1
|
Knowles H, Santucci N, Studdert J, Goh HN, Kaufman-Francis K, Salehin N, Tam PPL, Osteil P. Differential impact of TGFβ/SMAD signaling activity elicited by Activin A and Nodal on endoderm differentiation of epiblast stem cells. Genesis 2022; 60:e23466. [PMID: 35104045 DOI: 10.1002/dvg.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
Allocation of cells to an endodermal fate in the gastrulating embryo is driven by Nodal signaling and consequent activation of TGFβ pathway. In vitro methodologies striving to recapitulate the process of endoderm differentiation, however, use TGFβ family member Activin in place of Nodal. This is despite Activin not known to have an in vivo role in endoderm differentiation. In this study, five epiblast stem cell lines were subjected to directed differentiation using both Activin A and Nodal to induce endodermal fate. A reporter line harboring endoderm markers FoxA2 and Sox17 was further analyzed for TGFβ pathway activation and WNT response. We demonstrated that Activin A-treated cells remain more primitive streak-like when compared to Nodal-treated cells that have a molecular profile suggestive of more advanced differentiation. Activin A elicited a robust TGFβ/SMAD activity, enhanced WNT signaling activity and promoted the generation of DE precursors. Nodal treatment resulted in lower TGFβ/SMAD activity, and a weaker, sustained WNT response, and ultimately failed to upregulate endoderm markers. This is despite signaling response resembling more closely the activity seen in vivo. These findings emphasize the importance of understanding the downstream activities of Activin A and Nodal signaling in directing in vitro endoderm differentiation of primed-state epiblast stem cells.
Collapse
Affiliation(s)
- Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Joshua Studdert
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Hwee Ngee Goh
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Keren Kaufman-Francis
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.,Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Andergassen D, Smith ZD, Kretzmer H, Rinn JL, Meissner A. Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Dev Cell 2021; 56:2995-3005.e4. [PMID: 34752748 DOI: 10.1016/j.devcel.2021.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.
Collapse
Affiliation(s)
- Daniel Andergassen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich 80802, Germany
| | - Zachary D Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder 80303, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| |
Collapse
|
3
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
4
|
Garbutt TA, Konganti K, Konneker T, Hillhouse A, Phelps D, Jones A, Aylor D, Threadgill DW. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 2020; 31:263-286. [PMID: 33015751 PMCID: PMC9113365 DOI: 10.1007/s00335-020-09849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.
Collapse
Affiliation(s)
- Tiffany A Garbutt
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Konneker
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Drake Phelps
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexis Jones
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Aylor
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Di Stefano B, Luo EC, Haggerty C, Aigner S, Charlton J, Brumbaugh J, Ji F, Rabano Jiménez I, Clowers KJ, Huebner AJ, Clement K, Lipchina I, de Kort MAC, Anselmo A, Pulice J, Gerli MFM, Gu H, Gygi SP, Sadreyev RI, Meissner A, Yeo GW, Hochedlinger K. The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. Cell Stem Cell 2019; 25:622-638.e13. [PMID: 31588046 DOI: 10.1016/j.stem.2019.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
Abstract
Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, "hyper-pluripotent" state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency.
Collapse
Affiliation(s)
- Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chuck Haggerty
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jocelyn Charlton
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Justin Brumbaugh
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Inés Rabano Jiménez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Kendell Clement
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Inna Lipchina
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Marit A C de Kort
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - John Pulice
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Mattia F M Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Hongcang Gu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 2017; 549:543-547. [PMID: 28959968 PMCID: PMC5789792 DOI: 10.1038/nature23891] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
In mammals, the canonical somatic DNA methylation landscape is established upon specification of the embryo proper and subsequently disrupted within many cancer types. However, the underlying mechanisms that direct this genome-scale transformation remain elusive, with no clear model for its systematic acquisition or potential developmental utility. Here, we analysed global remethylation from the mouse preimplantation embryo into the early epiblast and extraembryonic ectoderm. We show that these two states acquire highly divergent genomic distributions with substantial disruption of bimodal, CpG density-dependent methylation in the placental progenitor. The extraembryonic epigenome includes specific de novo methylation at hundreds of embryonically protected CpG island promoters, particularly those that are associated with key developmental regulators and are orthologously methylated across most human cancer types. Our data suggest that the evolutionary innovation of extraembryonic tissues may have required co-option of DNA methylation-based suppression as an alternative to regulation by Polycomb-group proteins, which coordinate embryonic germ-layer formation in response to extraembryonic cues. Moreover, we establish that this decision is made deterministically, downstream of promiscuously used-and frequently oncogenic-signalling pathways, via a novel combination of epigenetic cofactors. Methylation of developmental gene promoters during tumorigenesis may therefore reflect the misappropriation of an innate trajectory and the spontaneous reacquisition of a latent, developmentally encoded epigenetic landscape.
Collapse
|
7
|
Zhang H, Dou Y. Reprogram Murine Epiblast Stem Cells by Epigenetic Inhibitors. Bio Protoc 2017; 7:e2168. [PMID: 29082293 DOI: 10.21769/bioprotoc.2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pluripotent stem cells in the naïve state are highly useful in regenerative medicine and tissue engineering. A robust reprogramming of the primed murine Epiblast Stem Cells (EpiSCs) to naïve pluripotency is feasible via chemical-only approach. This protocol described a method to reprogram murine EpiSCs by MM-401 treatment, which blocks histone H3K4 methylation by MLL1/KMT2A.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
8
|
Rugg-Gunn P. Derivation and Culture of Epiblast Stem Cell (EpiSC) Lines. Cold Spring Harb Protoc 2017; 2017:2017/1/pdb.prot093971. [PMID: 28049783 DOI: 10.1101/pdb.prot093971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This protocol describes the derivation and culture of epiblast stem cells (EpiSCs) from early postimplantation epiblasts. EpiSCs can be maintained in an undifferentiated state and retain the ability to generate tissues from all three germ layers in vitro and to form teratomas in vivo. However, they seem unable to form chimeras. Whether this is due to differences in developmental status or a cellular incompatibility (e.g., cell adhesion) between EpiSCs and the host inner cell mass (ICM) is currently unclear. Other differences between mouse embryonic stem (ES) cells and EpiSCs also exist, including gene expression profiles and different growth factor requirements for self-renewal. Thus, EpiSCs provide an important in vitro model for studying the establishment and maintenance of pluripotency in postimplantation epiblast tissues.
Collapse
|
9
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
10
|
Chen G, Schell JP, Benitez JA, Petropoulos S, Yilmaz M, Reinius B, Alekseenko Z, Shi L, Hedlund E, Lanner F, Sandberg R, Deng Q. Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation. Genome Res 2016; 26:1342-1354. [PMID: 27486082 PMCID: PMC5052059 DOI: 10.1101/gr.201954.115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.
Collapse
Affiliation(s)
- Geng Chen
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Julio Aguila Benitez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Marlene Yilmaz
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Leming Shi
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Basilicata MF, Frank M, Solter D, Brabletz T, Stemmler MP. Inappropriate cadherin switching in the mouse epiblast compromises proper signaling between the epiblast and the extraembryonic ectoderm during gastrulation. Sci Rep 2016; 6:26562. [PMID: 27217206 PMCID: PMC4877576 DOI: 10.1038/srep26562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Cadherin switching from E-cadherin (E-cad) to N-cadherin (N-cad) is a key step of the epithelial-mesenchymal transition (EMT) processes that occurs during gastrulation and cancer progression. We investigate whether cadherins actively participate in progression of EMT by crosstalk to signaling pathways. We apply ectopic cadherin switching before the onset of mouse gastrulation. Mutants with an induced E-cad to N-cad switch (Ncadki) die around E8.5. Severe morphological changes including a small epiblast, a rounded shape, an enlarged extra-embryonic compartment and lack of the amnion, combined with a massive cell detachment from the ectodermal layer are detected. In contrast to epiblast-specific E-cad depletion, gastrulation is initiated in Ncadki embryos, but patterning of the germ-layers is abnormal. An overall reduction in BMP signaling, expansion of Nodal and Eomes domains, combined with reduced Wnt3a expression at the primitive streak is observed. Our results show that in addition to cadherin-dependent adhesion, proper embryonic development requires E-cad mediated signaling function to facilitate a feedback loop that stabilizes Bmp4 and Bmp2 expression in the extraembryonic ectoderm and sustained downstream activity in the epiblast. Moreover, for proper morphogenesis a fine-tuned spatio-temporal control of cadherin switching is required during EMT at gastrulation to avoid premature cell detachment and migration.
Collapse
Affiliation(s)
- M Felicia Basilicata
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Marcus Frank
- Electron Microscopy Center, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Davor Solter
- Epithelial Epigenetics and Development Lab, Institute of Medical Biology, A*STAR, Singapore
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.,Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Zhao ZA, Yu Y, Ma HX, Wang XX, Lu X, Zhai Y, Zhang X, Wang H, Li L. The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 2016; 5:rsob.150092. [PMID: 26269429 PMCID: PMC4554925 DOI: 10.1098/rsob.150092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215000, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huai-Xiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
13
|
Evolution and functions of Oct4 homologs in non-mammalian vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:770-9. [PMID: 27058398 DOI: 10.1016/j.bbagrm.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
PouV class transcription factor Oct4/Pou5f1 is a central regulator of indefinite pluripotency in mammalian embryonic stem cells (ESCs) but also participates in cell lineage specification in mouse embryos and in differentiating cell cultures. The molecular basis for this versatility, which is shared between Oct4 and its non-mammalian homologs Pou5f1 and Pou5f3, is not yet completely understood. Here, I review the current understanding of the evolution of PouV class transcription factors and discuss equivalent and diverse roles of Oct4 homologs in pluripotency, differentiation, and cell behavior in different vertebrate embryos. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
14
|
Boward B, Wu T, Dalton S. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells 2016; 34:1427-36. [PMID: 26889666 DOI: 10.1002/stem.2345] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
Abstract
Pluripotent stem cells (PSCs) proliferate rapidly with a characteristic cell cycle structure consisting of short G1- and G2-gap phases. This applies broadly to PSCs of peri-implantation stage embryos, cultures of embryonic stem cells, induced pluripotent stem cells, and embryonal carcinoma cells. During the early stages of PSC differentiation however, cell division times increase as a consequence of cell cycle remodeling. Most notably, this is indicated by elongation of the G1-phase. Observations linking changes in the cell cycle with exit from pluripotency have raised questions about the role of cell cycle control in maintenance of the pluripotent state. Until recently however, this has been a difficult question to address because of limitations associated with experimental tools. Recent studies now show that pluripotency and cell cycle regulatory networks are intertwined and that cell cycle control mechanisms are an integral, mechanistic part of the PSC state. Studies in embryonal carcinoma, some 30 years ago, first suggested that pluripotent cells initiate differentiation when in the G1-phase. More recently, a molecular "priming" mechanism has been proposed to explain these observations in human embryonic stem cells. Complexity in this area has been increased by the realization that pluripotent cells exist in multiple developmental states and that in addition to each having their own characteristic gene expression and epigenetic signatures, they potentially have alternate modes of cell cycle regulation. This review will summarize current knowledge in these areas and will highlight important aspects of interconnections between the cell cycle, self-renewal, pluripotency, and cell fate decisions. Stem Cells 2016;34:1427-1436.
Collapse
Affiliation(s)
- Ben Boward
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| | - Tianming Wu
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Onichtchouk D, Driever W. Zygotic Genome Activators, Developmental Timing, and Pluripotency. Curr Top Dev Biol 2016; 116:273-97. [PMID: 26970624 DOI: 10.1016/bs.ctdb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transcription factors Pou5f1, Sox2, and Nanog are central regulators of pluripotency in mammalian ES and iPS cells. In vertebrate embryos, Pou5f1/3, SoxB1, and Nanog control zygotic genome activation and participate in lineage decisions. We review the current knowledge of the roles of these genes in developing vertebrate embryos from fish to mammals and suggest a model for pluripotency gene regulatory network functions in early development.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| | - Wolfgang Driever
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, and Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
16
|
Benner B, Martorell AJ, Mahadevan P, Najm FJ, Tesar PJ, Freundt EC. Depletion of Olig2 in oligodendrocyte progenitor cells infected by Theiler's murine encephalomyelitis virus. J Neurovirol 2015; 22:336-48. [PMID: 26631080 DOI: 10.1007/s13365-015-0402-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infects the central nervous system of mice and causes a demyelinating disease that is a model for multiple sclerosis. During the chronic phase of the disease, TMEV persists in oligodendrocytes and macrophages. Lack of remyelination has been attributed to insufficient proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), but the molecular mechanisms remain unknown. Here, we employed pluripotent stem cell technologies to generate pure populations of mouse OPCs to study the temporal and molecular effects of TMEV infection. Global transcriptome analysis of RNA sequencing data revealed that TMEV infection of OPCs caused significant up-regulation of 1926 genes, whereas 1853 genes were significantly down-regulated compared to uninfected cells. Pathway analysis revealed that TMEV disrupted many genes required for OPC growth and maturation. Down-regulation of Olig2, a transcription factor necessary for OPC proliferation, was confirmed by real-time PCR, immunofluorescence microscopy, and western blot analysis. Depletion of Olig2 was not found to be specific to viral strain and did not require expression of the leader (L) protein, which is a multifunctional protein important for persistence, modulation of gene expression, and cell death. These data suggest that direct infection of OPCs by TMEV may inhibit remyelination during the chronic phase of TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Bayleigh Benner
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | | | | | - Fadi J Najm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA.
| |
Collapse
|
17
|
Factor DC, Corradin O, Zentner GE, Saiakhova A, Song L, Chenoweth JG, McKay RD, Crawford GE, Scacheri PC, Tesar PJ. Epigenomic comparison reveals activation of "seed" enhancers during transition from naive to primed pluripotency. Cell Stem Cell 2015; 14:854-63. [PMID: 24905169 DOI: 10.1016/j.stem.2014.05.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
Naive mouse embryonic stem cells (mESCs) and primed epiblast stem cells (mEpiSCs) represent successive snapshots of pluripotency during embryogenesis. Using transcriptomic and epigenomic mapping we show that a small fraction of transcripts are differentially expressed between mESCs and mEpiSCs and that these genes show expected changes in chromatin at their promoters and enhancers. Unexpectedly, the cis-regulatory circuitry of genes that are expressed at identical levels between these cell states also differs dramatically. In mESCs, these genes are associated with dominant proximal enhancers and dormant distal enhancers, which we term seed enhancers. In mEpiSCs, the naive-dominant enhancers are lost, and the seed enhancers take up primary transcriptional control. Seed enhancers have increased sequence conservation and show preferential usage in downstream somatic tissues, often expanding into super enhancers. We propose that seed enhancers ensure proper enhancer utilization and transcriptional fidelity as mammalian cells transition from naive pluripotency to a somatic regulatory program.
Collapse
Affiliation(s)
- Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Olivia Corradin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Gabriel E Zentner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alina Saiakhova
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lingyun Song
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27709, USA
| | - Josh G Chenoweth
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Ronald D McKay
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Gregory E Crawford
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27709, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 2015; 17:113-22. [PMID: 25599390 PMCID: PMC4406239 DOI: 10.1038/ncb3091] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022]
Abstract
Primary cilia are required for vertebrate cells to respond to specific intercellular signals. Here we define when and where primary cilia appear in the mouse embryo using a transgenic line that expresses ARL13B-mCherry in cilia and Centrin 2-GFP in centrosomes. Primary cilia first appear on cells of the epiblast at E6.0 and are subsequently present on all derivatives of the epiblast. In contrast, extraembryonic cells of the visceral endoderm and trophectoderm lineages have centrosomes but no cilia. Stem cell lines derived from embryonic lineages recapitulate the in vivo pattern: epiblast stem cells are ciliated, whereas trophoblast stem cells and extraembryonic endoderm (XEN) stem cells lack cilia. Basal bodies in XEN cells are mature and can form cilia when the AURKA-HDAC6 cilium disassembly pathway is inhibited. The lineage-dependent distribution of cilia is stable throughout much of gestation, defining which cells in the placenta and yolk sac are able to respond to Hedgehog ligands.
Collapse
Affiliation(s)
- Fiona K Bangs
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Nadine Schrode
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue New York, New York 10065, USA
| |
Collapse
|
19
|
DNA methylation dynamics of the human preimplantation embryo. Nature 2014; 511:611-5. [PMID: 25079558 PMCID: PMC4178976 DOI: 10.1038/nature13581] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
Abstract
In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.
Collapse
|
20
|
Muthusamy T, Mukherjee O, Menon R, Megha PB, Panicker MM. A method to identify and isolate pluripotent human stem cells and mouse epiblast stem cells using lipid body-associated retinyl ester fluorescence. Stem Cell Reports 2014; 3:169-84. [PMID: 25068130 PMCID: PMC4110788 DOI: 10.1016/j.stemcr.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 01/03/2023] Open
Abstract
We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. Human pluripotent stem cells exhibit a characteristic blue fluorescence It arises from the sequestration of retinyl esters in cytoplasmic lipid bodies It is associated with pluripotency and allows for easy high throughput propagation It marks cells of primed or epiblast-like state and is absent in naive cells
Collapse
Affiliation(s)
| | - Odity Mukherjee
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Radhika Menon
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - P B Megha
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | | |
Collapse
|
21
|
Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 2014; 4:2403. [PMID: 23985566 DOI: 10.1038/ncomms3403] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022] Open
Abstract
Wnt/β-catenin signalling has a variety of roles in regulating stem cell fates. Its specific role in mouse epiblast stem cell self-renewal, however, remains poorly understood. Here we show that Wnt/β-catenin functions in both self-renewal and differentiation in mouse epiblast stem cells. Stabilization and nuclear translocation of β-catenin and its subsequent binding to T-cell factors induces differentiation. Conversely, retention of stabilized β-catenin in the cytoplasm maintains self-renewal. Cytoplasmic retention of β-catenin is effected by stabilization of Axin2, a downstream target of β-catenin, or by genetic modifications to β-catenin that prevent its nuclear translocation. We also find that human embryonic stem cell and mouse epiblast stem cell fates are regulated by β-catenin through similar mechanisms. Our results elucidate a new role for β-catenin in stem cell self-renewal that is independent of its transcriptional activity and will have broad implications in understanding the molecular regulation of stem cell fate.
Collapse
|
22
|
Generation and characterization of epiblast stem cells from blastocyst-stage mouse embryos. Methods Mol Biol 2014; 1074:1-13. [PMID: 23975801 DOI: 10.1007/978-1-62703-628-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mouse epiblast stem cells (EpiSCs) are pluripotent embryonic cells that can be used to interrogate developmental transitions that occur during gastrulation. EpiSCs can also be robustly differentiated into functional somatic and germ cell derivatives making them a useful tool for studying development and regenerative medicine. Typically, mouse EpiSCs are isolated from the early postimplantation epiblast around 5.5 days post coitum (dpc). This chapter describes the methods for isolation of mouse EpiSCs from preimplantation blastocyst-stage mouse embryos (3.5 dpc). This technique enables the routine ability to derive EpiSC lines as it is much less labor intensive than isolation of EpiSCs from the postimplantation epiblast. We also detail relevant assays used to characterize new EpiSC lines and distinguish them from mouse embryonic stem cells.
Collapse
|
23
|
Sumi T, Oki S, Kitajima K, Meno C. Epiblast ground state is controlled by canonical Wnt/β-catenin signaling in the postimplantation mouse embryo and epiblast stem cells. PLoS One 2013; 8:e63378. [PMID: 23691040 PMCID: PMC3653965 DOI: 10.1371/journal.pone.0063378] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 12/30/2022] Open
Abstract
Epiblast stem cells (EpiSCs) are primed pluripotent stem cells and can be derived from postimplantation mouse embryos. We now show that the absence of canonical Wnt/β-catenin signaling is essential for maintenance of the undifferentiated state in mouse EpiSCs and in the epiblast of mouse embryos. Attenuation of Wnt signaling with the small-molecule inhibitor XAV939 or deletion of the β-catenin gene blocked spontaneous differentiation of EpiSCs toward mesoderm and enhanced the expression of pluripotency factor genes, allowing propagation of EpiSCs as a homogeneous population. EpiSCs were efficiently established and propagated from single epiblast cells in the presence of both XAV939 and the Rho kinase (ROCK) inhibitor Y27632. Cell transplantation revealed that EpiSCs were able to contribute to primordial germ cells and descendants of all three germ layers in a host embryo, suggesting that they maintained pluripotency, even after prolonged culture with XAV939. Such an improvement in the homogeneity of pluripotency achieved with the use of a Wnt inhibitor should prove advantageous for manipulation of primed pluripotent stem cells.
Collapse
Affiliation(s)
- Tomoyuki Sumi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kitajima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
24
|
Minkovsky A, Barakat TS, Sellami N, Chin MH, Gunhanlar N, Gribnau J, Plath K. The pluripotency factor-bound intron 1 of Xist is dispensable for X chromosome inactivation and reactivation in vitro and in vivo. Cell Rep 2013; 3:905-18. [PMID: 23523354 DOI: 10.1016/j.celrep.2013.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
X chromosome inactivation (XCI) is a dynamically regulated developmental process with inactivation and reactivation accompanying the loss and gain of pluripotency, respectively. A functional relationship between pluripotency and lack of XCI has been suggested, whereby pluripotency transcription factors repress the master regulator of XCI, the noncoding transcript Xist, by binding to its first intron (intron 1). To test this model, we have generated intron 1 mutant embryonic stem cells (ESCs) and two independent mouse models. We found that Xist's repression in ESCs, its transcriptional upregulation upon differentiation, and its silencing upon reprogramming to pluripotency are not dependent on intron 1. Although we observed subtle effects of intron 1 deletion on the randomness of XCI and in the absence of the antisense transcript Tsix in differentiating ESCs, these have little relevance in vivo because mutant mice do not deviate from Mendelian ratios of allele transmission. Altogether, our findings demonstrate that intron 1 is dispensable for the developmental dynamics of Xist expression.
Collapse
Affiliation(s)
- Alissa Minkovsky
- Department of Biological Chemistry, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Song J, Saha S, Gokulrangan G, Tesar PJ, Ewing RM. DNA and chromatin modification networks distinguish stem cell pluripotent ground states. Mol Cell Proteomics 2012; 11:1036-47. [PMID: 22822199 DOI: 10.1074/mcp.m111.011114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates.
Collapse
Affiliation(s)
- Jing Song
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
26
|
Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ. Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods 2011; 8:957-62. [PMID: 21946668 PMCID: PMC3400969 DOI: 10.1038/nmeth.1712] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
Abstract
Myelin-related disorders such as multiple sclerosis and leukodystrophies, for which restoration of oligodendrocyte function would be an effective treatment, are poised to benefit greatly from stem cell biology. Progress in myelin repair has been constrained by difficulties in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs, but current differentiation strategies are poorly reproducible and generate heterogenous populations of cells. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through defined developmental transitions into a pure population of highly expandable OPCs in 10 d. These OPCs robustly differentiate into myelinating oligodendrocytes in vitro and in vivo. Our results demonstrate that mouse pluripotent stem cells provide a pure population of myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development and drug screening.
Collapse
Affiliation(s)
- Fadi J. Najm
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Anita Zaremba
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew V. Caprariello
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shreya Nayak
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Eric C. Freundt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Peter C. Scacheri
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert H. Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Paul J. Tesar
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- New York Stem Cell Foundation, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, Murphy KM. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 2011; 29:764-76. [PMID: 21394833 PMCID: PMC3339404 DOI: 10.1002/stem.628] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reprogramming of somatic cells to inducible pluripotent stem cells requires a mesenchymal-to-epithelial transition. While differentiating ESCs can undergo the reverse process or epithelial-to-mesenchymal transition (EMT), little is known about the role of EMT in ESC differentiation and fate commitment. Here, we show that Snail homolog 1 (Snail) is expressed during ESC differentiation and is capable of inducing EMT on day 2 of ESC differentiation. Induction of EMT by Snail promotes mesoderm commitment while repressing markers of the primitive ectoderm and epiblast. Snail's impact on differentiation can be partly explained through its regulation of a number of ESC-associated microRNAs, including the microRNA-200 (miR-200) family. The miR-200 family is normally expressed in ESCs but is downregulated in a Wnt-dependent manner during EMT. Maintenance of miR-200 expression stalls differentiating ESCs at the epiblast-like stem cell (EpiSC) stage. Consistent with a role for activin in maintaining the EpiSC state, we find that inhibition of activin signaling decreases miR-200 expression and allows EMT to proceed with a bias toward neuroectoderm commitment. Furthermore, miR-200 requires activin to efficiently maintain cells at the epiblast stage. Together, these findings demonstrate that Snail and miR-200 act in opposition to regulate EMT and exit from the EpiSC stage toward induction of germ layer fates. By modulating expression levels of Snail, activin, and miR-200, we are able to control the order in which cells undergo EMT and transition out of the EpiSC state. Stem Cells 2011;29:764–776
Collapse
Affiliation(s)
- Jennifer G Gill
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|