asymmetry, these proteins participate in both positive and negative feedback, much like ferromagnets, to align their localization within and between neighboring cells. In this work, we identify a mechanism for negative feedback that utilizes the protein Prickle, one of the PCP signaling components. Levels of Prickle are precisely regulated, in part by a ubiquitinylation mechanism that targets excess protein for degradation. Prickle mediates internalization and removal of one class of PCP proteins, thereby causing repulsion of opposite ‘poles.’ Excess Prickle disrupts this mechanism and interferes with establishing polarity.
Collapse
Affiliation(s)
- Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gandhy Pierre-Louis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andreas Sagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
The ability to visualize Notch pathway activity in vivo is invaluable for studying the functions and mechanisms of Notch signaling. A variety of tools have been developed to enable monitoring of pathway activity in Drosophila, including endogenous Notch-responsive genes and synthetic transcriptional reporter constructs. Here we summarize some of the different Notch signaling reporters that are available, discuss their relative merits, and describe two methods for visualizing their expression (immunostaining and X-gal staining). These approaches are widely applicable to a range of tissues and stages in Drosophila development.
Collapse
|
33
|
Abstract
Inherent processes of Drosophila pupal development can shift and distort the eye epithelium in ways that make individual cell behavior difficult to track during live cell imaging. These processes include: retinal rotation, cell growth and organismal movement. Additionally, irregularities in the topology of the epithelium, including subtle bumps and folds often introduced as the pupa is prepared for imaging, make it challenging to acquire in-focus images of more than a few ommatidia in a single focal plane. The workflow outlined here remedies these issues, allowing easy analysis of cellular processes during Drosophila pupal eye development. Appropriately-staged pupae are arranged in an imaging rig that can be easily assembled in most laboratories. Ubiquitin-DE-Cadherin:GFP and GMR-GAL4-driven UAS-α-catenin:GFP are used to visualize cell boundaries in the eye epithelium (1-3). After deconvolution is applied to fluorescent images captured at multiple focal planes, maximum projection images are generated for each time point and enhanced using image editing software. Alignment algorithms are used to quickly stabilize superfluous motion, making individual cell behavior easier to track.
Collapse
|
34
|
Eaton S, Martin-Belmonte F. Cargo sorting in the endocytic pathway: a key regulator of cell polarity and tissue dynamics. Cold Spring Harb Perspect Biol 2014; 6:a016899. [PMID: 25125399 DOI: 10.1101/cshperspect.a016899] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. Epithelial cells polarize along two fundamental axes, the apicobasal and the planar, both depending on finely regulated protein trafficking mechanisms. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network or endosomes. This exocytic trafficking has been identified as essential for proper epithelial polarization. Accumulating evidence now reveals that endocytosis and endocytic recycling play an equally important role in epithelial polarization and the appropriate localization of key polarity proteins. Here, we review recent work in metazoan systems illuminating the connections between endocytosis, postendocytic trafficking, and cell polarity, both apicobasal and planar, in the formation of differentiated epithelial cells, and how these processes regulate tissue dynamics.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
35
|
Olofsson J, Axelrod JD. Methods for studying planar cell polarity. Methods 2014; 68:97-104. [PMID: 24680701 DOI: 10.1016/j.ymeth.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) is the polarity of epithelial cells in the plane orthogonal to the apical-basal axis, and is controlled by a partially defined signaling system. PCP related signaling also plays roles in cell migration, tissue re-organization and stem cell differentiation during embryonic development, and later, in regeneration and repair. Aberrant signaling has been linked to a broad range of pathophysiologies including cancer, developmental defects, and neurological disorders. The deepest mechanistic insights have come from studies of PCP in Drosophila. In this chapter we review tools and methods to study PCP signaling in Drosophila epithelia, where it was found to involve asymmetric protein localization that is coordinated between adjacent cells. Such signaling has been most extensively studied in wing, eye, and abdomen, but also in other tissues such as leg and notum. In the adult fly, PCP is manifested in the coordinated direction of hairs and bristles, as well as the organization of ommatidia in the eye. The polarity of these structures is preceded by asymmetric localization of PCP signaling proteins at the apical junctions of epithelial cells. Based on genetic and molecular criteria, the proteins that govern PCP can be divided into distinct modules, including the core module, the Fat/Dachsous/Four-jointed (Fat/Ds/Fj) module (often referred to as the 'global' module) as well as tissue specific effector modules. Different tissues and tissue regions differ in their sensitivity to disturbances in the various modules of the PCP signaling system, leading to controversies about the interactions among the modules, and emphasizing the value of studying PCP in multiple contexts. Here, we review methods including those generally applicable, as well as some that are selectively useful for analyses of PCP in eye (including eye discs), wing (including wing discs), pupal and adult abdomen, and the cuticle of larvae and embryos.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Bardet PL, Guirao B, Paoletti C, Serman F, Léopold V, Bosveld F, Goya Y, Mirouse V, Graner F, Bellaïche Y. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 2013; 25:534-46. [PMID: 23707736 DOI: 10.1016/j.devcel.2013.04.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
Abstract
Planar cell rearrangements control epithelial tissue morphogenesis and cellular pattern formation. They lead to the formation of new junctions whose length and stability determine the cellular pattern of tissues. Here, we show that during Drosophila wing development the loss of the tumor suppressor PTEN disrupts cell rearrangements by preventing the lengthening of newly formed junctions that become unstable and keep on rearranging. We demonstrate that the failure to lengthen and to stabilize is caused by the lack of a decrease of Myosin II and Rho-kinase concentration at the newly formed junctions. This defect results in a heterogeneous cortical contractility at cell junctions that disrupts regular hexagonal pattern formation. By identifying PTEN as a specific regulator of junction lengthening and stability, our results uncover how a homogenous distribution of cortical contractility along the cell cortex is restored during cell rearrangement to control the formation of epithelial cellular pattern.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Polarity Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
O'Keefe DD, Thomas SR, Bolin K, Griggs E, Edgar BA, Buttitta LA. Combinatorial control of temporal gene expression in the Drosophila wing by enhancers and core promoters. BMC Genomics 2012; 13:498. [PMID: 22992320 PMCID: PMC3641971 DOI: 10.1186/1471-2164-13-498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022] Open
Abstract
Background The transformation of a developing epithelium into an adult structure is a complex process, which often involves coordinated changes in cell proliferation, metabolism, adhesion, and shape. To identify genetic mechanisms that control epithelial differentiation, we analyzed the temporal patterns of gene expression during metamorphosis of the Drosophila wing. Results We found that a striking number of genes, approximately 50% of the Drosophila transcriptome, exhibited changes in expression during a time course of wing development. While cis-acting enhancer sequences clearly correlated with these changes, a stronger correlation was discovered between core-promoter types and the dynamic patterns of gene expression within this differentiating tissue. In support of the hypothesis that core-promoter type influences the dynamics of expression, expression levels of several TATA-box binding protein associated factors (TAFs) and other core promoter-associated components changed during this developmental time course, and a testes-specific TAF (tTAF) played a critical role in timing cellular differentiation within the wing. Conclusions Our results suggest that the combinatorial control of gene expression via cis-acting enhancer sequences and core-promoter types, determine the complex changes in gene expression that drive morphogenesis and terminal differentiation of the Drosophila wing epithelium.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
38
|
Strutt H, Warrington S, Strutt D. Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Dev Cell 2011; 20:511-25. [PMID: 21497763 PMCID: PMC3094756 DOI: 10.1016/j.devcel.2011.03.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/04/2011] [Accepted: 03/25/2011] [Indexed: 11/28/2022]
Abstract
The core planar polarity proteins localize asymmetrically to the adherens junctions of epithelial cells, where they have been hypothesized to assemble into intercellular complexes. Here, we show that the core proteins are preferentially distributed to discrete membrane subdomains ("puncta"), where they form asymmetric contacts between neighboring cells. Using an antibody internalization assay and fluorescence recovery after photobleaching in prepupal and pupal wings, we have investigated the turnover of two key core proteins, Flamingo and Frizzled, and find that the localization of both within puncta is highly stable. Furthermore, the transmembrane core proteins, Flamingo, Frizzled, and Strabismus, are necessary for stable localization of core proteins to junctions, whereas the cytoplasmic core proteins are required for their concentration into puncta. Thus, we define the distinct roles of specific core proteins in the formation of asymmetric contacts between cells, which is a key event in the generation of coordinated cellular asymmetry.
Collapse
Affiliation(s)
- Helen Strutt
- MRC Centre for Developmental and Biomedical Genetics, and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Samantha J. Warrington
- MRC Centre for Developmental and Biomedical Genetics, and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics, and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
39
|
Aigouy B, Farhadifar R, Staple DB, Sagner A, Röper JC, Jülicher F, Eaton S. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 2010; 142:773-86. [PMID: 20813263 DOI: 10.1016/j.cell.2010.07.042] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 05/11/2010] [Accepted: 07/23/2010] [Indexed: 01/13/2023]
Abstract
Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape.
Collapse
Affiliation(s)
- Benoît Aigouy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Mottola G, Classen AK, González-Gaitán M, Eaton S, Zerial M. A novel function for the Rab5 effector Rabenosyn-5 in planar cell polarity. Development 2010; 137:2353-64. [DOI: 10.1242/dev.048413] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to apicobasal polarization, some epithelia also display polarity within the plane of the epithelium. To what extent polarized endocytosis plays a role in the establishment and maintenance of planar cell polarity (PCP) is at present unclear. Here, we investigated the role of Rabenosyn-5 (Rbsn-5), an evolutionarily conserved effector of the small GTPase Rab5, in the development of Drosophila wing epithelium. We found that Rbsn-5 regulates endocytosis at the apical side of the wing epithelium and, surprisingly, further uncovered a novel function of this protein in PCP. At early stages of pupal wing development, the PCP protein Fmi redistributes between the cortex and Rab5- and Rbsn-5-positive early endosomes. During planar polarization, Rbsn-5 is recruited at the apical cell boundaries and redistributes along the proximodistal axis in an Fmi-dependent manner. At pre-hair formation, Rbsn-5 accumulates at the bottom of emerging hairs. Loss of Rbsn-5 causes intracellular accumulation of Fmi and typical PCP alterations such as defects in cell packing, in the polarized distribution of PCP proteins, and in hair orientation and formation. Our results suggest that establishment of planar polarity requires the activity of Rbsn-5 in regulating both the endocytic trafficking of Fmi at the apical cell boundaries and hair morphology.
Collapse
Affiliation(s)
- Giovanna Mottola
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Dipartimento di Biochimica e Biotecnologie Mediche, University of Naples ‘Federico II’, Via S. Pansini 5, 80131 Naples, Italy
| | - Anne-Kathrin Classen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marcos González-Gaitán
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Departments of Biochemistry and Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|