1
|
Huang B, Fu S, Hao Y, Yeung CK, Zhang X, Li E, Xu X, Shao N, Xu RH. Developmental potency of human ES cell-derived mesenchymal stem cells revealed in mouse embryos following blastocyst injection. Cell Rep 2023; 42:113459. [PMID: 37988266 DOI: 10.1016/j.celrep.2023.113459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/26/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts. EMSCs survived well and penetrated both the inner cell mass and trophectoderm, correlating to the higher anti-apoptotic capability of EMSCs than hESCs. Injected EMSCs contributed to skeletal, dermal, and extraembryonic tissues in the resultant chimera and partially rescued skeletal defects in Sox9+/- mouse fetuses. Thus, this study provides evidence for the stemness and developmental capability of human MSCs through chimerization with the mouse blastocyst, serving as a model for studying human mesenchymal and skeletal development.
Collapse
Affiliation(s)
- Borong Huang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Siyi Fu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yanan Hao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheung Kwan Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaoling Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ningyi Shao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
2
|
Li E, Zhang Z, Jiang B, Yan L, Park JW, Xu RH. Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition. Int J Biol Sci 2018; 14:1901-1909. [PMID: 30443193 PMCID: PMC6231213 DOI: 10.7150/ijbs.25306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) have been derived from a variety of tissues, and cultured either in animal serum-containing (SC) or serum-free (SF) media. We have previously derived MSC from human embryonic stem cells via an intermediate trophoblast step (named EMSC), which also have immunosuppressive and therapeutic effects on animal models of autoimmune disease. To promote the clinical application of this new source of MSC, we report here EMSC derived and cultured in a SF medium MesenCult (SF-EMSC) in comparison with a SC medium (SC-EMSC). SF-EMSC derived in MesenCult also expressed typical MSC markers CD73, CD90, and CD105, and manifested multipotency to differentiate to osteocytes, chondrocytes, and adipocytes. Comparably, CD105+ cells reached 90% about one week slower in the SF than SC conditions, and the proliferation rate was slightly faster for SF-EMSC than SC-EMSC at later passages. Both SF- and SC-EMSC responded similarly to the inflammatory stimulus IFNγ. However, the inflammatory cytokines IL-6 and IL-8 were expressed much less in SF-EMSC than SC-EMSC. Furthermore, knockdown of P16INK4A in both SF- and SC-EMSC reduced replicative senescence. Together, our results suggest that EMSC can be generated in a complete SF condition, and SF-EMSC are largely similar to SC-EMSC. However, it takes longer time to derive EMSC in the SF than SC conditions, and the SF-EMSC proliferate faster at later passages and produce less of the inflammatory cytokines IL-6 and IL-8 than SC-EMSC. This study provides important information for production of clinically applicable EMSC.
Collapse
Affiliation(s)
- Enqin Li
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bin Jiang
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Li Yan
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jung Woo Park
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Centre of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
3
|
Yang J, Park JW, Zheng D, Xu RH. Universal Corneal Epithelial-Like Cells Derived from Human Embryonic Stem Cells for Cellularization of a Corneal Scaffold. Transl Vis Sci Technol 2018; 7:23. [PMID: 30323996 PMCID: PMC6181193 DOI: 10.1167/tvst.7.5.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose We generated universal corneal epithelial cells (CEC) from human embryonic stem cells (hESC) by genetically removing human leukocyte antigens (HLA) class I from the cell surface. Methods The serum-free, growth factor-free, and defined medium E6 was used to differentiate hESC to CEC. Decellularized murine corneas were recellularized with hESC-derived CEC. Using CRISPR/Cas9, β-2-microglobulin (B2M) was deleted in hESC to block the assembly of HLA class-I antigens on the cell surface to generate B2M−/− CEC. Results E6 alone was sufficient to allow hESC differentiation to CEC. A time-course analysis of the global gene expression of the differentiating cells indicates that the differentiation closely resembles the corneal development in vivo. The hESC-CEC were highly proliferative, and could form multilayer epithelium in decellularized murine cornea, retain its transparency, and form intact tight junctions on its surface. As reported before, B2M knockout led to the absence of HLA class-I on the cell surface of hESC and subsequently derived CEC following stimulation with inflammatory factors. Moreover, B2M−/− CEC, following transplantation into mouse eyes, caused less T-cell infiltration in the limbal region of the eye than the wild-type control. Conclusions CEC can be derived from hESC via a novel and simple protocol free of any proteins, hESC-CEC seeded on decellularized animal cornea form tight junctions and allow light transmittance, and B2M−/− CEC are hypoimmunogenic both in vitro and in vivo. Translational Relevance B2M−/− hESC-CEC can be an unlimited and universal therapy for corneal repair in patients of any HLA type.
Collapse
Affiliation(s)
- Juan Yang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
4
|
Xu Y, Luo X, Fang Z, Zheng X, Zeng Y, Zhu C, Gu J, Tang F, Hu Y, Hu G, Jin Y, Li H. Transcription coactivator Cited1 acts as an inducer of trophoblast-like state from mouse embryonic stem cells through the activation of BMP signaling. Cell Death Dis 2018; 9:924. [PMID: 30206204 PMCID: PMC6134011 DOI: 10.1038/s41419-018-0991-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Trophoblast lineages, precursors of the placenta, are essential for post-implantation embryo survival. However, the regulatory network of trophoblast development remains incompletely understood. Here, we report that Cited1, a transcription coactivator, is a robust inducer for trophoblast-like state from mouse embryonic stem cells (ESCs). Depletion of Cited1 in ESCs compromises the trophoblast lineage specification induced by BMP signaling. In contrast, overexpression of Cited1 in ESCs induces a trophoblast-like state with elevated expression of trophoblast marker genes in vitro and generation of trophoblastic tumors in vivo. Furthermore, global transcriptome profile analysis indicates that ectopic Cited1 activates a trophoblast-like transcriptional program in ESCs. Mechanistically, Cited1 interacts with Bmpr2 and Smad4 to activate the Cited1–Bmpr2–Smad1/5/8 axis in the cytoplasm and Cited1–Smad4–p300 complexes in the nucleus, respectively. Collectively, our results show that Cited1 plays an important role in regulating trophoblast lineage specification through activating the BMP signaling pathway.
Collapse
Affiliation(s)
- Yanli Xu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Xinlong Luo
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China.,KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200032, Shanghai, China
| | - Xiaofeng Zheng
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Yanwu Zeng
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Chaonan Zhu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Junjie Gu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Fan Tang
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Yanqin Hu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Ying Jin
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200032, Shanghai, China.
| | - Hui Li
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China.
| |
Collapse
|
5
|
Yan L, Jiang B, Li E, Wang X, Ling Q, Zheng D, Park JW, Chen X, Cheung E, Du X, Li Y, Cheng G, He E, Xu RH. Scalable Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in 3D. Int J Biol Sci 2018; 14:1196-1210. [PMID: 30123069 PMCID: PMC6097489 DOI: 10.7150/ijbs.25023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
Human embryonic stem cell (hESC) derived mesenchymal stem cells (EMSC) are efficacious in treating a series of autoimmune, inflammatory, and degenerative diseases in animal models. However, all the EMSC derivation methods reported so far rely on two-dimensional (2D) culture systems, which are inefficient, costive and difficult for large-scale production. HESC, as an unlimited source, can be successively propagated in spheroids. Here, we demonstrate that hESC spheroids can directly differentiate into MSC spheroids (EMSCSp) within 20 days in one vessel without passaging and the system is scalable to any desired size. EMSCSp can further differentiate into osteocytes and chondrocytes in spheres or demineralized bone matrix. EMSCSp also retains immune-modulatory effects in vitro and therapeutic effects on two mouse models of colitis after dissociation. Compared to EMSC differentiated in monolayer, EMSCSp-derived cells have faster proliferation and higher yield and develop less apoptosis and slower senescence. Thus, the 3D differentiation system allows simple, cost-effective, and scalable production of high-quality EMSC and subsequently bone and cartilage tissues for therapeutic application.
Collapse
Affiliation(s)
- Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qinjie Ling
- Department of Orthopedics, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejin Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jung Woo Park
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edwin Cheung
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangzhou, Guangdong, China
| | - Yingcui Li
- Department of Biology, University of Hartford, West Hartford, Connecticut, USA
| | - Gregory Cheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Erxing He
- Department of Orthopedics, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
6
|
Teotia P, Sharma S, Airan B, Mohanty S. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders. Indian J Med Res 2018; 144:838-851. [PMID: 28474621 PMCID: PMC5433277 DOI: 10.4103/ijmr.ijmr_424_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & OBJECTIVES Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. METHODS KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. RESULTS In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. INTERPRETATION & CONCLUSIONS The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Collapse
Affiliation(s)
- Pooja Teotia
- Stem Cell Facility, Cardio Thoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Airan
- Cardio Thoracic Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, Cardio Thoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Jiang B, Yan L, Miao Z, Li E, Wong KH, Xu RH. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials 2017; 133:275-286. [PMID: 28460350 DOI: 10.1016/j.biomaterials.2017.03.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022]
Abstract
Human stem cells are vulnerable to unfavorable conditions, and their transportation relies on costly and inconvenient cryopreservation. We report here that human mesenchymal stem cells (MSC) in spheroids survived ambient conditions (AC) many days longer than in monolayer. Under AC, the viability of MSC in spheroids remained >90% even after seven days, whereas MSC in monolayer mostly died fast. AC-exposed MSC spheroids, after recovery under normal monolayer culture conditions with controlled carbon dioxide and humidity contents, resumed typical morphology and proliferation, and retained differentiating and immunosuppressive capabilities. RNA-sequencing and other assays demonstrate that reduced cell metabolism and proliferation correlates to the enhanced survival of AC-exposed MSC in spheroids versus monolayer. Moreover, AC-exposed MSC, when injected as either single cells or spheroids, retained therapeutic effects in vivo in mouse colitis models. Spheroidal formation also prolonged survival and sustained pluripotency of human embryonic stem cells kept under AC. Therefore, this work offers an alternative and relatively simple method termed spheropreservation versus the conventional method cryopreservation. It shall remarkably simplify long-distance transportation of stem cells of these and probably also other types within temperature-mild areas, and facilitate therapeutic application of MSC as spheroids without further processing.
Collapse
Affiliation(s)
- Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
8
|
Wang X, Lazorchak AS, Song L, Li E, Zhang Z, Jiang B, Xu RH. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. Stem Cells 2015; 34:380-91. [DOI: 10.1002/stem.2242] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaofang Wang
- ImStem Biotechnology Inc.; Farmington Conneticut USA
| | | | - Li Song
- ImStem Biotechnology Inc.; Farmington Conneticut USA
| | - Enqin Li
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Zhenwu Zhang
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Bin Jiang
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Ren-He Xu
- ImStem Biotechnology Inc.; Farmington Conneticut USA
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| |
Collapse
|
9
|
Sarkar P, Randall SM, Collier TS, Nero A, Russell TA, Muddiman DC, Rao BM. Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem 2015; 290:8834-48. [PMID: 25670856 DOI: 10.1074/jbc.m114.620641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs.
Collapse
Affiliation(s)
| | - Shan M Randall
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Timothy S Collier
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Anthony Nero
- From the Department of Chemical and Biomolecular Engineering
| | - Teal A Russell
- the Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Balaji M Rao
- From the Department of Chemical and Biomolecular Engineering,
| |
Collapse
|
10
|
Tissue factor expression and methylation regulation in differentiation of embryonic stem cells into trophoblast. ASIAN PAC J TROP MED 2014; 7:557-61. [DOI: 10.1016/s1995-7645(14)60093-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/15/2014] [Accepted: 06/15/2014] [Indexed: 11/22/2022] Open
|
11
|
Wang J, Park JW, Drissi H, Wang X, Xu RH. Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells. J Biol Chem 2013; 289:2384-95. [PMID: 24318875 DOI: 10.1074/jbc.m113.535799] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been recently reported that the regulatory circuitry formed by OCT4, miR-302, and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C, a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs, directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression, decreased BMP signaling, and enhanced TGFβ signaling. JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown, but not the control, cells within 3 days, accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together, our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.
Collapse
Affiliation(s)
- Jianle Wang
- From the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | | | | | | | | |
Collapse
|
12
|
Golos TG, Giakoumopoulos M, Gerami-Naini B. Review: Trophoblast differentiation from human embryonic stem cells. Placenta 2013; 34 Suppl:S56-61. [PMID: 23261342 PMCID: PMC3586288 DOI: 10.1016/j.placenta.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022]
Abstract
The human embryo is not a feasible experimental system for the detailed study of implantation and early placentation, so surrogate systems have been sought for investigating the determination of the trophectoderm lineage, its differentiation into trophoblasts of the early implantation site, and subsequently the morphogenesis of the definitive placenta. An alternative to the use of embryos for studying early placental development was revealed by work with human embryonic stem cells (hESC), demonstrating BMP2/4-stimulated trophoblast differentiation, and spontaneous formation from embryoid bodies (EBs). These cells display a trophoblastic transcriptome, as well as a placental protein and steroid hormone secretory profile, and invasive and chemotactic behavior resembling human placental trophoblasts. With EB-derived trophoblasts, two-dimensional and three-dimensional paradigms and other modifications of the culture environment, including extracellular matrix and aggregation with placental fibroblasts, impact on trophoblast differentiation. Recent studies have questioned the identity of the trophoblasts directed by BMP treatment of hESC, and careful attention to culture conditions is needed to interpret different results among research groups. Although the precise placental counterpart of the hESC-derived trophoblast remains unclear, hESC-derived trophoblasts remain an intriguing platform for modeling early implantation.
Collapse
Affiliation(s)
- T G Golos
- Wisconsin National Primate Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53715-1299, USA.
| | | | | |
Collapse
|
13
|
Tiruthani K, Sarkar P, Rao B. Trophoblast differentiation of human embryonic stem cells. Biotechnol J 2013; 8:421-33. [PMID: 23325630 DOI: 10.1002/biot.201200203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 11/08/2022]
Abstract
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27695, USA
| | | | | |
Collapse
|
14
|
Ezashi T, Telugu BPVL, Roberts RM. Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell Tissue Res 2012; 349:809-24. [PMID: 22427062 PMCID: PMC3429771 DOI: 10.1007/s00441-012-1371-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
This review focuses on a now well-established model for generating cells of the trophoblast (TB) lineage by treating human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) with the growth factor BMP4. We first discuss the opposing roles of FGF2 and BMP4 in directing TB formation and the need to exclude the former from the growth medium to minimize the co-induction of mesoderm and endoderm. Under these conditions, there is up-regulation of several transcription factors implicated in TB lineage emergence within 3 h of BMP4 exposure and, over a period of days and especially under a high O(2) gas atmosphere, gradual appearance of cell types carrying markers for more differentiated TB cell types, including extravillous TB and syncytioTB. We describe the potential value of including low molecular weight pharmaceutical agents that block activin A (INHBA) and FGF2 signaling to support BMP4-directed differentiation. We contend that the weight of available evidence supports the contention that BMP4 converts human ESC and iPSC of the so-called epiblast type unidirectionally to TB. We also consider the argument that BMP4 treatment of human ESC in the absence of exogenous FGF2 leads only to the emergence of mesoderm derivatives to be seriously flawed. Instead, we propose that, when signaling networks supporting pluripotency ESC or iPSC become unsustainable and when specification towards extra-embryonic mesoderm and endoderm are rendered inoperative, TB emerges as a major default state to pluripotency.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Bhanu Prakash V. L. Telugu
- Department of Animal and Avian Sciences, College Park, MD 20742 & Animal Biosciences and Biotechnology Laboratory, ANRI, ARS, USDA, University of Maryland, Beltsville, MD 20705 USA
| | - R. Michael Roberts
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
- 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310 USA
| |
Collapse
|
15
|
Fonseca BM, Correia-da-Silva G, Teixeira NA. The rat as an animal model for fetoplacental development: a reappraisal of the post-implantation period. Reprod Biol 2012; 12:97-118. [DOI: 10.1016/s1642-431x(12)60080-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Erb TM, Schneider C, Mucko SE, Sanfilippo JS, Lowry NC, Desai MN, Mangoubi RS, Leuba SH, Sammak PJ. Paracrine and epigenetic control of trophectoderm differentiation from human embryonic stem cells: the role of bone morphogenic protein 4 and histone deacetylases. Stem Cells Dev 2011; 20:1601-14. [PMID: 21204619 DOI: 10.1089/scd.2010.0281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of paracrine and epigenetic control of trophectoderm (TE) differentiation is limited by available models of preimplantation human development. Simple, defined media for selective TE differentiation of human embryonic stem cells (hESCs) were developed, enabling mechanistic studies of early placental development. Paracrine requirements of preimplantation human development were evaluated with hESCs by measuring lineage-specific transcription factor expression levels in single cells and morphological transformation in response to selected paracrine and epigenetic modulators. Bone morphogenic protein 4 (BMP4) addition to feeder-free pluripotent stem cells on matrigel frequently formed CDX2-positive TE. However, BMP4 or activin A inhibition alone also produced a mix of mesoderm and extraembryonic endoderm under these conditions. Further, BMP4 failed to form TE from adherent hESC maintained in standard feeder-dependent monolayers. Given that the efficiency and selectivity of BMP4-induced TE depended on medium components, we developed a basal medium containing insulin and heparin. In this medium, BMP4 induction of TE was dose dependent and with activin A inhibition by SB431542 (SB), approached 100% of cells. This paracrine stimulation of pluripotent cells transformed colony morphology from a cuboidal to squamous epithelium quantitatively on day 3, and produced significant multinucleated syncytiotrophoblasts by day 8. Addition of trichostatin A, a histone deacetylase (HDAC) inhibitor, reduced HDAC3, histone H3K9 methylation, and slowed differentiation in a dose-dependent manner. Modulators of BMP4- or HDAC-dependent signaling might adversely influence the timing and viability of early blastocyst developed in vitro. Since blastocyst development is synchronized to uterine receptivity, epigenetic regulators of TE differentiation might adversely affect implantation in vivo.
Collapse
Affiliation(s)
- Teresa M Erb
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Hospital of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|