1
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
2
|
Yavuz S, Kabbech H, van Staalduinen J, Linder S, van Cappellen W, Nigg A, Abraham T, Slotman J, Quevedo M, Poot R, Zwart W, van Royen M, Grosveld F, Smal I, Houtsmuller A. Compartmentalization of androgen receptors at endogenous genes in living cells. Nucleic Acids Res 2023; 51:10992-11009. [PMID: 37791849 PMCID: PMC10639085 DOI: 10.1093/nar/gkad803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simon Linder
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marti Quevedo
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Rehó B, Fadel L, Brazda P, Benziane A, Hegedüs É, Sen P, Gadella TWJ, Tóth K, Nagy L, Vámosi G. Agonist-controlled competition of RAR and VDR nuclear receptors for heterodimerization with RXR is manifested in their DNA binding. J Biol Chem 2023; 299:102896. [PMID: 36639026 PMCID: PMC9943875 DOI: 10.1016/j.jbc.2023.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023] Open
Abstract
We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.
Collapse
Affiliation(s)
- Bálint Rehó
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Brazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Princess Maxima Centre for Pediatric Oncology, Utrecht, the Netherlands
| | - Anass Benziane
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Pialy Sen
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy (LCAM), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA.
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Sharma G, Vidalis S, Menon C, Anand N. Analysis and implementation of semi-automatic model for vulnerability exploitations of threat agents in NIST databases. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:16951-16971. [PMID: 36339055 PMCID: PMC9628632 DOI: 10.1007/s11042-022-14036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Proactive security plays a vital role in preventing the attack before entering active mode. In the modern information environment, it depends on the vulnerability management practitioners of an organization in which the critical factor is the prioritization of threats. The existing models and methodology follow the traditional approaches of a Common Vulnerability Scoring System (CVSS) to prioritize threats and vulnerabilities. The CVSS is not able to provide effectiveness to the security of the business of an organization. In contrast, the vulnerability analysis needs a model which can give significance to the prioritization policies. The model depends on the CVSS score of threats and compares various features of vulnerability like threat vectors, inputs, environments used by threat agent's groups, and potential outputs of threat agents. Therefore, the research aims to design a semi-automatic model for vulnerability analysis of threats for the National Institute of Standards and Technology (NIST) database of cyber-crime. We have developed a semi-automatic model that simulates the CVE (Common Vulnerabilities and Exposures) list of the NIST database between 1999 and 2021, concerning the resources used by the threat agents, pre-requisites input, attack vectors, and dormant results. The semi-automatic approach of the model to perform the vulnerability analysis of threat agent groups identified in a network makes the model more efficient and effective to addresses the profiling of threat agents and evaluating the CTI (Critical Threat intelligence feed). Our experimental results imply that the semi-automatic model implements the vulnerability prioritization based on the CVSS score and uses the comparative analysis based on the threat agent's vectors identified. It also provides potency and optimized complexity to an organization's business to mitigate the vulnerability identified in a network.
Collapse
Affiliation(s)
| | | | | | - Niharika Anand
- Indian Institute of Information Technology Lucknow (IIITL), Lucknow, India
| |
Collapse
|
5
|
Steurer B, Janssens RC, Geijer ME, Aprile-Garcia F, Geverts B, Theil AF, Hummel B, van Royen ME, Evers B, Bernards R, Houtsmuller AB, Sawarkar R, Marteijn J. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Nat Commun 2022; 13:3624. [PMID: 35750669 PMCID: PMC9232492 DOI: 10.1038/s41467-022-31329-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/10/2022] [Indexed: 01/22/2023] Open
Abstract
The precise regulation of RNA Polymerase II (Pol II) transcription after genotoxic stress is crucial for proper execution of the DNA damage-induced stress response. While stalling of Pol II on transcription-blocking lesions (TBLs) blocks transcript elongation and initiates DNA repair in cis, TBLs additionally elicit a response in trans that regulates transcription genome-wide. Here we uncover that, after an initial elongation block in cis, TBLs trigger the genome-wide VCP-mediated proteasomal degradation of promoter-bound, P-Ser5-modified Pol II in trans. This degradation is mechanistically distinct from processing of TBL-stalled Pol II, is signaled via GSK3, and contributes to the TBL-induced transcription block, even in transcription-coupled repair-deficient cells. Thus, our data reveal the targeted degradation of promoter-bound Pol II as a critical pathway that allows cells to cope with DNA damage-induced transcription stress and enables the genome-wide adaptation of transcription to genotoxic stress.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marit E Geijer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Bart Geverts
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Martin E van Royen
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Bastiaan Evers
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- MRC, University of Cambridge, Cambridge, UK
| | - Jurgen Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Bolt MJ, Singh P, Obkirchner CE, Powell RT, Mancini MG, Szafran AT, Stossi F, Mancini MA. Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. iScience 2021; 24:103227. [PMID: 34712924 PMCID: PMC8529556 DOI: 10.1016/j.isci.2021.103227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor.
Collapse
Affiliation(s)
- Michael J. Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Caroline E. Obkirchner
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Reid T. Powell
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
7
|
Özgün F, Kaya Z, Morova T, Geverts B, Abraham TE, Houtsmuller AB, van Royen ME, Lack NA. DNA binding alters ARv7 dimer interactions. J Cell Sci 2021; 134:jcs258332. [PMID: 34318896 DOI: 10.1242/jcs.258332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Androgen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear. In this work, we show that ARfl/ARv7 heterodimers readily form in the nucleus via an intermolecular N/C interaction that brings the four termini of the proteins in close proximity. Combining fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that these heterodimers undergo conformational changes following DNA binding, indicating dynamic nuclear receptor interaction. Although transcriptionally active, ARv7 can only form short-term interactions with DNA at highly accessible high-occupancy ARfl binding sites. Dimerization with ARfl does not affect ARv7 binding dynamics, suggesting that DNA binding occupancy is determined by the individual protein monomers and not the homodimer or heterodimer complex. Overall, these biophysical studies reveal detailed properties of ARv7 dynamics as both a homodimer or heterodimer with ARfl.
Collapse
Affiliation(s)
- Fatma Özgün
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Zeynep Kaya
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Bart Geverts
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Martin E van Royen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Parameter estimation in fluorescence recovery after photobleaching: quantitative analysis of protein binding reactions and diffusion. J Math Biol 2021; 83:1. [PMID: 34129100 PMCID: PMC8205911 DOI: 10.1007/s00285-021-01616-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/15/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common experimental method for investigating rates of molecular redistribution in biological systems. Many mathematical models of FRAP have been developed, the purpose of which is usually the estimation of certain biological parameters such as the diffusivity and chemical reaction rates of a protein, this being accomplished by fitting the model to experimental data. In this article, we consider a two species reaction–diffusion FRAP model. Using asymptotic analysis, we derive new FRAP recovery curve approximation formulae, and formally re-derive existing ones. On the basis of these formulae, invoking the concept of Fisher information, we predict, in terms of biological and experimental parameters, sufficient conditions to ensure that the values all model parameters can be estimated from data. We verify our predictions with extensive computational simulations. We also use computational methods to investigate cases in which some or all biological parameters are theoretically inestimable. In these cases, we propose methods which can be used to extract the maximum possible amount of information from the FRAP data.
Collapse
|
9
|
Patra T, Gupta MK. Evaluation of sodium alginate for encapsulation-vitrification of testicular Leydig cells. Int J Biol Macromol 2020; 153:128-137. [PMID: 32092420 DOI: 10.1016/j.ijbiomac.2020.02.233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
This study reports encapsulation-vitrification of Leydig cells. The Leydig cells were encapsulated in sodium alginate beads of different sizes and cryopreserved by vitrification or slow freezing. Physico-chemical characterization of beads was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Fluorescence Recovery after Photobleaching (FRAP) and in vitro biodegradation study. Surface morphology of cryopreserved cell-encapsulated beads was evaluated by Environmental Scanning Electron Microscopy (E-SEM), encapsulation efficiency and viability of cells were assessed by Trypan blue assay, mitochondrial activity (MTT assay) and cytoplasmic esterase enzyme activity (FDA assay), respectively. Results showed that vitrification gives better results than slow freezing with respect to surface morphology as well as cell viability of the cell-encapsulated beads (86.94 ± 2.20% vs. 67.94 ± 2.30%; p < 0.05). Encapsulation of cells in small diameter beads (1.8 mm) gave a better cell proliferation rate than large (2.1 mm and 2.7 mm). There was a significant difference in the population doubling time (47.9 ± 1.7 h vs. 67.1 ± 2.5 h) and cell proliferation rate (0.50 ± 0.24 vs. 0.36 ± 0.24 per day) of vitrified-warmed cell encapsulated beads with different diameter (p < 0.05). Encapsualtion in sodium alginate beads is a promising method for cryopreservation of Leydig cells by slow freezing as well as vitrification.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Koulouras G, Panagopoulos A, Rapsomaniki MA, Giakoumakis NN, Taraviras S, Lygerou Z. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res 2019; 46:W467-W472. [PMID: 29901776 PMCID: PMC6030846 DOI: 10.1093/nar/gky508] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.
Collapse
Affiliation(s)
- Grigorios Koulouras
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Andreas Panagopoulos
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Maria A Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| |
Collapse
|
11
|
Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Open Biol 2019; 9:180263. [PMID: 31238822 PMCID: PMC6597755 DOI: 10.1098/rsob.180263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue maintenance and development requires a directed plane of cell division. While it is clear that the division plane can be determined by retraction fibres that guide spindle movements, the precise molecular components of retraction fibres that control spindle movements remain unclear. We report MARK2/Par1b kinase as a novel component of actin-rich retraction fibres. A kinase-dead mutant of MARK2 reveals MARK2's ability to monitor subcellular actin status during interphase. During mitosis, MARK2's localization at actin-rich retraction fibres, but not the rest of the cortical membrane or centrosome, is dependent on its activity, highlighting a specialized spatial regulation of MARK2. By subtly perturbing the actin cytoskeleton, we reveal MARK2's role in correcting mitotic spindle off-centring induced by actin disassembly. We propose that MARK2 provides a molecular framework to integrate cortical signals and cytoskeletal changes in mitosis and interphase.
Collapse
Affiliation(s)
- Madeleine Hart
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Ihsan Zulkipli
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | | | - David Dang
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK.,3 Department of Informatics, King's College, London , London , UK
| | - Duccio Conti
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Parveen Gul
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Izabela Kujawiak
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | - Viji M Draviam
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
12
|
Keizer VIP, Coppola S, Houtsmuller AB, Geverts B, van Royen ME, Schmidt T, Schaaf MJM. Repetitive switching between DNA binding modes enables target finding by the glucocorticoid receptor. J Cell Sci 2019; 132:jcs.217455. [DOI: 10.1242/jcs.217455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) using fluorescence recovery after photobleaching and single-molecule microscopy. First we have described the dynamic states in which the GR occurs. Subsequently we have analyzed the transitions between these states using a continuous time Markov chain model, and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus, and once it leaves this free diffusion state it most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact searching strategy which facilitates finding DNA target sites by the GR.
Collapse
Affiliation(s)
| | - Stefano Coppola
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Geverts
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas Schmidt
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc Natl Acad Sci U S A 2018; 115:E4368-E4376. [PMID: 29632207 PMCID: PMC5948963 DOI: 10.1073/pnas.1717920115] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA Polymerase II (Pol II) is a highly dynamic process that is tightly regulated at each step of the transcription cycle. We generated GFP-RPB1 knockin cells and developed photobleaching of endogenous Pol II combined with computational modeling to study the in vivo dynamics of Pol II in real time. This approach allowed us to dissect promoter-paused Pol II from initiating and elongating Pol II and showed that initiation and promoter proximal pausing are surprisingly dynamic events, due to premature termination of Pol II. Our study provides new insights into Pol II dynamics and suggests that the iterative release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation. Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell–imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.
Collapse
|
14
|
Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S, Valenti P, Bystricky K, Payre F, O'Holleran K, Kovall R, Bray SJ. Activation of the Notch Signaling Pathway In Vivo Elicits Changes in CSL Nuclear Dynamics. Dev Cell 2018; 44:611-623.e7. [PMID: 29478922 PMCID: PMC5855320 DOI: 10.1016/j.devcel.2018.01.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Abstract
A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind. Surprisingly, recruitment of CSL-related corepressors also increases in Notch-ON conditions, revealing that Notch induces cooperative or "assisted" loading by promoting local increase in chromatin accessibility. Thus, in vivo Notch activity triggers changes in CSL dwell times and chromatin accessibility, which we propose confer sensitivity to small input changes and facilitate timely shut-down.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Matthew L Jones
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zhenyu Yuan
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Phillippe Valenti
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- LBME/UMR5099, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Francois Payre
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Rhett Kovall
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
15
|
Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright HN, Ronceray P, Plitzko JM, Förster F, Wingreen NS, Engel BD, Mackinder LCM, Jonikas MC. The Eukaryotic CO 2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization. Cell 2017; 171:148-162.e19. [PMID: 28938114 PMCID: PMC5671343 DOI: 10.1016/j.cell.2017.08.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.
Collapse
Affiliation(s)
- Elizabeth S Freeman Rosenzweig
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Bin Xu
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Luis Kuhn Cuellar
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Antonio Martinez-Sanchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mike Strauss
- Cryo-EM Facility, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Pierre Ronceray
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C Jonikas
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Vosnakis N, Koch M, Scheer E, Kessler P, Mély Y, Didier P, Tora L. Coactivators and general transcription factors have two distinct dynamic populations dependent on transcription. EMBO J 2017; 36:2710-2725. [PMID: 28724529 PMCID: PMC5599802 DOI: 10.15252/embj.201696035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
SAGA and ATAC are two distinct chromatin modifying co‐activator complexes with distinct enzymatic activities involved in RNA polymerase II (Pol II) transcription regulation. To investigate the mobility of co‐activator complexes and general transcription factors in live‐cell nuclei, we performed imaging experiments based on photobleaching. SAGA and ATAC, but also two general transcription factors (TFIID and TFIIB), were highly dynamic, exhibiting mainly transient associations with chromatin, contrary to Pol II, which formed more stable chromatin interactions. Fluorescence correlation spectroscopy analyses revealed that the mobile pool of the two co‐activators, as well as that of TFIID and TFIIB, can be subdivided into “fast” (free) and “slow” (chromatin‐interacting) populations. Inhibiting transcription elongation decreased H3K4 trimethylation and reduced the “slow” population of SAGA, ATAC, TFIIB and TFIID. In addition, inhibiting histone H3K4 trimethylation also reduced the “slow” populations of SAGA and ATAC. Thus, our results demonstrate that in the nuclei of live cells the equilibrium between fast and slow population of SAGA or ATAC complexes is regulated by active transcription via changes in the abundance of H3K4me3 on chromatin.
Collapse
Affiliation(s)
- Nikolaos Vosnakis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - Pascal Didier
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Cardarelli F. Time-resolved biophysical approaches to nucleocytoplasmic transport. Comput Struct Biotechnol J 2017; 15:299-306. [PMID: 28435614 PMCID: PMC5388937 DOI: 10.1016/j.csbj.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 12/26/2022] Open
Abstract
Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores). The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed.
Collapse
|
18
|
Lorén N, Hagman J, Jonasson JK, Deschout H, Bernin D, Cella-Zanacchi F, Diaspro A, McNally JG, Ameloot M, Smisdom N, Nydén M, Hermansson AM, Rudemo M, Braeckmans K. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 2015; 48:323-387. [PMID: 26314367 DOI: 10.1017/s0033583515000013] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Collapse
Affiliation(s)
- Niklas Lorén
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Joel Hagman
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Jenny K Jonasson
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Hendrik Deschout
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| | - Diana Bernin
- Department of Chemical and Biological Engineering,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | | | - Alberto Diaspro
- Nanophysics Department,Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,Italy
| | - James G McNally
- Institute for Soft Matter and Functional Materials, Helmholtz Center Berlin,12489 Berlin,Germany
| | - Marcel Ameloot
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Nick Smisdom
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Magnus Nydén
- Ian Wark Research Institute,University of South Australia,Adelaide,Australia
| | | | - Mats Rudemo
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Kevin Braeckmans
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| |
Collapse
|
19
|
Geverts B, van Royen ME, Houtsmuller AB. Analysis of biomolecular dynamics by FRAP and computer simulation. Methods Mol Biol 2015; 1251:109-33. [PMID: 25391797 DOI: 10.1007/978-1-4939-2080-8_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a Monte Carlo simulation environment for modelling complex biological molecular interaction networks and for the design, validation, and quantitative analysis of FRAP assays to study these. The program is straightforward in its implementation and can be instructed through an intuitive script language. The simulation tool fits very well in a systems biology research setting that aims to maintain an interactive cycle of experiment-driven modelling and model-driven experimentation: the model and the experiment are in the same simulation. The full program can be obtained by request to the authors.
Collapse
Affiliation(s)
- Bart Geverts
- Department of Pathology, Josephine Nefkens Institute, Erasmus Optical Imaging Centre, Erasmus MC, Postbus 2040, Rotterdam, 3000 CA, The Netherlands
| | | | | |
Collapse
|
20
|
Rapsomaniki MA, Cinquemani E, Giakoumakis NN, Kotsantis P, Lygeros J, Lygerou Z. Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments. ACTA ACUST UNITED AC 2014; 31:355-62. [PMID: 25273108 DOI: 10.1093/bioinformatics/btu619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Fluorescence recovery after photobleaching (FRAP) is a functional live cell imaging technique that permits the exploration of protein dynamics in living cells. To extract kinetic parameters from FRAP data, a number of analytical models have been developed. Simplifications are inherent in these models, which may lead to inexhaustive or inaccurate exploitation of the experimental data. An appealing alternative is offered by the simulation of biological processes in realistic environments at a particle level. However, inference of kinetic parameters using simulation-based models is still limited. RESULTS We introduce and demonstrate a new method for the inference of kinetic parameter values from FRAP data. A small number of in silico FRAP experiments is used to construct a mapping from FRAP recovery curves to the parameters of the underlying protein kinetics. Parameter estimates from experimental data can then be computed by applying the mapping to the observed recovery curves. A bootstrap process is used to investigate identifiability of the physical parameters and determine confidence regions for their estimates. Our method circumvents the computational burden of seeking the best-fitting parameters via iterative simulation. After validation on synthetic data, the method is applied to the analysis of the nuclear proteins Cdt1, PCNA and GFPnls. Parameter estimation results from several experimental samples are in accordance with previous findings, but also allow us to discuss identifiability issues as well as cell-to-cell variability of the protein kinetics. IMPLEMENTATION All methods were implemented in MATLAB R2011b. Monte Carlo simulations were run on the HPC cluster Brutus of ETH Zurich. CONTACT lygeros@control.ee.ethz.ch or lygerou@med.upatras.gr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Eugenio Cinquemani
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Nickolaos Nikiforos Giakoumakis
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Panagiotis Kotsantis
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - John Lygeros
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| |
Collapse
|
21
|
Groeneweg FL, van Royen ME, Fenz S, Keizer VIP, Geverts B, Prins J, de Kloet ER, Houtsmuller AB, Schmidt TS, Schaaf MJM. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One 2014; 9:e90532. [PMID: 24632838 PMCID: PMC3954550 DOI: 10.1371/journal.pone.0090532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/02/2014] [Indexed: 02/01/2023] Open
Abstract
Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s) and the other half for longer time periods (∼ 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.
Collapse
Affiliation(s)
- Femke L. Groeneweg
- Department of Medical Pharmacology, Leiden University/LUMC, Leiden, The Netherlands
| | | | - Susanne Fenz
- Physics of Life Processes, Institute of Physics (LION), Leiden University, Leiden, The Netherlands
- Cell & Developmental Biology, Biocenter, Würzburg University, Würzburg, Germany
| | - Veer I. P. Keizer
- Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bart Geverts
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jurrien Prins
- Department of Medical Pharmacology, Leiden University/LUMC, Leiden, The Netherlands
- Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - E. Ron de Kloet
- Department of Medical Pharmacology, Leiden University/LUMC, Leiden, The Netherlands
| | | | - Thomas S. Schmidt
- Physics of Life Processes, Institute of Physics (LION), Leiden University, Leiden, The Netherlands
| | - Marcel J. M. Schaaf
- Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Wachsmuth M. Molecular diffusion and binding analyzed with FRAP. PROTOPLASMA 2014; 251:373-382. [PMID: 24390250 DOI: 10.1007/s00709-013-0604-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Intracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important. This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.
Collapse
Affiliation(s)
- Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany,
| |
Collapse
|
23
|
Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 2014; 11:1-30. [DOI: 10.1016/j.plrev.2013.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/22/2022]
|
24
|
Ligand binding shifts highly mobile retinoid X receptor to the chromatin-bound state in a coactivator-dependent manner, as revealed by single-cell imaging. Mol Cell Biol 2014; 34:1234-45. [PMID: 24449763 DOI: 10.1128/mcb.01097-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinoid X receptor (RXR) is a promiscuous nuclear receptor forming heterodimers with several other receptors, which activate different sets of genes. Upon agonist treatment, the occupancy of its genomic binding regions increased, but only a modest change in the number of sites was revealed by chromatin immunoprecipitation followed by sequencing, suggesting a rather static behavior. However, such genome-wide and biochemical approaches do not take into account the dynamic behavior of a transcription factor. Therefore, we characterized the nuclear dynamics of RXR during activation in single cells on the subsecond scale using live-cell imaging. By applying fluorescence recovery after photobleaching and fluorescence correlation spectroscopy (FCS), techniques with different temporal and spatial resolutions, a highly dynamic behavior could be uncovered which is best described by a two-state model (slow and fast) of receptor mobility. In the unliganded state, most RXRs belonged to the fast population, leaving ∼ 15% for the slow, chromatin-bound fraction. Upon agonist treatment, this ratio increased to ∼ 43% as a result of an immediate and reversible redistribution. Coactivator binding appears to be indispensable for redistribution and has a major contribution to chromatin association. A nuclear mobility map recorded by light sheet microscopy-FCS shows that the ligand-induced transition from the fast to the slow population occurs throughout the nucleus. Our results support a model in which RXR has a distinct, highly dynamic nuclear behavior and follows hit-and-run kinetics upon activation.
Collapse
|
25
|
Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that participates in the regulation of the ubiquitin/26S proteasome pathway by controlling the function of cullin-RING-ubiquitin ligases. Impressive progress has been made in deciphering its critical role in diverse cellular and developmental processes. However, little is known about the underlying regulatory principles that coordinate its function. Through biochemical and fluorescence microscopy analyses, we determined that the complex is localized in the cytoplasm, nucleoplasm, and chromatin-bound fractions, each differing in the composition of posttranslationally modified subunits, depending on its location within the cell. During the cell cycle, the segregation between subcellular localizations remains steady. However, upon UV damage, a dose-dependent temporal shuttling of the CSN complex into the nucleus was seen, accompanied by upregulation of specific phosphorylations within CSN1, CSN3, and CSN8. Taken together, our results suggest that the specific spatiotemporal composition of the CSN is highly controlled, enabling the complex to rapidly adapt and respond to DNA damage.
Collapse
|
26
|
Cole RW, Thibault M, Bayles CJ, Eason B, Girard AM, Jinadasa T, Opansky C, Schulz K, Brown CM. International test results for objective lens quality, resolution, spectral accuracy and spectral separation for confocal laser scanning microscopes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1653-1668. [PMID: 24103552 DOI: 10.1017/s1431927613013470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As part of an ongoing effort to increase image reproducibility and fidelity in addition to improving cross-instrument consistency, we have proposed using four separate instrument quality tests to augment the ones we have previously reported. These four tests assessed the following areas: (1) objective lens quality, (2) resolution, (3) accuracy of the wavelength information from spectral detectors, and (4) the accuracy and quality of spectral separation algorithms. Data were received from 55 laboratories located in 18 countries. The largest source of errors across all tests was user error which could be subdivided between failure to follow provided protocols and improper use of the microscope. This truly emphasizes the importance of proper rigorous training and diligence in performing confocal microscopy experiments and equipment evaluations. It should be noted that there was no discernible difference in quality between confocal microscope manufactures. These tests, as well as others previously reported, will help assess the quality of confocal microscopy equipment and will provide a means to track equipment performance over time. From 62 to 97% of the data sets sent in passed the various tests demonstrating the usefulness and appropriateness of these tests as part of a larger performance testing regiment.
Collapse
Affiliation(s)
- Richard W Cole
- New York State Department of Health, Wadsworth Center, P.O. Box 509, Albany, NY 12201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Esse GW, Harter K, de Vries SC. Computational modelling of the BRI1 receptor system. PLANT, CELL & ENVIRONMENT 2013; 36:1728-1737. [PMID: 23421559 DOI: 10.1111/pce.12077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Computational models are useful tools to help understand signalling pathways in plant cells. A systems biology approach where models and experimental data are combined can provide experimentally verifiable predictions and novel insights. The brassinosteroid insensitive 1 (BRI1) receptor is one of the best-understood receptor systems in Arabidopsis with clearly described ligands, mutants and associated phenotypes. Therefore, BRI1-mediated signalling is attractive for mathematical modelling approaches to understand and interpret the spatial and temporal dynamics of signal transduction cascades in planta. To establish such a model, quantitative data sets incorporating local protein concentration, binding affinity and phosphorylation state of the different pathway components are essential. Computational modelling is increasingly employed in studies of plant growth and development. In this section, we have focused on the use of quantitative imaging of fluorescently labelled proteins as an entry point in modelling studies.
Collapse
Affiliation(s)
- G Wilma van Esse
- Department of Biochemistry, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|
28
|
Diffusion and binding analyzed with combined point FRAP and FCS. Cytometry A 2013; 83:876-89. [DOI: 10.1002/cyto.a.22316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 01/13/2023]
|
29
|
Karanam K, Loewer A, Lahav G. Dynamics of the DNA damage response: insights from live-cell imaging. Brief Funct Genomics 2013; 12:109-17. [PMID: 23292635 PMCID: PMC3609438 DOI: 10.1093/bfgp/els059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All organisms have to safeguard the integrity of their genome to prevent malfunctioning and oncogenic transformation. Sophisticated DNA damage response mechanisms have evolved to detect and repair genomic lesions. With the emergence of live-cell microscopy of individual cells, we now begin to appreciate the complex spatiotemporal kinetics of the DNA damage response and can address the causes and consequences of the heterogeneity in the responses of genetically identical cells. Here, we highlight key discoveries where live-cell imaging has provided unprecedented insights into how cells respond to DNA double-strand breaks and discuss the main challenges and promises in using this technique.
Collapse
|
30
|
Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level. Int J Mol Sci 2013; 14:3961-92. [PMID: 23429188 PMCID: PMC3588080 DOI: 10.3390/ijms14023961] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/13/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology. A large interest in these processes stems from the faster-than-diffusion association rates, explained in current models by a combination of 3D and 1D diffusion. Here, we present a review of the single-molecule approaches at the forefront of the study of protein-DNA interaction dynamics and target search in vitro and in vivo. Flow stretch, optical and magnetic manipulation, single fluorophore detection and localization as well as combinations of different methods are described and the results obtained with these techniques are discussed in the framework of the current facilitated diffusion model.
Collapse
|
31
|
Liu J, Hilderink J, Groothuis TA, Otto C, van Blitterswijk CA, de Boer J. Monitoring nutrient transport in tissue-engineered grafts. J Tissue Eng Regen Med 2013; 9:952-60. [DOI: 10.1002/term.1654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Jun Liu
- MIRA Research Institute, Department of Tissue Regeneration; University of Twente; Enschede The Netherlands
| | - Janneke Hilderink
- MIRA Research Institute, Department of Tissue Regeneration; University of Twente; Enschede The Netherlands
| | - Tom A.M. Groothuis
- MIRA Research Institute, Department of Biophysical Engineering; University of Twente; Enschede The Netherlands
| | - Cees Otto
- MIRA Research Institute, Department of Biophysical Engineering; University of Twente; Enschede The Netherlands
| | | | - Jan de Boer
- MIRA Research Institute, Department of Tissue Regeneration; University of Twente; Enschede The Netherlands
| |
Collapse
|
32
|
Cimica V, Reich NC. Nuclear trafficking of STAT proteins visualized by live cell imaging. Methods Mol Biol 2013; 967:189-202. [PMID: 23296731 DOI: 10.1007/978-1-62703-242-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability to observe the dynamic localization of a protein in living cells can provide critical insight to its mode of action and functional molecular interactions. To this purpose, green fluorescent protein (GFP) has served as a powerful tool to tag STAT proteins for microscopic visualization. Live cell imaging with STAT-GFP proteins has contributed to our understanding of signal transduction and the complexities of nuclear transport of STAT proteins. In this report we summarize recent approaches that use GFP-based techniques with live cell imaging to study the mechanisms of STAT nuclear import and export: photoactivation, fluorescence recovery after photobleaching (FRAP), and fluorescence loss in photobleaching (FLIP).
Collapse
Affiliation(s)
- Velasco Cimica
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
33
|
Elfferich P, van Royen M, van de Wijngaart D, Trapman J, Drop S, van den Akker E, Lusher S, Bosch R, Bunch T, Hughes I, Houtsmuller A, Cools M, Faradz S, Bisschop P, Bunck M, Oostdijk W, Brüggenwirth H, Brinkmann A. Variable Loss of Functional Activities of Androgen Receptor Mutants in Patients with Androgen Insensitivity Syndrome. Sex Dev 2013; 7:223-34. [DOI: 10.1159/000351820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 01/05/2023] Open
|
34
|
Mazza D, Ganguly S, McNally JG. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol Biol 2013; 1042:117-37. [PMID: 23980004 DOI: 10.1007/978-1-62703-526-2_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Single-molecule fluorescence microscopy has been used for decades to quantify macromolecular dynamics occurring in specimens that are in direct contact with a coverslip. This has permitted in vitro analysis of single-molecule motion in various biochemically reconstituted systems as well as in vivo studies of single-molecule motion on cell membranes. More recently, thanks to improvements in fluorescent tags and microscopes, it has been possible to follow individual molecules inside thicker specimens such as the nucleus of living cells. This has enabled a detailed description of the live-cell binding of nuclear proteins to DNA. In this protocol we describe a method to quantify intranuclear binding using single-molecule tracking (SMT).
Collapse
Affiliation(s)
- Davide Mazza
- Center for Experimental Imaging, Istituto Scientifi co Ospedale San Raffaele e Universita' Vita-Salute San Raffaele, Bethesda, MD, USA
| | | | | |
Collapse
|
35
|
Erdel F, Rippe K. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis. Proc Natl Acad Sci U S A 2012; 109:E3221-30. [PMID: 23129662 PMCID: PMC3511136 DOI: 10.1073/pnas.1209579109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.
Collapse
Affiliation(s)
- Fabian Erdel
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, 69120 Heidelberg, Germany
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
ter Haar WM, Meester-Smoor MA, van Wely KHM, Schot CCMM, Janssen MJFW, Geverts B, Bonten J, Grosveld GC, Houtsmuller AB, Zwarthoff EC. The leukemia-associated fusion protein MN1-TEL blocks TEL-specific recognition sequences. PLoS One 2012; 7:e46085. [PMID: 23049943 PMCID: PMC3458806 DOI: 10.1371/journal.pone.0046085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
The leukemia-associated fusion protein MN1-TEL combines the transcription-activating domains of MN1 with the DNA-binding domain of the transcriptional repressor TEL. Quantitative photobleaching experiments revealed that ∼20% of GFP-tagged MN1 and TEL is transiently immobilised, likely due to indirect or direct DNA binding, since transcription inhibition abolished immobilisation. Interestingly, ∼50% of the MN1-TEL fusion protein was immobile with much longer binding times than unfused MN1 and TEL. MN1-TEL immobilisation was not observed when the TEL DNA-binding domain was disrupted, suggesting that MN1-TEL stably occupies TEL recognition sequences, preventing binding of factors required for proper transcription regulation, which may contribute to leukemogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bart Geverts
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Jacqueline Bonten
- Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gerard C. Grosveld
- Department of Genetics and Tumor Cell Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | | |
Collapse
|
37
|
Wu J, Shekhar N, Lele PP, Lele TP. FRAP analysis: accounting for bleaching during image capture. PLoS One 2012; 7:e42854. [PMID: 22912750 PMCID: PMC3415426 DOI: 10.1371/journal.pone.0042854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Nandini Shekhar
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
| | - Pushkar P. Lele
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Tanmay P. Lele
- Department of Chemical Engineering, University of Florida, Gainesville Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Le Dévédec SE, Geverts B, de Bont H, Yan K, Verbeek FJ, Houtsmuller AB, van de Water B. The residence time of focal adhesion kinase (FAK) and paxillin at focal adhesions in renal epithelial cells is determined by adhesion size, strength and life cycle status. J Cell Sci 2012; 125:4498-506. [PMID: 22767508 DOI: 10.1242/jcs.104273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and enable cell proliferation, survival and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is unclear. We have used photobleaching assays of whole cells to determine the protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffuse cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.
Collapse
Affiliation(s)
- Sylvia E Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, Gorlaeus Laboratoria, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Bizzarri R, Cardarelli F, Serresi M, Beltram F. Fluorescence recovery after photobleaching reveals the biochemistry of nucleocytoplasmic exchange. Anal Bioanal Chem 2012; 403:2339-51. [PMID: 22585053 DOI: 10.1007/s00216-012-6025-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 11/26/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) can help unveil subtle dynamical and biochemical properties of intracellular components. A peculiar aspect of this method is that it is based on the change of optical properties only, whereas dynamics and biochemistry of the molecules of interest are not perturbed. This makes FRAP particularly suitable for the study of protein translocation, e.g., between nucleus and cytoplasm. Here we present a comprehensive theoretical treatment of FRAP applied to protein nucleocytoplasmic translocation by passive diffusion and/or energy-driven processes across the nuclear envelope. Our mathematical model is validated by experimental FRAP studies with functionalized fluorescent protein chimeras. Using this approach we demonstrate that molecular crowding at the nuclear pore does not hamper passive diffusion and calculate the dimension of the nuclear pore size (5.33 nm). Additionally, our FRAP analysis reveals the biochemical parameters (maximum translocation rate and dissociation constant of the transport complex in cytoplasm) associated with the active import of a prototypical nuclear localization sequence (NLS of SV40) and related mutants. We demonstrate that transportin binding and active import into the nucleus are independent processes that can be separately modulated. The present results are discussed in light of their potential to help in engineering sequences for intracellular targeted delivery of sensors and/or therapeutic compounds. Finally, the limits of validity of our mathematical model are addressed.
Collapse
Affiliation(s)
- Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy.
| | | | | | | |
Collapse
|
40
|
Speil J, Baumgart E, Siebrasse JP, Veith R, Vinkemeier U, Kubitscheck U. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys J 2012; 101:2592-600. [PMID: 22261046 DOI: 10.1016/j.bpj.2011.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/13/2011] [Accepted: 10/03/2011] [Indexed: 01/13/2023] Open
Abstract
The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/β complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.
Collapse
Affiliation(s)
- Jasmin Speil
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Normanno D, Dahan M, Darzacq X. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:482-93. [PMID: 22342464 DOI: 10.1016/j.bbagrm.2012.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 12/26/2022]
Abstract
Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Davide Normanno
- Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS UMR 8197, Ecole normale supérieure, 46, Rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
42
|
Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 2012; 348:411-7. [PMID: 21801809 DOI: 10.1016/j.mce.2011.07.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
The gene family of nuclear receptors is characterized by the presence of a typical, well conserved DNA-binding domain. In general, two zinc coordinating modules are folded such that an α-helix is inserted in the major groove of the DNA-helix displaying a sequence similar to one of two hexameric consensus motifs. Both zinc molecules coordinate four cysteines. Although the DNA-binding domains as well as the hormone response elements are very similar, each nuclear receptor will affect transcription of a specific set of target genes. This is in part due to some important receptor-specific variations on the general theme of DNA interaction. For most nuclear receptors, the DNA-binding domain dimerizes on DNA, which explains why most hormone response elements consist of a repeat of two hexamers. The hexamer dimers can be organized either as direct, inverted or everted repeats with spacers of varying lengths. The DNA can be bound by homodimers, heterodimers and for some orphan receptors, as monomer. Another key element for DNA binding by nuclear receptors is the carboxy-terminal extension of the DNA-binding domain extending into the hinge region. This part not only co-determines sequence specificity, but also affects other functions of the receptors like nuclear translocation, intranuclear mobility and transactivation potential. Moreover, allosteric signals passing through towards other receptor domains, explain why to some extent, the DNA elements can also be considered as controlling ligands.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department Molecular Cell Biology, Campus GHB, ON1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).
Collapse
|
44
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Jandt U, Zeng AP. Modeling of intracellular transport and compartmentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:221-49. [PMID: 22210243 DOI: 10.1007/10_2011_104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complexity and internal organization of mammalian cells as well as the regulation of intracellular transport processes has increasingly moved into the focus of investigation during the past two decades. Advanced staining and microscopy techniques help to shed light onto spatial cellular compartmentation and regulation, increasing the demand for improved modeling techniques. In this chapter, we summarize recent developments in the field of quantitative simulation approaches and frameworks for the description of intracellular transport processes. Special focus is therefore laid on compartmented and spatiotemporally resolved simulation approaches. The processes considered include free and facilitated diffusion of molecules, active transport via the microtubule and actin filament network, vesicle distribution, membrane transport, cell cycle-dependent cell growth and morphology variation, and protein production. Commercially and freely available simulation packages are summarized as well as model data exchange and harmonization issues.
Collapse
Affiliation(s)
- Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestreet 15, D-21071, Hamburg, Germany,
| | | |
Collapse
|
46
|
Cournoyer P, Dinesh-Kumar SP. Studying NB-LRR immune receptor localization by agroinfiltration transient expression. Methods Mol Biol 2011; 712:1-8. [PMID: 21359795 DOI: 10.1007/978-1-61737-998-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NB-LRR immune receptors in plants play dual roles as sentries and as activators of defense. The site in the cell where these activities take place can be different for different NB-LRRs. Furthermore, recognition and defense activation can occur in distinct subcellular compartments. Therefore, determining the subcellular localization of NB-LRRs is a key step toward understanding how they function. Recent advances in confocal microscopy enable high-resolution imaging of proteins in live cells. Agroinfiltration in the Nicotiana benthamiana model plant system is a convenient way of expressing proteins for localization studies. This chapter explains how to use N. benthamiana to transiently express NB-LRRs for confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Patrick Cournoyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
47
|
Le Dévédec SE, Yan K, de Bont H, Ghotra V, Truong H, Danen EH, Verbeek F, van de Water B. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 2010; 67:3219-40. [PMID: 20556632 PMCID: PMC2933849 DOI: 10.1007/s00018-010-0419-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/21/2010] [Accepted: 05/14/2010] [Indexed: 01/15/2023]
Abstract
Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration.
Collapse
Affiliation(s)
- Sylvia E. Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kuan Yan
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Veerander Ghotra
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hoa Truong
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Erik H. Danen
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Fons Verbeek
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Leiden/Amsterdam Center for Drug Research, Gorleaus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
48
|
Gröner N, Capoulade J, Cremer C, Wachsmuth M. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy. OPTICS EXPRESS 2010; 18:21225-37. [PMID: 20941019 DOI: 10.1364/oe.18.021225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.
Collapse
Affiliation(s)
- Nadine Gröner
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
Warmerdam DO, Kanaar R, Smits VAJ. Differential Dynamics of ATR-Mediated Checkpoint Regulators. J Nucleic Acids 2010; 2010. [PMID: 20847938 PMCID: PMC2933903 DOI: 10.4061/2010/319142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/28/2010] [Indexed: 12/18/2022] Open
Abstract
The ATR-Chk1 checkpoint pathway is activated by UV-induced DNA lesions and replication stress. Little was known about the spatio and temporal behaviour of the proteins involved, and we, therefore, examined the behaviour of the ATRIP-ATR and Rad9-Rad1-Hus1 putative DNA damage sensor complexes and the downstream effector kinase Chk1. We developed assays for the generation and validation of stable cell lines expressing GFP-fusion proteins. Photobleaching experiments in living cells expressing these fusions indicated that after UV-induced DNA damage, ATRIP associates more transiently with damaged chromatin than members of the Rad9-Rad1-Hus1 complex. Interestingly, ATRIP directly associated with locally induced UV damage, whereas Rad9 bound in a cooperative manner, which can be explained by the Rad17-dependent loading of Rad9 onto damaged chromatin. Although Chk1 dissociates from the chromatin upon UV damage, no change in the mobility of GFP-Chk1 was observed, supporting the notion that Chk1 is a highly dynamic protein.
Collapse
Affiliation(s)
- Daniël O Warmerdam
- Department of Cell Biology and Genetics, Cancer Genome Center, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
50
|
de Graaf P, Mousson F, Geverts B, Scheer E, Tora L, Houtsmuller AB, Timmers HTM. Chromatin interaction of TATA-binding protein is dynamically regulated in human cells. J Cell Sci 2010; 123:2663-71. [PMID: 20627952 DOI: 10.1242/jcs.064097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucleoplasmic TBP and other TFIID subunits associate with chromatin in a highly dynamic manner. TBP dynamics are regulated by the joint action of the SNF2-related BTAF1 protein and the NC2 complex. Strikingly, both BTAF1 and NC2 predominantly affect TBP dissociation rates, leaving the association rate unchanged. Chromatin immunoprecipitation shows that BTAF1 negatively regulates TBP and NC2 binding to active promoters. Our results support a model for a BTAF1-mediated release of TBP-NC2 complexes from chromatin.
Collapse
Affiliation(s)
- Petra de Graaf
- Department of Physiological Chemistry and Netherlands Proteomic Center, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|