1
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. SCIENCE ADVANCES 2024; 10:eadn6603. [PMID: 38838146 PMCID: PMC11152119 DOI: 10.1126/sciadv.adn6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.
Collapse
Affiliation(s)
| | | | - Cassie L. Kemmler
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
2
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Ambrosio EMG, Bailey CSL, Unterweger IA, Christensen JB, Bruchez MP, Lundegaard PR, Ober EA. LiverZap: a chemoptogenetic tool for global and locally restricted hepatocyte ablation to study cellular behaviours in liver regeneration. Development 2024; 151:dev202217. [PMID: 38381702 DOI: 10.1242/dev.202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish. LiverZap employs the formation of a binary FAP-TAP photosensitiser followed by brief near-infrared illumination inducing hepatocyte-specific death and recapitulating mammalian liver injury types. The tool enables local hepatocyte ablation and extended live imaging capturing regenerative cell behaviours, which is crucial for studying cellular interactions at the interface of healthy and damaged tissue. Applying LiverZap, we show that targeted hepatocyte ablation in a small region of interest is sufficient to trigger local liver progenitor-like cell (LPC)-mediated regeneration, challenging the current understanding of liver regeneration. Surprisingly, the LPC response is also elicited in adjacent uninjured tissue, at up to 100 µm distance to the injury. Moreover, dynamic biliary network rearrangement suggests active cell movements from uninjured tissue in response to substantial hepatocyte loss as an integral step of LPC-mediated liver regeneration. This precisely targetable liver cell ablation tool will enable the discovery of key molecular and morphogenetic regeneration paradigms.
Collapse
Affiliation(s)
- Elizabeth M G Ambrosio
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Charlotte S L Bailey
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Iris A Unterweger
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jens B Christensen
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Pia R Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Elke A Ober
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Eck E, Moretti B, Schlomann BH, Bragantini J, Lange M, Zhao X, VijayKumar S, Valentin G, Loureiro C, Soroldoni D, Royer LA, Oates AC, Garcia HG. Single-cell transcriptional dynamics in a living vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574108. [PMID: 38260569 PMCID: PMC10802376 DOI: 10.1101/2024.01.03.574108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability to quantify transcriptional dynamics in individual cells via live imaging has revolutionized our understanding of gene regulation. However, such measurements are lacking in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA labeling to the quantification of transcription in zebrafish, a model vertebrate. We developed a platform of transgenic organisms, light sheet fluorescence microscopy, and optimized image analysis that enables visualization and quantification of MS2 reporters. We used these tools to obtain the first single-cell, real-time measurements of transcriptional dynamics of the segmentation clock. Our measurements challenge the traditional view of smooth clock oscillations and instead suggest a model of discrete transcriptional bursts that are organized in space and time. Together, these results highlight how measuring single-cell transcriptional activity can reveal unexpected features of gene regulation and how this data can fuel the dialogue between theory and experiment.
Collapse
Affiliation(s)
- Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, USA
| | - Bruno Moretti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Brandon H. Schlomann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Merlin Lange
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Xiang Zhao
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Loïc A. Royer
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Andrew C. Oates
- Institute of Bioengineering, EPFL; Lausanne, CH
- Department of Cell and Developmental Biology, UCL; London, UK
- The Francis Crick Institute; London, UK
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570868. [PMID: 38106217 PMCID: PMC10723424 DOI: 10.1101/2023.12.08.570868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Standard methods for transgenesis in zebrafish depend on random transgene integration into the genome followed by resource-intensive screening and validation. Targeted vector integration into validated genomic loci using phiC31 integrase-based attP/attB recombination has transformed mouse and Drosophila transgenesis. However, while the phiC31 system functions in zebrafish, validated loci carrying attP-based landing or safe harbor sites suitable for universal transgenesis applications in zebrafish have not been established. Here, using CRISPR-Cas9, we converted two well-validated single insertion Tol2-based zebrafish transgenes with long-standing genetic stability into two attP landing sites, called phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET). Generating fluorescent reporters, loxP-based Switch lines, CreERT2 drivers, and gene-regulatory variant reporters in the pIGLET14a and pIGLET24b landing site alleles, we document their suitability for transgenesis applications across cell types and developmental stages. For both landing sites, we routinely achieve 25-50% germline transmission of targeted transgene integrations, drastically reducing the number of required animals and necessary resources to generate individual transgenic lines. We document that phiC31 integrase-based transgenesis into pIGLET14a and pIGLET24b reproducibly results in representative reporter expression patterns in injected F0 zebrafish embryos suitable for enhancer discovery and qualitative and quantitative comparison of gene-regulatory element variants. Taken together, our new phiC31 integrase-based transgene landing sites establish reproducible, targeted zebrafish transgenesis for numerous applications while greatly reducing the workload of generating new transgenic zebrafish lines.
Collapse
Affiliation(s)
- Robert L. Lalonde
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Harrison H. Wells
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Caviglia S, Unterweger IA, Gasiūnaitė A, Vanoosthuyse AE, Cutrale F, Trinh LA, Fraser SE, Neuhauss SCF, Ober EA. FRaeppli: a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish. Development 2022; 149:276363. [DOI: 10.1242/dev.199615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.
Collapse
Affiliation(s)
- Sara Caviglia
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Iris A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Akvilė Gasiūnaitė
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Alexandre E. Vanoosthuyse
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Stephan C. F. Neuhauss
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| |
Collapse
|
7
|
Pant DC, Nazarko TY. Selective autophagy: the rise of the zebrafish model. Autophagy 2021; 17:3297-3305. [PMID: 33228439 PMCID: PMC8632090 DOI: 10.1080/15548627.2020.1853382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.
Collapse
Affiliation(s)
- Devesh C. Pant
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Progress in Gene-Editing Technology of Zebrafish. Biomolecules 2021; 11:biom11091300. [PMID: 34572513 PMCID: PMC8468279 DOI: 10.3390/biom11091300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
As a vertebrate model, zebrafish (Danio rerio) plays a vital role in the field of life sciences. Recently, gene-editing technology has become increasingly innovative, significantly promoting scientific research on zebrafish. However, the implementation of these methods in a reasonable and accurate manner to achieve efficient gene-editing remains challenging. In this review, we systematically summarize the development and latest progress in zebrafish gene-editing technology. Specifically, we outline trends in double-strand break-free genome modification and the prospective applications of fixed-point orientation transformation of any base at any location through a multi-method approach.
Collapse
|
9
|
Panlilio JM, Jones IT, Salanga MC, Aluru N, Hahn ME. Developmental Exposure to Domoic Acid Disrupts Startle Response Behavior and Circuitry in Zebrafish. Toxicol Sci 2021; 182:310-326. [PMID: 34097058 DOI: 10.1093/toxsci/kfab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Harmful algal blooms produce potent neurotoxins that accumulate in seafood and are hazardous to human health. Developmental exposure to the harmful algal bloom toxin, domoic acid (DomA), has behavioral consequences well into adulthood, but the cellular and molecular mechanisms of DomA developmental neurotoxicity are largely unknown. To assess these, we exposed zebrafish embryos to DomA during the previously identified window of susceptibility and used the well-known startle response circuit as a tool to identify specific neuronal components that are targeted by exposure to DomA. Exposure to DomA reduced startle responsiveness to both auditory/vibrational and electrical stimuli, and even at the highest stimulus intensities tested, led to a dramatic reduction of one type of startle (short-latency c-starts). Furthermore, DomA-exposed larvae had altered kinematics for both types of startle responses tested, exhibiting shallower bend angles and slower maximal angular velocities. Using vital dye staining, immunolabeling, and live imaging of transgenic lines, we determined that although the sensory inputs were intact, the reticulospinal neurons required for short-latency c-starts were absent in most DomA-exposed larvae. Furthermore, axon tracing revealed that DomA-treated larvae also showed significantly reduced primary motor neuron axon collaterals. Overall, these results show that developmental exposure to DomA targets large reticulospinal neurons and motor neuron axon collaterals, resulting in measurable deficits in startle behavior. They further provide a framework for using the startle response circuit to identify specific neural populations disrupted by toxins or toxicants and to link these disruptions to functional consequences for neural circuit function and behavior.
Collapse
Affiliation(s)
- Jennifer M Panlilio
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Massachusetts Institute of Technology (MIT) - Woods Hole Oceanographic Institution (WHOI) Joint Graduate Program in Oceanography and Oceanographic Engineering, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Ian T Jones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Massachusetts Institute of Technology (MIT) - Woods Hole Oceanographic Institution (WHOI) Joint Graduate Program in Oceanography and Oceanographic Engineering, Massachusetts 02543, USA
| | - Matthew C Salanga
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.,Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
10
|
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 2021; 17:e1008943. [PMID: 34061829 PMCID: PMC8195410 DOI: 10.1371/journal.pgen.1008943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/11/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kurt C. Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jerry Hsu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabio A. Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Roshan A. Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marc A. Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wong ES, Zheng D, Tan SZ, Bower NL, Garside V, Vanwalleghem G, Gaiti F, Scott E, Hogan BM, Kikuchi K, McGlinn E, Francois M, Degnan BM. Deep conservation of the enhancer regulatory code in animals. Science 2020; 370:370/6517/eaax8137. [PMID: 33154111 DOI: 10.1126/science.aax8137] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/29/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type-specific gene regulatory networks across the animal kingdom.
Collapse
Affiliation(s)
- Emily S Wong
- School of Biological Sciences, University of Queensland, Brisbane, Australia. .,Victor Chang Cardiac Research Institute, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Dawei Zheng
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Siew Z Tan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Neil L Bower
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Victoria Garside
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Ethan Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Edwina McGlinn
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mathias Francois
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia. .,Centenary Institute, David Richmond Program for Cardio-Vascular Research: Gene Regulation and Editing, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
12
|
Rieckhoff EM, Berndt F, Elsner M, Golfier S, Decker F, Ishihara K, Brugués J. Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation. Curr Biol 2020; 30:4973-4983.e10. [DOI: 10.1016/j.cub.2020.10.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
|
13
|
Machikhin AS, Volkov MV, Burlakov AB, Khokhlov DD, Potemkin AV. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development. Diagnostics (Basel) 2020; 10:diagnostics10110886. [PMID: 33143148 PMCID: PMC7692510 DOI: 10.3390/diagnostics10110886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The zebrafish (Danio rerio) is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation. In this research, we report on an in vivo stain-free blood vessel imaging technique at pre-larval stages of zebrafish embryonic development. We have developed the algorithm for the enhancement, alignment and spatiotemporal analysis of bright-field microscopy images of zebrafish embryos. It enables the detection, mapping and quantitative characterization of cardiac activity across the whole specimen. To validate the proposed approach, we have analyzed multiple data cubes, calculated vessel images and evaluated blood flow velocity and heart rate dynamics in the absence of any anesthesia. This non-invasive technique may shed light on the mechanism of vessel activity initiation and stabilization as well as the cardiovascular system’s susceptibility to environmental stressors at early developmental stages.
Collapse
Affiliation(s)
- Alexander S. Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
| | - Mikhail V. Volkov
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| | - Alexander B. Burlakov
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Demid D. Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
- Correspondence:
| | - Andrey V. Potemkin
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| |
Collapse
|
14
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
15
|
Initiation and early growth of the skull vault in zebrafish. Mech Dev 2019; 160:103578. [PMID: 31644945 DOI: 10.1016/j.mod.2019.103578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish offers powerful advantages as a model system for examining the growth of the skull vault and the formation of cranial sutures. The zebrafish is well suited for large-scale genetic screens, available in large numbers, and continual advances in genetic engineering facilitate precise modeling of human genetic disorders. Most importantly, zebrafish are continuously accessible for imaging during critical periods of skull formation when both mouse and chick are physically inaccessible. To establish a foundation of information on the dynamics of skull formation, we performed a longitudinal study based on confocal microscopy of individual live transgenic zebrafish. Discrete events occur at stereotyped stages in overall growth, with little variation in timing among individuals. The frontal and parietal bones initiate as small clusters of cells closely associated with cartilage around the perimeter of the skull, prior to metamorphosis and the transition to juvenile fish. Over a period of ~30 days, the frontal and parietal bones grow towards the apex of the skull and meet to begin suture formation. To aid in visualization, we have generated interactive three-dimensional models based on the imaging data, with annotated cartilage and bone elements. We propose a framework to conceptualize development of bones of the skull vault in three phases: initiation in close association with cartilage; rapid planar growth towards the apex of the skull; and finally overlapping to form sutures. Our data provide an important framework for comparing the stages and timing of skull development across model organisms, and also a baseline for the examination of zebrafish mutants affecting skull development. To facilitate these comparative analyses, the raw imaging data and the models are available as an online atlas through the FaceBase consortium (facebase.org).
Collapse
|
16
|
Zhao J, Zong W, Zhao Y, Gou D, Liang S, Shen J, Wu Y, Zheng X, Wu R, Wang X, Niu F, Wang A, Zhang Y, Xiong JW, Chen L, Liu Y. In vivo imaging of β-cell function reveals glucose-mediated heterogeneity of β-cell functional development. eLife 2019; 8:41540. [PMID: 30694176 PMCID: PMC6395064 DOI: 10.7554/elife.41540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
How pancreatic β-cells acquire function in vivo is a long-standing mystery due to the lack of technology to visualize β-cell function in living animals. Here, we applied a high-resolution two-photon light-sheet microscope for the first in vivo imaging of Ca2+activity of every β-cell in Tg (ins:Rcamp1.07) zebrafish. We reveal that the heterogeneity of β-cell functional development in vivo occurred as two waves propagating from the islet mantle to the core, coordinated by islet vascularization. Increasing amounts of glucose induced functional acquisition and enhancement of β-cells via activating calcineurin/nuclear factor of activated T-cells (NFAT) signaling. Conserved in mammalians, calcineurin/NFAT prompted high-glucose-stimulated insulin secretion of neonatal mouse islets cultured in vitro. However, the reduction in low-glucose-stimulated insulin secretion was dependent on optimal glucose but independent of calcineurin/NFAT. Thus, combination of optimal glucose and calcineurin activation represents a previously unexplored strategy for promoting functional maturation of stem cell-derived β-like cells in vitro. When the amount of sugar in our body rises, specialised cells known as β-cells respond by releasing insulin, a hormone that acts on various organs to keep blood sugar levels within a healthy range. These cells cluster in small ‘islets’ inside our pancreas. If the number of working β-cells declines, diseases such as diabetes may appear and it becomes difficult to regulate the amount of sugar in our bodies. Understanding how β-cells normally develop and mature in the embryo could help us learn how to make new ones in the laboratory. In particular, researchers are interested in studying how different body signals, such as blood sugar levels, turn immature β-cells into fully productive cells. However, in mammals, the pancreas and its islets are buried deep inside the embryo and they cannot be observed easily. Here, Zhao et al. circumvented this problem by doing experiments on zebrafish embryos, which are transparent, grow outside their mother’s body, and have pancreatic islets that are similar to the ones found in mammals. A three-dimensional microscopy technique was used to watch individual β-cells activity over long periods, which revealed that the cells start being able to produce insulin at different times. The β-cells around the edge of each islet were the first to have access to blood sugar signals: they gained their hormone-producing role earlier than the cells in the core of an islet, which only sensed the information later on. Zhao et al. then exposed the zebrafish embryos to different amounts of sugar. This showed that there is an optimal concentration of sugar which helps β-cells develop by kick-starting a cascade of events inside the cell. Further experiments confirmed that the same pathway and optimal sugar concentration exist for mammalian islets grown in the laboratory. These findings may help researchers find better ways of making new β-cells to treat diabetic patients. In the future, using the three-dimensional imaging technique in zebrafish embryos may lead to more discoveries on how the pancreas matures.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Weijian Zong
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,China Department of Cognitive Sciences, Institute of Basic Medical Sciences, Beijing, China
| | - Yiwen Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Dongzhou Gou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shenghui Liang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jiayu Shen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yi Wu
- School of Software and Microelectronics, Peking University, Beijing, China
| | - Xuan Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Runlong Wu
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Xu Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fuzeng Niu
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Aimin Wang
- State Key Laboratory of Advanced Optical Communication System and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Yunfeng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Jing-Wei Xiong
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Crespo C, Soroldoni D, Knust E. A novel transgenic zebrafish line for red opsin expression in outer segments of photoreceptor cells. Dev Dyn 2018; 247:951-959. [PMID: 29603474 PMCID: PMC6099204 DOI: 10.1002/dvdy.24631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Opsins are a group of light-sensitive proteins present in photoreceptor cells, which convert the energy of photons into electrochemical signals, thus allowing vision. Given their relevance, we aimed to visualize the two red opsins at subcellular scale in photoreceptor cells. RESULTS We generated a novel Zebrafish BAC transgenic line, which express fluorescently tagged, full-length Opsin 1 long-wave-sensitive 1 (Opn1lw1) and full-length Opsin 1 long-wave-sensitive 2 (Opn1lw2) under the control of their endogenous promoters. Both fusion proteins are localized in the outer segments of photoreceptor cells. During development, Opn1lw2-mKate2 is detected from the initial formation of outer segments onward. In contrast, Opn1lw1-mNeonGreen is first detected in juvenile Zebrafish at about 2 weeks postfertilization, and both opsins continue to be expressed throughout adulthood. It is important to note that the presence of the transgene did not significantly alter the size of outer segments. CONCLUSIONS We have generated a transgenic line that mimics the endogenous expression pattern of Opn1lw1 and Opn1lw2 in the developing and adult retina. In contrast to existing lines, our transgene design allows to follow protein localization. Hence, we expect that these lines could act as useful real-time reporters to directly measure phenomena in retinal development and disease models. Developmental Dynamics 247:951-959, 2018. © 2018 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Cátia Crespo
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
18
|
Howes TR, Summers BR, Kingsley DM. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A. BMC Biol 2017; 15:115. [PMID: 29212540 PMCID: PMC5719529 DOI: 10.1186/s12915-017-0456-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dorsal spine reduction in threespine sticklebacks (Gasterosteus aculeatus) is a classic example of recurrent skeletal evolution in nature. Sticklebacks in marine environments typically have long spines that form part of their skeletal armor. Many derived freshwater populations have evolved shorter spines. Changes in spine length are controlled in part by a quantitative trait locus (QTL) previously mapped to chromosome 4, but the causative gene and mutations underlying the repeated evolution of this interesting skeletal trait have not been identified. RESULTS Refined mapping of the spine length QTL shows that it lies near the MSX2A transcription factor gene. MSX2A is expressed in developing spines. In F1 marine × freshwater fish, the marine allele is preferentially expressed. Differences in expression can be attributed to splicing regulation. Due to the use of an alternative 5 ' splice site within the first exon, the freshwater allele produces greater amounts of a shortened, non-functional transcript and makes less of the full-length transcript. Sequence changes in the MSX2A region are shared by many freshwater fish, suggesting that repeated evolution occurs by reuse of a spine-reduction variant. To demonstrate the effect of full-length MSX2A on spine length, we produced transgenic freshwater fish expressing a copy of marine MSX2A. The spines of the transgenic fish were significantly longer on average than those of their non-transgenic siblings, partially reversing the reduced spine lengths that have evolved in freshwater populations. CONCLUSIONS MSX2A is a major gene underlying dorsal spine reduction in freshwater sticklebacks. The gene is linked to a separate gene controlling bony plate loss, helping explain the concerted effects of chromosome 4 on multiple armor-reduction traits. The nature of the molecular changes provides an interesting example of morphological evolution occurring not through a simple amino acid change, nor through a change only in gene expression levels, but through a change in the ratio of splice products encoding both normal and truncated proteins.
Collapse
Affiliation(s)
- Timothy R Howes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian R Summers
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Development of zebrafish medulloblastoma-like PNET model by TALEN-mediated somatic gene inactivation. Oncotarget 2017; 8:55280-55297. [PMID: 28903419 PMCID: PMC5589658 DOI: 10.18632/oncotarget.19424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Genetically engineered animal tumor models have traditionally been generated by the gain of single or multiple oncogenes or the loss of tumor suppressor genes; however, the development of live animal models has been difficult given that cancer phenotypes are generally induced by somatic mutation rather than by germline genetic inactivation. In this study, we developed somatically mutated tumor models using TALEN-mediated somatic gene inactivation of cdkn2a/b or rb1 tumor suppressor genes in zebrafish. One-cell stage injection of cdkn2a/b-TALEN mRNA resulted in malignant peripheral nerve sheath tumors with high frequency (about 39%) and early onset (about 35 weeks of age) in F0 tp53e7/e7 mutant zebrafish. Injection of rb1-TALEN mRNA also led to the formation of brain tumors at high frequency (58%, 31 weeks of age) in F0 tp53e7/e7 mutant zebrafish. Analysis of each tumor induced by somatic inactivation showed that the targeted genes had bi-allelic mutations. Tumors induced by rb1 somatic inactivation were characterized as medulloblastoma-like primitive neuroectodermal tumors based on incidence location, histopathological features, and immunohistochemical tests. In addition, 3' mRNA Quanti-Seq analysis showed differential activation of genes involved in cell cycle, DNA replication, and protein synthesis; especially, genes involved in neuronal development were up-regulated.
Collapse
|
20
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
21
|
Pradhan A, Zeng XXI, Sidhwani P, Marques SR, George V, Targoff KL, Chi NC, Yelon D. FGF signaling enforces cardiac chamber identity in the developing ventricle. Development 2017; 144:1328-1338. [PMID: 28232600 DOI: 10.1242/dev.143719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Atrial and ventricular cardiac chambers behave as distinct subunits with unique morphological, electrophysiological and contractile properties. Despite the importance of chamber-specific features, chamber fate assignments remain relatively plastic, even after differentiation is underway. In zebrafish, Nkx transcription factors are essential for the maintenance of ventricular characteristics, but the signaling pathways that operate upstream of Nkx factors in this context are not well understood. Here, we show that FGF signaling plays an essential part in enforcing ventricular identity. Loss of FGF signaling results in a gradual accumulation of atrial cells, a corresponding loss of ventricular cells, and the appearance of ectopic atrial gene expression within the ventricle. These phenotypes reflect important roles for FGF signaling in promoting ventricular traits, both in early-differentiating cells that form the initial ventricle and in late-differentiating cells that append to its arterial pole. Moreover, we find that FGF signaling functions upstream of Nkx genes to inhibit ectopic atrial gene expression. Together, our data suggest a model in which sustained FGF signaling acts to suppress cardiomyocyte plasticity and to preserve the integrity of the ventricular chamber.
Collapse
Affiliation(s)
- Arjana Pradhan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sara R Marques
- Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Nakanishi T, Kato Y, Matsuura T, Watanabe H. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna. Sci Rep 2016; 6:36252. [PMID: 27819301 PMCID: PMC5098252 DOI: 10.1038/srep36252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023] Open
Abstract
Transcription activator-like effector nucleases (TALENs) are versatile tools that enable the insertion of DNA into different organisms. Here, we confirmed TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna, a model organism for ecological and toxicological genomics. We tested two different TALENs, ey1 TALEN and ey2 TALEN, both of which target the eyeless locus. The donor DNA plasmid, harbouring the H2B-GFP reporter gene, was designed to contain both TALEN target sites and was co-injected with each TALEN mRNA into eggs. The ey1 TALEN and ey2 TALEN constructs both resulted in H2B-GFP expression in Daphnia with a germline transmission efficiency of 3%. Of the three transgenic animals generated, two had donor DNA at the targeted genomic site, which suggested concurrent cleavage of the injected plasmid DNA and genome DNA. The availability of such tools that are capable of targeted knock-in of foreign genes will be extremely useful for advancing the knowledge of gene function and contribute to an increased understanding of functional genomics in Daphnia.
Collapse
Affiliation(s)
- Takashi Nakanishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
23
|
Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation. J Neurosci 2016; 36:2663-76. [PMID: 26937007 DOI: 10.1523/jneurosci.2847-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. SIGNIFICANCE STATEMENT In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an unexpected role of the extracellular matrix collagen XV in motor axon pathfinding. We show that the synthesis of collagen XV-B by slow muscle precursors and its deposition in the common motor path are dependent on a novel two-step mechanism that determines axon decisions at a choice point during motor axonogenesis. Zebrafish and humans use common molecular cues and regulatory mechanisms for the neuromuscular system development. And as such, our study reveals COL15A1 as a candidate gene for orphan neuromuscular disorders.
Collapse
|
24
|
Liao BK, Jörg DJ, Oates AC. Faster embryonic segmentation through elevated Delta-Notch signalling. Nat Commun 2016; 7:11861. [PMID: 27302627 PMCID: PMC4912627 DOI: 10.1038/ncomms11861] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. Several genetic loss-of-function conditions, including the Delta-Notch intercellular signalling mutants, result in slower segmentation. Here, we generate DeltaD transgenic zebrafish lines with a range of copy numbers and correspondingly increased signalling levels, and observe faster segmentation. The highest-expressing line shows an altered oscillating gene expression wave pattern and shortened segmentation period, producing embryos with more, shorter body segments. Our results reveal surprising differences in how Notch signalling strength is quantitatively interpreted in different organ systems, and suggest a role for intercellular communication in regulating the output period of the segmentation clock by altering its spatial pattern. Rhythmic patterning governs the formation of somites in vertebrates, but how the period of such rhythms can be changed is unclear. Here, the authors generate a genetic model in zebrafish to increase DeltaD expression, which increases the range of Delta-Notch signalling, causing faster segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01037, Germany.,Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01037, Germany.,Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
25
|
Abstract
Zebrafish represents a powerful model for cancer research. Particularly, the xenotransplantation of human cancer cells into zebrafish has enormous potential for further evaluation of cancer progression and drug discovery. Various cancer models have been established in adults, juveniles and embryos of zebrafish. This xenotransplantation zebrafish model provides a unique opportunity to monitor cancer proliferation, tumor angiogenesis, metastasis, self-renewal of cancer stem cells, and drug response in real time in vivo. This review summarizes the use of zebrafish as a model for cancer xenotransplantation, and highlights its advantages and disadvantages.
Collapse
|
26
|
A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun 2016; 7:11303. [PMID: 27066836 PMCID: PMC4832069 DOI: 10.1038/ncomms11303] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect.
Collapse
|
27
|
Kague E, Roy P, Asselin G, Hu G, Simonet J, Stanley A, Albertson C, Fisher S. Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev Biol 2016; 413:160-72. [PMID: 26992365 DOI: 10.1016/j.ydbio.2016.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/16/2022]
Abstract
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures.
Collapse
Affiliation(s)
- Erika Kague
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Paula Roy
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Asselin
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Gui Hu
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Simonet
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Stanley
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Shannon Fisher
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation. Nat Commun 2015; 6:8375. [DOI: 10.1038/ncomms9375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 08/16/2015] [Indexed: 01/10/2023] Open
|
29
|
Abstract
The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.
Collapse
Affiliation(s)
- Okhyun Lee
- Biosciences, College of Life & Environmental Sciences, University of Exeter , Exeter, Devon , UK
| | | | | |
Collapse
|
30
|
Soroldoni D, Jörg DJ, Morelli LG, Richmond DL, Schindelin J, Jülicher F, Oates AC. Genetic oscillations. A Doppler effect in embryonic pattern formation. Science 2014; 345:222-5. [PMID: 25013078 DOI: 10.1126/science.1253089] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening.
Collapse
Affiliation(s)
- Daniele Soroldoni
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Medical Research Council (MRC)-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK. Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Luis G Morelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - David L Richmond
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany
| | - Johannes Schindelin
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, 271 Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 01307 Dresden, Germany. Medical Research Council (MRC)-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK. Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
31
|
Webb AB, Soroldoni D, Oswald A, Schindelin J, Oates AC. Generation of dispersed presomitic mesoderm cell cultures for imaging of the zebrafish segmentation clock in single cells. J Vis Exp 2014. [PMID: 25078855 PMCID: PMC4511270 DOI: 10.3791/50307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracellular clock driving segmentation is comprised of members of the Her/Hes transcription factor family organized into negative feedback loops. We have recently generated transgenic fluorescent reporter lines for the cyclic gene her1 that recapitulate the spatio-temporal pattern of oscillations in the presomitic mesoderm (PSM). Using these lines, we developed an in vitro culture system that allows real-time analysis of segmentation clock oscillations within single, isolated PSM cells. By removing PSM tissue from transgenic embryos and then dispersing cells from oscillating regions onto glass-bottom dishes, we generated cultures suitable for time-lapse imaging of fluorescence signal from individual clock cells. This approach provides an experimental and conceptual framework for direct manipulation of the segmentation clock with unprecedented single-cell resolution, allowing its cell-autonomous and tissue-level properties to be distinguished and dissected.
Collapse
Affiliation(s)
- Alexis B Webb
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | - Annelie Oswald
- Max Planck Institute of Molecular Cell Biology and Genetics
| | | | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics
| |
Collapse
|
32
|
Veinotte CJ, Dellaire G, Berman JN. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 2014; 7:745-54. [PMID: 24973744 PMCID: PMC4073264 DOI: 10.1242/dmm.015784] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The current preclinical pipeline for drug discovery can be cumbersome and costly, which limits the number of compounds that can effectively be transitioned to use as therapies. Chemical screens in zebrafish have uncovered new uses for existing drugs and identified promising new compounds from large libraries. Xenotransplantation of human cancer cells into zebrafish embryos builds on this work and enables direct evaluation of patient-derived tumor specimens in vivo in a rapid and cost-effective manner. The short time frame needed for xenotransplantation studies means that the zebrafish can serve as an early preclinical drug screening tool and can also help personalize cancer therapy by providing real-time data on the response of the human cells to treatment. In this Review, we summarize the use of zebrafish embryos in drug screening and highlight the potential for xenotransplantation approaches to be adopted as a preclinical tool to identify and prioritize therapies for further clinical evaluation. We also discuss some of the limitations of using zebrafish xenografts and the benefits of using them in concert with murine xenografts in drug optimization.
Collapse
Affiliation(s)
- Chansey J Veinotte
- Department of Pediatrics, IWK Health Centre, PO Box 9700, 5850/5980 University Avenue, Halifax, NS, B3K 6R8, Canada. Life Sciences Research Institute, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Halifax, NS, B3H 4R2, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre, PO Box 9700, 5850/5980 University Avenue, Halifax, NS, B3K 6R8, Canada. Life Sciences Research Institute, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Halifax, NS, B3H 4R2, Canada. Department of Pathology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2. Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
33
|
Monesson-Olson BD, Browning-Kamins J, Aziz-Bose R, Kreines F, Trapani JG. Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2. PLoS One 2014; 9:e96641. [PMID: 24791934 PMCID: PMC4008597 DOI: 10.1371/journal.pone.0096641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes) in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2) under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET) channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light. Comparison of the patterns of encoded spikes during 100-ms stimuli revealed no difference in mean first spike latency between the two modes of activation. However, there was a significant increase in the variability of first spike latency during optical stimulation as well as an increase in the mean number of spikes per stimulus. Next, we compared encoding of spikes during hair-cell stimulation at 10, 20, and 40-Hz. Consistent with the increased variability of first spike latency, we saw a significant decrease in the vector strength of phase-locked spiking during optical stimulation. These in vivo results support a physiological role for the MET channel in the high fidelity of first spike latency seen during encoding of mechanical sensory stimuli. Finally, we examined whether remote activation of hair cells via ChR2 activation was sufficient to elicit escape responses in free-swimming larvae. In transgenic larvae, 100-ms flashes of ∼470-nm light resulted in escape responses that occurred concomitantly with field recordings indicating Mauthner cell activity. Altogether, the myo6b:ChR2 transgenic line provides a platform to investigate hair-cell function and sensory encoding, hair-cell sensory input to the Mauthner cell, and the ability to remotely evoke behavior in free-swimming zebrafish.
Collapse
Affiliation(s)
| | - Jenna Browning-Kamins
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Razina Aziz-Bose
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Fabiana Kreines
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Josef G. Trapani
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Cheng X, Chen X, Jin X, He J, Yin Z. Generation and characterization of gsuα:EGFP transgenic zebrafish for evaluating endocrine-disrupting effects. Toxicol Appl Pharmacol 2014; 278:78-84. [PMID: 24747804 DOI: 10.1016/j.taap.2014.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/12/2023]
Abstract
The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone β (Fshβ), luteinizing hormone β (Lhβ) and thyroid stimulating hormone β (Tshβ). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were all identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO4, dexamethasone (Dex), β-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xia Jin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Ningbo Laboratory, State Key Laboratory of Freshwater Ecology and Biotechnology, China.
| |
Collapse
|
35
|
Steele SL, Prykhozhij SV, Berman JN. Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 2014; 163:79-98. [PMID: 24055494 DOI: 10.1016/j.trsl.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 12/19/2022]
Abstract
Animal models for studying human disease are essential to the continuing evolution of medicine. Rodent models are attractive for the obvious similarities in development and genetic makeup compared with humans, but have cost and technical limitations. The zebrafish (Danio rerio) represents an ideal alternative vertebrate model of human disease because of its high conservation of genetic information and physiological processes, inexpensive maintenance, and optical clarity facilitating direct observation. This review highlights recent advances in understanding genetic disease states associated with the dynamic organelle, the mitochondrion, using the zebrafish. Mitochondrial diseases that have been replicated in the zebrafish include those affecting the nervous and cardiovascular systems, as well as red blood cell function. Gene silencing techniques, including morpholino knockdown and transcription activator-like (TAL)-effector endonucleases, have been exploited to demonstrate how loss of function can induce human disease-like states in zebrafish. Moreover, modeling mitochondrial diseases has been facilitated greatly by the creation of transgenic fish with fluorescently labeled mitochondria for in vivo visualization of these structures. In addition, behavioral assays have been developed to examine changes in motor activity and sensory responses, particularly in larval stages. Zebrafish are poised to advance our understanding of the pathogenesis of human mitochondrial diseases beyond the current state of knowledge and provide a key tool in the development of novel therapeutic approaches to treat these conditions.
Collapse
Affiliation(s)
- Shelby L Steele
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
36
|
Giannaccini M, Cuschieri A, Dente L, Raffa V. Non-mammalian vertebrate embryos as models in nanomedicine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:703-19. [PMID: 24103306 DOI: 10.1016/j.nano.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 01/27/2023]
Abstract
UNLABELLED Various in vivo biological models have been proposed for studying the interactions of nano-materials in biological systems. Unfortunately, the widely used small mammalian animal models (rodents) are costly and labor intensive and generate ethical issues and antagonism from the anti-vivisectionist movement. Recently, there has been increasing interest in the scientific community in the interactions between nano-materials and non-mammalian developmental organisms, which are now being recognized as valid models for the study of human disease. This review examines and discusses the biomedical applications and the interaction of nano-materials with embryonic systems, focusing on non-mammalian vertebrate models, such as chicken, zebrafish and Xenopus. FROM THE CLINICAL EDITOR Animal models are critical components of preclinical biomedical research. This review discusses the feasibility and potential applications of non-mammalian vertebral animals, such as zebrafish, xenopus, and chicken as animal models in nanomedicine research.
Collapse
Affiliation(s)
- Martina Giannaccini
- Department of Biology, Cell and Developmental Biology Unit, Università di Pisa, Pisa, Italy; Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luciana Dente
- Department of Biology, Cell and Developmental Biology Unit, Università di Pisa, Pisa, Italy
| | - Vittoria Raffa
- Department of Biology, Cell and Developmental Biology Unit, Università di Pisa, Pisa, Italy; Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
37
|
Engineering nucleases for gene targeting: safety and regulatory considerations. N Biotechnol 2013; 31:18-27. [PMID: 23851284 DOI: 10.1016/j.nbt.2013.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022]
Abstract
Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight.
Collapse
|
38
|
Moro E, Vettori A, Porazzi P, Schiavone M, Rampazzo E, Casari A, Ek O, Facchinello N, Astone M, Zancan I, Milanetto M, Tiso N, Argenton F. Generation and application of signaling pathway reporter lines in zebrafish. Mol Genet Genomics 2013; 288:231-42. [PMID: 23674148 PMCID: PMC3664755 DOI: 10.1007/s00438-013-0750-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takagi C, Sakamaki K, Morita H, Hara Y, Suzuki M, Kinoshita N, Ueno N. Transgenic Xenopus laevis for live imaging in cell and developmental biology. Dev Growth Differ 2013; 55:422-33. [PMID: 23480392 DOI: 10.1111/dgd.12042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023]
Abstract
The stable transgenesis of genes encoding functional or spatially localized proteins, fused to fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP), is an extremely important research tool in cell and developmental biology. Transgenic organisms constructed with fluorescent labels for cell membranes, subcellular organelles, and functional proteins have been used to investigate cell cycles, lineages, shapes, and polarity, in live animals and in cells or tissues derived from these animals. Genes of interest have been integrated and maintained in generations of transgenic animals, which have become a valuable resource for the cell and developmental biology communities. Although the use of Xenopus laevis as a transgenic model organism has been hampered by its relatively long reproduction time (compared to Drosophila melanogaster and Caenorhabditis elegans), its large embryonic cells and the ease of manipulation in early embryos have made it a historically valuable preparation that continues to have tremendous research potential. Here, we report on the Xenopus laevis transgenic lines our lab has generated and discuss their potential use in biological imaging.
Collapse
Affiliation(s)
- Chiyo Takagi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Robu ME, Zhang Y, Rhodes J. Rereplication in emi1-deficient zebrafish embryos occurs through a Cdh1-mediated pathway. PLoS One 2012; 7:e47658. [PMID: 23082190 PMCID: PMC3474755 DOI: 10.1371/journal.pone.0047658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/13/2012] [Indexed: 01/27/2023] Open
Abstract
Disruption of early mitotic inhibitor 1 (Emi1) interferes with normal cell cycle progression and results in early embryonic lethality in vertebrates. During S and G2 phases the ubiquitin ligase complex APC/C is inhibited by Emi1 protein, thereby enabling the accumulation of Cyclins A and B so they can regulate replication and promote the transition from G2 phase to mitosis, respectively. Depletion of Emi1 prevents mitotic entry and causes rereplication and an increase in cell size. In this study, we show that the developmental and cell cycle defects caused by inactivation of zebrafish emi1 are due to inappropriate activation of APC/C through its cofactor Cdh1. Inhibiting/slowing progression into S-phase by depleting Cdt1, an essential replication licensing factor, partially rescued emi1 deficiency-induced rereplication and the increased cell size. The cell size effect was enhanced by co-depletion of cell survival regulator p53. These data suggest that the increased size of emi1-deficient cells is either directly or indirectly caused by the rereplication defects. Moreover, enforced expression of Cyclin A partially ablated the rereplicating population in emi1-deficient zebrafish embryos, consistent with the role of Cyclin A in origin licensing. Forced expression of Cyclin B partially restored the G1 population, in agreement with the established role of Cyclin B in mitotic progression and exit. However, expression of Cyclin B also partially inhibited rereplication in emi1-deficient embryos, suggesting a role for Cyclin B in regulating replication in this cellular context. As Cyclin A and B are substrates for APC/C-Cdh1 - mediated degradation, and Cdt1 is under control of Cyclin A, these data indicate that emi1 deficiency-induced defects in vivo are due to the dysregulation of an APC/C-Cdh1 molecular axis.
Collapse
Affiliation(s)
- Mara E. Robu
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Yong Zhang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Inoue T, Inoue R, Tsutsumi R, Tada K, Urata Y, Michibayashi C, Takemura S, Agata K. Lens regenerates by means of similar processes and timeline in adults and larvae of the newt Cynops pyrrhogaster. Dev Dyn 2012; 241:1575-83. [PMID: 22930574 DOI: 10.1002/dvdy.23854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It is widely accepted that juvenile animals can regenerate faster than adults. For example, in the case of lens regeneration of the newt Cynops pyrrhogaster, larvae and adults require approximately 30 and 80 days for completion of lens regeneration, respectively. However, when we carefully observed lens regeneration in C. pyrrhogaster at the cellular level using molecular markers in the present study, we found that lens regeneration during the larval stage proceeded at similar speed and by means of similar steps to those in adults. RESULTS We could not find any drastic difference between regeneration at these two stages, except that the size of the eyes was very different. CONCLUSIONS Our observations suggested that larvae could regenerate a lens of the original size within a shorter time than adults because the larval lens was smaller than the adult lens, but the speed of regeneration was not faster in larvae. In addition, by repeatedly observing the regeneration in one individual transgenic newt that expressed fluorescence specifically in lens fiber cells in vivo and comparing the regeneration process at the embryonic, larval, and postmetamorphosis stages, we confirmed that the regeneration speed was the same at each of these stages in the same individual.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
NanoSMGT: Transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 2011; 76:1552-60. [DOI: 10.1016/j.theriogenology.2011.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/25/2011] [Accepted: 06/25/2011] [Indexed: 01/07/2023]
|
43
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
44
|
Sive H. Keeping two animal systems in one lab - a frog plus fish case study. Methods Mol Biol 2011; 770:571-8. [PMID: 21805281 DOI: 10.1007/978-1-61779-210-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
For two decades, my lab has been studying development using two vertebrate animals, the frog Xenopus and the zebrafish, Danio. This has been both productive and challenging. The initial rationale for the choice was to compare the same process in two species, as a means to find commonalities that may carry through all vertebrates. As time progressed, however, each species has become exploited for its specific attributes, more than for comparative studies. Maintaining two species simultaneously has been challenging, as has the division of research between the two and making sure that lab members know both systems well enough to communicate productively. Other significant issues concern funding for disparate research, figuring out how to make contributions to both fish and frog communities, and being accepted as a member of two communities. I discuss whether this dual allegiance has been a good idea.
Collapse
Affiliation(s)
- Hazel Sive
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Abstract
Transgenic technique provides a new way for fish breeding. Stable lines of growth hormone gene transfer carps, salmon and tilapia, as well as fluorescence protein gene transfer zebra fish and white cloud mountain minnow have been produced. The fast growth characteristic of GH gene transgenic fish will be of great importance to promote aquaculture production and economic efficiency. This paper summarized the progress in transgenic fish research and ecological assessments. Microinjection is still the most common used method, but often resulted in multi-site and multi-copies integration. Co-injection of transposon or meganuclease will greatly improve the efficiency of gene transfer and integration. "All fish" gene or "auto gene" should be considered to produce transgenic fish in order to eliminate misgiving on food safety and to benefit expression of the transferred gene. Environmental risk is the biggest obstacle for transgenic fish to be commercially applied. Data indicates that transgenic fish have inferior fitness compared with the traditional domestic fish. However, be-cause of the genotype-by-environment effects, it is difficult to extrapolate simple phenotypes to the complex ecological interactions that occur in nature based on the ecological consequences of the transgenic fish determined in the laboratory. It is critical to establish highly naturalized environments for acquiring reliable data that can be used to evaluate the environ-mental risk. Efficacious physical and biological containment strategies remain to be crucial approaches to ensure the safe application of transgenic fish technology.
Collapse
|
46
|
NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 2011; 75:1476-81. [DOI: 10.1016/j.theriogenology.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 12/26/2022]
|
47
|
Fleming A, Rubinsztein DC. Zebrafish as a model to understand autophagy and its role in neurological disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:520-6. [PMID: 21256213 PMCID: PMC3060341 DOI: 10.1016/j.bbadis.2011.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 11/10/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022]
Abstract
In the past decade, the zebrafish (Danio rerio) has become a popular model system for the study of vertebrate development, since the embryos and larvae of this species are small, transparent and undergo rapid development ex utero, allowing in vivo analysis of embryogenesis and organogenesis. These characteristics can also be exploited by researchers interested in signaling pathways and disease processes and, accordingly, there is a growing literature on the use of zebrafish to model human disease. This model holds great potential for exploring how autophagy, an evolutionarily conserved mechanism for protein degradation, influences the pathogeneses of a range of different human diseases and for the evaluation of this pathway as a potential therapeutic strategy. Here we summarize what is known about the regulation of autophagy in eukaryotic cells and its role in neurodegenerative disease and highlight how research using zebrafish has helped further our understanding of these processes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
48
|
Koshimizu E, Imamura S, Qi J, Toure J, Valdez DM, Carr CE, Hanai JI, Kishi S. Embryonic senescence and laminopathies in a progeroid zebrafish model. PLoS One 2011; 6:e17688. [PMID: 21479207 PMCID: PMC3068137 DOI: 10.1371/journal.pone.0017688] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. Principal Findings We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with relatively mild phenotypes only, but had shortened lifespan with obvious distortion of body shape. Conclusion We generated new zebrafish models for a human premature aging disorder, and further demonstrated the utility for studying laminopathies. Premature aging could also be modeled in zebrafish embryos. This genetic model may thus provide a new platform for future drug screening as well as genetic analyses aimed at identifying modifier genes that influence not only progeria and laminopathies but also other age-associated human diseases common in vertebrates.
Collapse
Affiliation(s)
- Eriko Koshimizu
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Graduate School of Marine Science and Technology, University of Marine Science and Technology, Tokyo, Japan
| | - Shintaro Imamura
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Qi
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jamal Toure
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Delgado M. Valdez
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jun-ichi Hanai
- Division of Nephrology, Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shuji Kishi
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bai Q, Burton EA. Zebrafish models of Tauopathy. Biochim Biophys Acta Mol Basis Dis 2010; 1812:353-63. [PMID: 20849952 DOI: 10.1016/j.bbadis.2010.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 09/08/2010] [Indexed: 01/06/2023]
Abstract
Tauopathies are a group of incurable neurodegenerative diseases, in which loss of neurons is accompanied by intracellular deposition of fibrillar material composed of hyperphosphorylated forms of the microtubule-associated protein Tau. A zebrafish model of Tauopathy could complement existing murine models by providing a platform for genetic and chemical screens, in order to identify novel therapeutic targets and compounds with disease-modifying potential. In addition, Tauopathy zebrafish would be useful for hypothesis-driven experiments, especially those exploiting the potential to deploy in vivo imaging modalities. Several considerations, including conservation of specialized neuronal and other cellular populations, and biochemical pathways implicated in disease pathogenesis, suggest that the zebrafish brain is an appropriate setting in which to model these complex disorders. Novel transgenic zebrafish lines expressing wild-type and mutant forms of human Tau in CNS neurons have recently been reported. These studies show evidence that human Tau undergoes disease-relevant changes in zebrafish neurons, including somato-dendritic relocalization, hyperphosphorylation and aggregation. In addition, preliminary evidence suggests that Tau transgene expression can precipitate neuronal dysfunction and death. These initial studies are encouraging that the zebrafish holds considerable promise as a model in which to study Tauopathies. Further studies are necessary to clarify the phenotypes of transgenic lines and to develop assays and models suitable for unbiased high-throughput screening approaches. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|
50
|
Transgene transmission in South American catfish (Rhamdia quelen) larvae by sperm-mediated gene transfer. J Biosci 2010; 35:39-47. [PMID: 20413908 DOI: 10.1007/s12038-010-0006-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The silver catfish (Rhamdia quelen) is an endemic American fish species. The sperm of each species has its own peculiarities and biological characteristics, which influence the success of mass DNA transfer methods. Our objective in this study was to evaluate different sperm-mediated gene transfer (SMGT) methods to obtain transgenic silver catfish. Different treatments for the incorporation of a foreign pEGFP plasmid group were used: (1) dehydrated/rehydrated (DR), (2) dehydrated/rehydrated/electroporated (DRE), (3) electroporated (E), (4) incubated with seminal plasma (INC); and (5) incubated in the absence of seminal plasma (INCSP). Sperm motility, time of activity duration (TAD), fertilization rate (FR), hatching rate (HR) and sperm morphology were also evaluated. The polymerase chain reaction (PCR) positivity rates for the presence of the transgene were: DRE 60%; DR 40%; E 25%; INC 5% and INCSP 25%. The rates of embryo EGFP expression were: DRE 63%; DR 44%; E 34%; INC 8% and INCSP 38%. The fertilization rate in the control and DRE treatments groups were higher than in the DR group, but the E,INC and INCSP treatment groups had the lowest rate. The hatching rates of the DRE, DR and control groups were higher than in the INCSP, INC and E treatment groups (P>0.05). There were no differences among the DRE and DR, E and DR, E and INCSP groups in expression and PCR positivity rates of enhanced green fluorescent protein (EGFP) in embryos. Scanning electron microscopy also did not show any change in sperm morphology among treatment groups. To the best of our knowledge, this is the first report on transgene transmission of exogenous DNA into silver catfish larvae through SMGT technology.
Collapse
|