1
|
Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022; 163:6413684. [PMID: 34718504 PMCID: PMC8667859 DOI: 10.1210/endocr/bqab225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
- Correspondence: Vasantha Padmanabhan, PhD, MS, Department of Pediatrics, University of Michigan, 7510 MSRB1, 1150 W Medical Center Dr, Ann Arbor, MI 48019-5718, USA.
| |
Collapse
|
2
|
Puttabyatappa M, Ciarelli JN, Chatoff AG, Padmanabhan V. Developmental programming: Metabolic tissue-specific changes in endoplasmic reticulum stress, mitochondrial oxidative and telomere length status induced by prenatal testosterone excess in the female sheep. Mol Cell Endocrinol 2021; 526:111207. [PMID: 33607270 PMCID: PMC8005473 DOI: 10.1016/j.mce.2021.111207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Prenatal testosterone (T) excess-induced metabolic dysfunctions involve tissue specific changes in insulin sensitivity with insulin resistant, oxidative and lipotoxic state in liver/muscle and insulin sensitive but inflammatory and oxidative state in visceral adipose tissues (VAT). We hypothesized that mitochondrial dysfunction, endoplasmic reticulum (ER) stress and premature cellular senescence are contributors to the tissue-specific changes in insulin sensitivity. Markers of mitochondrial number, function, and oxidative phosphorylation (OxPhos), ER stress and cellular senescence (telomere length) were assessed in liver, muscle and 4 adipose (VAT, subcutaneous [SAT], epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep at 21 months of age. Prenatal T treatment led to: (a) reduction in mitochondrial number and OxPhos complexes and increase in ER stress markers in muscle; (b) increase in fibrosis with trend towards increase in short telomere fragments in liver (c) depot-specific mitochondrial changes with OxPhos complexes namely increase in SAT and reduction in PRAT and increase in mitochondrial number in ECAT; (d) depot-specific ER stress marker changes with increase in VAT, reduction in SAT, contrasting changes in ECAT and no changes in PRAT; and (d) reduced shorter telomere fragments in SAT, ECAT and PRAT. These changes indicate insulin resistance may be driven by mitochondrial and ER dysfunction in muscle, fibrosis and premature senescence in liver, and depot-specific changes in mitochondrial function and ER stress without involving cellular senescence in adipose tissue. These findings provide mechanistic insights into pathophysiology of metabolic dysfunction among female offspring from hyperandrogenic pregnancies.
Collapse
Affiliation(s)
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Chatoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
Rodrigo S, Panadero MI, Fauste E, Rodríguez L, Roglans N, Álvarez-Millán JJ, Otero P, Laguna JC, Bocos C. Effects of Maternal Fructose Intake on Perinatal ER-Stress: A Defective XBP1s Nuclear Translocation Affects the ER-stress Resolution. Nutrients 2019; 11:nu11081935. [PMID: 31426466 PMCID: PMC6723662 DOI: 10.3390/nu11081935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is crucial to appropriate cell functioning, and when disturbed, a safeguard system called unfolded protein response (UPR) is activated. Fructose consumption modifies ER homeostasis and has been related to metabolic syndrome. However, fructose sweetened beverages intake is allowed during gestation. Therefore, we investigate whether maternal fructose intake affects the ER status and induces UPR. Thus, administrating liquid fructose (10% w/v) to pregnant rats partially activated the ER-stress in maternal and fetal liver and placenta. In fact, a fructose-induced increase in the levels of pIRE1 (phosphorylated inositol requiring enzyme-1) and its downstream effector, X-box binding protein-1 spliced form (XBP1s), was observed. XBP1s is a key transcription factor, however, XBP1s nuclear translocation and the expression of its target genes were reduced in the liver of the carbohydrate-fed mothers, and specifically diminished in the fetal liver and placenta in the fructose-fed mothers. These XBP1s target genes belong to the ER-associated protein degradation (ERAD) system, used to buffer ER-stress and to restore ER-homeostasis. It is known that XBP1s needs to form a complex with diverse proteins to migrate into the nucleus. Since methylglyoxal (MGO) content, a precursor of advanced glycation endproducts (AGE), was augmented in the three tissues in the fructose-fed mothers and has been related to interfere with the functioning of many proteins, the role of MGO in XBP1s migration should not be discarded. In conclusion, maternal fructose intake produces ER-stress, but without XBP1s nuclear migration. Therefore, a complete activation of UPR that would resolve ER-stress is lacking. A state of fructose-induced oxidative stress is probably involved.
Collapse
Affiliation(s)
- Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Lourdes Rodríguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Núria Roglans
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | | | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Juan C Laguna
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
4
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Han CC, Wan FS. New Insights into the Role of Endoplasmic Reticulum Stress in Breast Cancer Metastasis. J Breast Cancer 2018; 21:354-362. [PMID: 30607156 PMCID: PMC6310719 DOI: 10.4048/jbc.2018.21.e51] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular stress severely disrupts endoplasmic reticulum (ER) function, leading to the abnormal accumulation of unfolded or misfolded proteins in the ER and subsequent development of endoplasmic reticulum stress (ERS). To accommodate the occurrence of ERS, cells have evolved a highly conserved, self-protecting signal transduction pathway called the unfolded protein response. Notably, ERS signaling is involved in the development of a variety of diseases and is closely related to tumor development, particularly in breast cancer. This review discusses recent research regarding associations between ERS and tumor metastasis. The information presented here will help researchers elucidate the precise mechanisms underlying ERS-mediated tumor metastasis and provide new directions for tumor therapies.
Collapse
Affiliation(s)
- Chang-Chang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanchang University, Nanchang, China.,Center of Prenatal Diagnosis, Suqian First Hospital, Suqian, China
| | - Fu-Sheng Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Interleukin-12p35 Knock Out Aggravates Doxorubicin-Induced Cardiac Injury and Dysfunction by Aggravating the Inflammatory Response, Oxidative Stress, Apoptosis and Autophagy in Mice. EBioMedicine 2018; 35:29-39. [PMID: 30228093 PMCID: PMC6154773 DOI: 10.1016/j.ebiom.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Recent evidence has demonstrated that interleukin 12p35 knockout (IL-12p35 KO) is involved in cardiac diseases by regulating the inflammatory response. The involvement of inflammatory cells has also been observed in doxorubicin (DOX)-induced cardiac injury. This study aimed to investigate whether IL-12p35 KO affects DOX-induced cardiac injury and the underlying mechanisms. Methods First, the effect of DOX treatment on cardiac IL-12p35 expression was assessed. In addition, to investigate the effect of IL-12p35 KO on DOX-induced cardiac injury, IL-12p35 KO mice were treated with DOX. Because IL-12p35 is the mutual subunit of IL-12 and IL-35, to determine the cytokine that mediates the effect of IL-12p35 KO on DOX-induced cardiac injury, mice were given phosphate-buffered saline (PBS), mouse recombinant IL-12 (rIL-12) or rIL-35 before treatment with DOX. Results DOX treatment significantly increased the level of cardiac IL-12p35 expression. In addition, IL-12p35 KO mice exhibited higher serum and heart lactate dehydrogenase levels, higher serum and heart creatine kinase myocardial bound levels, and greater cardiac dysfunction than DOX-treated mice. Furthermore, IL-12p35 KO further increased M1 macrophage and decreased M2 macrophage differentiation, aggravated the imbalance of oxidants and antioxidants, and further activated the mitochondrial apoptotic pathway and endoplasmic reticulum stress autophagy pathway. Both rIL-12 and rIL-35 protected against DOX-induced cardiac injury by alleviating the inflammatory response, oxidative stress, apoptosis and autophagy. Conclusions IL-12p35 KO aggravated DOX-induced cardiac injury by amplifying the levels of inflammation, oxidative stress, apoptosis and autophagy. (234 words). IL-12p35 KO aggravates DOX-induced cardiac injury and dysfunction. IL-12p35 further increases the DOX-induced imbalance in inflammation, oxidative stress, apoptosis and autophagy. Both exogenous rIL-12 and rIL-35 relieved cardiac injury mediated by DOX.
CD4+ T helper (Th) cells are closely related to cardiac injury; regulatory T cells (Tregs) are a new subset of Th cells, and IL-35 is the functional cytokine of Tregs. Cardiac injury mediated by DOX is the most serious complication during chemotherapy, and there are no good preventive measures. This study aimed to investigate whether IL-35 can reduce cardiac injury induced by DOX during chemotherapy. In addition to IL-35, IL-12p35 KO can cancel the biological effect of IL-12; therefore, we also determined whether IL-12 participates in DOX-induced cardiac injury and the underlying mechanisms.
Collapse
|
7
|
Effects of insulin-like growth factor-1 on endoplasmic reticulum stress and autophagy in rat gastric smooth muscle cells cultured at different glucose concentrations in vitro. Mol Cell Biochem 2018; 451:11-20. [PMID: 30008033 DOI: 10.1007/s11010-018-3388-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
The purpose of the study was to observe changes in endoplasmic reticulum stress (ERS)- and autophagy-related proteins in gastric smooth muscle tissues of diabetic rats with gastroparesis, investigate the effect of insulin-like growth factor 1 (IGF-1) on ERS and autophagy in rat gastric smooth muscle cells cultured under different glucose concentrations, and explore the influence of IGF-1 on development of diabetic gastroparesis (DGP). After establishing a rat model of DGP, rats were divided into normal control (NC) and 6-week diabetic model (DM6W) groups. Expression of ERS-related and autophagy-related proteins was detected by western blot analysis and immunofluorescence assay in rat gastric smooth muscle tissue and in vitro-cultured rat gastric smooth muscle cells exposed to different glucose concentrations and treatment with IGF-1 for 24 or 48 h. Changes in glucose-regulated-protein-78 (GRP78), growth arrest and DNA damage-inducible gene 153 (CHOP), and microtubule-associated protein 1A/1B light chain 3B (LC3) expression levels were detected by western blot analysis, and GRP78 and LC3 expression were examined by confocal laser-scanning microscopy. In vivo expression levels of GRP78, CHOP, and LC3 were significantly higher in the DM6W group compared with the NC group (p < 0.001). Twenty-four hours after cells were cultured at different glucose concentrations in vitro, expression of GRP78, CHOP, and LC3II/I was significantly higher in the high glucose-treated group compared with the normal glucose group (p < 0.05). After IGF-1 intervention, CHOP and GRP78 expression were significantly higher in the normal glucose + IGF-1 group compared with the normal glucose group (p < 0.01), while no significant difference was found between high glucose and high glucose + IGF-1 groups. LC3II/I expression was significantly lower in the normal glucose + IGF-1 group compared with the normal glucose group, and was significantly lower in the high glucose and high glucose + IGF-1 groups (p < 0.05). After 48 h of culture, CHOP expression was significantly higher and LC3II/I expression was significantly lower in the high glucose group compared with the normal glucose group (p < 0.05), but no significant change in GRP78 expression was observed between these two groups. After IGF-1 intervention, there was no difference in CHOP or GRP78 expression between normal glucose + IGF-1 and normal glucose groups. However, CHOP and GRP78 expression were significantly lower in the high glucose + IGF-1 group compared with the high glucose group (p < 0.05). There was no significant difference in LC3II/I expression between normal glucose + IGF-1 and normal glucose groups, or high glucose + IGF-1 and high glucose groups. Results of confocal laser-scanning microscopy showed significantly lower expression of LC3II/I in the high glucose + IGF-1 group compared with the high glucose group (p < 0.05). ERS and autophagy were involved in the occurrence of DGP. IGF-1 exerted an inhibitory effect on ERS in rat gastric smooth muscle cells cultured under high glucose conditions, and this inhibitory effect increased with time. IGF-1 inhibited the level of autophagy in rat gastric smooth muscle cells cultured under high glucose conditions at early stages, which may be achieved through inhibition of ERS.
Collapse
|
8
|
Glycine protects against high sucrose and high fat-induced non-alcoholic steatohepatitis in rats. Oncotarget 2018; 7:80223-80237. [PMID: 27784003 PMCID: PMC5348315 DOI: 10.18632/oncotarget.12831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
We set out to explore the hypothesis that glycine attenuates non-alcoholic steatohepatitis (NASH) in rats and the possible mechanism by which is it does. Male Sprague-Dawley (SD) rats were fed a diet containing high fat and high sucrose (HSHF) for 24 weeks to induce NASH. Blood and liver tissues were sampled at selected time points throughout the study. Compared with control animals, the content of alanine transaminase (ALT), triglycerides (TGs), and free fatty acids (FFAs) in plasma and the TG and FFA content in the liver was increased from week 4 to 24. The level of TNFα and MCP-1 in plasma, the content of TNFα in the liver, the insulin resistance index, inflammatory cell infiltration, hepatocyte apoptosis, reactive oxygen species (ROS) generation, and endoplasmic stress-associated protein expression were unaltered at 4 weeks. However, these levels were significantly elevated in HSHF fed rats at 12 weeks. At the same time, the level of endotoxin progressively increased from 0.08 ± 0.02 endotoxin EU/ml at week 4 to 0.7 ± 0.19 EU/ml at week 24. Moreover, these rats had elevated blood endotoxin levels, which were positively associated with their NASH indexes. Liver histology progressively worsened over the course of the study. However, we found that with concomitant treatment with glycine, the level of endotoxin decreased, while NASH indexes significantly decreased and liver status markedly improved,. These data support the hypothesis that glycine protects against NASH in rats by decreasing the levels of intestinal endotoxin, alleviating endoplasmic reticulum and oxidative stress.
Collapse
|
9
|
Ward WO, Kodavanti UP. Pulmonary transcriptional response to ozone in healthy and cardiovascular compromised rat models. Inhal Toxicol 2016; 27 Suppl 1:93-104. [PMID: 26667334 DOI: 10.3109/08958378.2014.954173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic insights into susceptibility differences to ozone. The lung expression profiles of healthy Wistar Kyoto (WKY) and CVD-compromised spontaneously hypertensive (SH), stroke-prone SH (SHSP), obese SH heart failure (SHHF) and obese, atherosclerosis-prone JCR rats were analyzed using Affymetrix platform immediately after 4-h air or 1 ppm ozone exposure. At baseline, the JCR exhibited the largest difference in the number of genes among all strains when compared with WKY. Interestingly, the number of genes affected by ozone was inversely correlated with genes different at baseline relative to WKY. A cluster of NFkB target genes involved in cell-adhesion, antioxidant response, inflammation and apoptosis was induced in all strains, albeit at different levels (JCR < WKY < SHHF < SH < SHSP). The lung metabolic syndrome gene cluster indicated expressions in opposite directions for SHHF and JCR suggesting different mechanisms for common disease phenotype and perhaps obesity-independent contribution to exacerbated lung disease. The differences in expression of adrenergic receptors and ion-channel genes suggested distinct mechanisms by which ozone might induce protein leakage in CVD models, especially SHHF and JCR. Thus, the pulmonary response to ozone in CVD strains was likely linked to the defining gene expression profiles. Differential transcriptional patterns between healthy and CVD rat strains at baseline, and after ozone suggests that lung inflammation and injury might be influenced by multiple biological pathways affecting inflammation gene signatures.
Collapse
Affiliation(s)
- William O Ward
- a Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
10
|
Safiedeen Z, Andriantsitohaina R, Martinez MC. Dialogue between endoplasmic reticulum and mitochondria as a key actor of vascular dysfunction associated to metabolic disorders. Int J Biochem Cell Biol 2016; 77:10-14. [PMID: 27208732 DOI: 10.1016/j.biocel.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 01/06/2023]
Abstract
Metabolic syndrome due to its association with increased risk of cardiovascular diseases and cardiac mortality, comprises a cluster of metabolic abnormalities such as central obesity, hyperglycemia, dyslipidemia, and hypertension. Recent studies have shown that metabolic syndrome patients exhibit impaired nitric oxide-mediated vasodilatation leading to endothelial dysfunction in addition to insulin resistance. Interestingly, development and maintenance of the unfolded protein response of the endoplasmic reticulum stress revealed a surprisingly direct link with metabolic syndrome and endothelial dysfunction. On the other hand, in metabolic disorders, interaction between endoplasmic reticulum and mitochondria is mandatory for the generation of mitochondrial oxidative stress and perturbation of mitochondrial function accounting, at least in part, for vascular dysfunction. Herein, we review the impact of the dialogue between endoplasmic reticulum and mitochondria in modulating the cellular signals governing vascular alterations associated to metabolic disorders.
Collapse
Affiliation(s)
- Zainab Safiedeen
- INSERM UMR1063, Université d'Angers, Angers, France; ER045, Laboratory of Stem Cells, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | | |
Collapse
|
11
|
Chalil S, Pierre N, Bakker AD, Manders RJ, Pletsers A, Francaux M, Klein-Nulend J, Jaspers RT, Deldicque L. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle. Biochem Biophys Res Commun 2015; 468:702-7. [PMID: 26551463 DOI: 10.1016/j.bbrc.2015.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023]
Abstract
Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging.
Collapse
Affiliation(s)
- Sreeda Chalil
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, Box 1500, 3001, Leuven, Belgium
| | - Nicolas Pierre
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Ralph J Manders
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, the Leggett Building, Guildford, GU2 7WG, Surrey, UK
| | - Annelies Pletsers
- Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BA, Amsterdam, The Netherlands
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BA, Amsterdam, The Netherlands
| | - Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, Box 1500, 3001, Leuven, Belgium; Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
12
|
Chalil S, Jaspers RT, Manders RJ, Klein-Nulend J, Bakker AD, Deldicque L. Increased endoplasmic reticulum stress in mouse osteocytes with aging alters Cox-2 response to mechanical stimuli. Calcif Tissue Int 2015; 96:123-8. [PMID: 25539857 DOI: 10.1007/s00223-014-9944-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Aging reduces bone mass as well as the anabolic response of bone to mechanical stimuli, resulting in osteopenia. Endoplasmic reticulum (ER) stress impairs the response of myogenic cells to anabolic stimuli, and is involved in sarcopenia, but whether ER stress also contributes to osteopenia is unknown. Therefore, we tested whether ER stress exists in bones of aged mice, and whether this impairs the osteocyte response to mechanical stimulation. Primary osteocytes were obtained from long bones of adult (8 months) and old (24-26 months) mice, treated with or without the pharmacological ER stress inducer tunicamycin, and either or not subjected to mechanical loading by pulsating fluid flow (PFF). The osteocyte response to PFF was assessed by measuring cyclooxygenase-2 (Cox-2) mRNA levels and nitric oxide (NO) production. mRNA levels of ER stress markers were higher in old versus adult osteocytes (+40% for activating transcription factor-4, +120% for C/EBP homologous protein, and +120% for spliced X-box binding protein-1, p < 0.05). The Cox-2 response to PFF was fourfold decreased in cells from old bones (p < 0.001), while tunicamycin decreased PFF-induced Cox-2 expression by threefold in cells from adult bones (p < 0.01). PFF increased NO production by 50% at 60 min in osteocytes from old versus adult bones (p < 0.01). In conclusion, our data indicate that the expression of several ER stress markers was higher in osteocytes from bones of old compared to adult mice. Since ER stress altered the response of osteocytes to mechanical loading, it could be a novel factor contributing to osteopenia.
Collapse
Affiliation(s)
- Sreeda Chalil
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, Box 1500, 3001, Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Wu L, Wang D, Xiao Y, Zhou X, Wang L, Chen B, Li Q, Guo X, Huang Q. Endoplasmic reticulum stress plays a role in the advanced glycation end product-induced inflammatory response in endothelial cells. Life Sci 2014; 110:44-51. [DOI: 10.1016/j.lfs.2014.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/07/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
|
14
|
Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet 2014; 5:242. [PMID: 25120559 PMCID: PMC4110625 DOI: 10.3389/fgene.2014.00242] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022] Open
Abstract
As an adaptive response to the overloading with misfolded proteins in the endoplasmic reticulum (ER), ER stress plays critical roles in maintaining protein homeostasis in the secretory pathway to avoid damage to the host. Such a conserved mechanism is accomplished through three well-orchestrated pathways known collectively as unfolded protein response (UPR). Persistent and pathological ER stress has been implicated in a variety of diseases in metabolic, inflammatory, and malignant conditions. Furthermore, ER stress is directly linked with inflammation through UPR pathways, which modulate transcriptional programs to induce the expression of inflammatory genes. Importantly, the inflammation induced by ER stress is directly responsible for the pathogenesis of metabolic and inflammatory diseases. In this review, we will discuss the potential signaling pathways connecting ER stress with inflammation. We will also depict the interplay between ER stress and inflammation in the pathogenesis of hepatic steatosis, inflammatory bowel diseases and colitis-associated colon cancer.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SCUSA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SCUSA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SCUSA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SCUSA
| |
Collapse
|
15
|
Lipid peroxidation end product 4-hydroxy-trans-2-nonenal triggers unfolded protein response and heme oxygenase-1 expression in PC12 cells: Roles of ROS and MAPK pathways. Toxicology 2013; 315:24-37. [PMID: 24291486 DOI: 10.1016/j.tox.2013.11.007] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022]
Abstract
This study investigates the roles of ROS overproduction and MAPK signaling pathways in the induction of unfolded protein response (UPR) and the expression of Phase II enzymes in response to 4-hydroxy-trans-2-nonenal (4-HNE) in a neuronal-like catecholaminergic PC12 cells. Our results showed that 4-HNE triggered three canonical pathways of UPR, namely IRE1-XBP1, PERK-eIF2α-ATF4 and ATF6, and induced the expression of UPR-targeted genes, GRP78, CHOP, TRB3, PUMA, and GADD34, as well as Phase II enzymes, HO-1 and GCLC. 4-HNE also induced apoptosis, intracellular calcium accumulation, caspase-3 activation, and G0/G1 cell cycle arrest, which was correlated with the increased expression of GADD45α. The addition of tiron, a cellular permeable superoxide scavenger, scavenged 4-HNE-mediated ROS formation, but did not alleviate cytotoxicity, or the expression of UPR-targeted genes or Phase II enzymes, indicating that ROS overproduction per se did not play a major role in 4-HNE-caused deleterious effects. HO-1 expression was attenuated by Nrf2 siRNA and chemical chaperone 4-phenylbutyrate (4-PBA), suggesting HO-1 expression was regulated by Nrf2-ARE, which may work downstream of ER stress. 4-HNE treatment promptly induced ERK, JNK and p38 MAPK activation. Addition of p38 MAPK specific inhibitor SB203580 attenuated HO-1 upregulation, but enhanced expression of CHOP, PUMA and TRB3, and cytotoxicity. These results indicate that 4-HNE-induced transient p38 MAPK activation may serve as an upstream negative regulator of ER stress and confer adaptive cytoprotection against 4-HNE-mediated cell injury.
Collapse
|
16
|
Wu HL, Duan ZT, Jiang ZD, Cao WJ, Wang ZB, Hu KW, Gao X, Wang SK, He BS, Zhang ZY, Xie HG. Increased endoplasmic reticulum stress response is involved in clopidogrel-induced apoptosis of gastric epithelial cells. PLoS One 2013; 8:e74381. [PMID: 24058556 PMCID: PMC3772828 DOI: 10.1371/journal.pone.0074381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/31/2013] [Indexed: 01/20/2023] Open
Abstract
Background The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1) apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown. Methods The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively. Results Gene microarray analysis identified 79 genes that were differentially expressed (P<0.05 and fold-change >3) when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway – CHOP and TRIB3– were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor) attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel. Conclusions Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation.
Collapse
Affiliation(s)
- Hai-Lu Wu
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao-Tao Duan
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zong-Dan Jiang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei-Jun Cao
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bing Wang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Wei Hu
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Gao
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu-Kui Wang
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bang-Shun He
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Zhang
- Division of Gastroenterology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- * E-mail: (ZYZ); (HGX)
| | - Hong-Guang Xie
- Central Laboratory, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
- * E-mail: (ZYZ); (HGX)
| |
Collapse
|
17
|
Cummings BP. Leptin therapy in type 2 diabetes. Diabetes Obes Metab 2013; 15:607-12. [PMID: 23216672 DOI: 10.1111/dom.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
There is a pressing need for new effective therapeutic strategies for addressing the epidemic of type 2 diabetes. Leptin has been shown to reduce hyperglycaemia in rodent models of type 1 diabetes and has recently been shown to normalize fasting plasma glucose concentrations in a rodent model of polygenic obesity and type 2 diabetes. Overall, these findings suggest that leptin may be an effective therapeutic option for both type 1 and type 2 diabetes. However, short-term human clinical studies in overweight and obese patients with recently diagnosed type 2 diabetes have reported minimal efficacy of leptin administration to lower blood glucose levels. Herein, the role of leptin in the maintenance of glucose homeostasis and the potential use of leptin in the treatment of type 2 diabetes are discussed.
Collapse
Affiliation(s)
- B P Cummings
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Cox AJ, Lehtinen AB, Xu J, Langefeld CD, Freedman BI, Carr JJ, Bowden DW. Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol 2013; 50:391-9. [PMID: 23161441 PMCID: PMC3597768 DOI: 10.1007/s00592-012-0440-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/03/2012] [Indexed: 12/16/2022]
Abstract
Selenoprotein S (SelS) has previously been associated with a range of inflammatory markers, particularly in the context of cardiovascular disease (CVD). The aim of this study was to examine the role of SELS genetic variants in risk for subclinical CVD and mortality in individuals with type 2 diabetes mellitus (T2DM). The association between 10 polymorphisms tagging SELS and coronary (CAC), carotid (CarCP) and abdominal aortic calcified plaque, carotid intima media thickness and other known CVD risk factors was examined in 1220 European Americans from the family-based Diabetes Heart Study. The strongest evidence of association for SELS SNPs was observed for CarCP; rs28665122 (5' region; β = 0.329, p = 0.044), rs4965814 (intron 5; β = 0.329, p = 0.036), rs28628459 (3' region; β = 0.331, p = 0.039) and rs7178239 (downstream; β = 0.375, p = 0.016) were all associated. In addition, rs12917258 (intron 5) was associated with CAC (β = -0.230, p = 0.032), and rs4965814, rs28628459 and rs9806366 were all associated with self-reported history of prior CVD (p = 0.020-0.043). These results suggest a potential role for the SELS region in the development subclinical CVD in this sample enriched for T2DM. Further understanding the mechanisms underpinning these relationships may prove important in predicting and managing CVD complications in T2DM.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Howarth DL, Yin C, Yeh K, Sadler KC. Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae. Zebrafish 2013; 10:199-210. [PMID: 23697887 DOI: 10.1089/zeb.2012.0821] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzo(mbtps1) mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration.
Collapse
Affiliation(s)
- Deanna L Howarth
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | | | | | | |
Collapse
|
20
|
Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci U S A 2013; 110:9013-8. [PMID: 23667151 DOI: 10.1073/pnas.1307125110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural genetic variation is a rich resource for identifying novel elements of cellular pathways such as endoplasmic reticulum (ER) stress. ER stress occurs when misfolded proteins accumulate in the ER and cells respond with the conserved unfolded protein response (UPR), which includes large-scale gene expression changes. Although ER stress can be a cause or a modifying factor of human disease, little is known of the amount of variation in the response to ER stress and the genes contributing to such variation. To study natural variation in ER stress response in a model system, we measured the survival time in response to tunicamycin-induced ER stress in flies from 114 lines from the sequenced Drosophila Genetic Reference Panel of wild-derived inbred strains. These lines showed high heterogeneity in survival time under ER stress conditions. To identify the genes that may be driving this phenotypic variation, we profiled ER stress-induced gene expression and performed an association study. Microarray analysis identified variation in transcript levels of numerous known and previously unknown ER stress-responsive genes. Survival time was significantly associated with polymorphisms in candidate genes with known (i.e., Xbp1) and unknown roles in ER stress. Functional testing found that 17 of 25 tested candidate genes from the association study have putative roles in ER stress. In both approaches, one-third of ER stress genes had human orthologs that contribute to human disease. This study establishes Drosophila as a useful model for studying variation in ER stress and identifying ER stress genes that may contribute to human disease.
Collapse
|
21
|
Abstract
The complex and bi-directional relationship linking the liver and diabetes has recently gained intense new interest. This critical review of the published work aims to highlight the most recent basic and clinical data underlying the development of type 2 diabetes, in those with non-alcoholic fatty liver disease. Moreover, the potentially detrimental effects of type 2 diabetes in liver injury are also discussed in each of the two sections of the present paper. Fatty liver and diabetes share insulin resistance as their chief pathogenic determinant. The roles of the hypothalamus, the intestinal microbiome, white adipose tissue and inflammation are discussed in detail. Molecular insights into hepatocyte insulin resistance as the initiator of systemic insulin resistance are also presented with full coverage of the danger of fatty acids. Lipotoxicity, apoptosis, lipoautophagy, endoplasmic reticular stress response and recent developments in genetics are discussed. Closing the circle, special emphasis is given to biochemical pathways and clinical evidence supporting the role of type 2 diabetes as a risk factor for the development of progressive liver disease, including non-alcoholic steatohepatitis, cirrhosis and primary liver cancer. In conclusion, data support non-alcoholic fatty liver disease as a risk factor for the development of type 2 diabetes which is, in turn, a major contributor to progressive liver disease. This pathway leading from fatty liver to type 2 diabetes and back from the latter to the progressive liver disease is a vicious circle.
Collapse
Affiliation(s)
- Paola Loria
- University of Modena and Reggio Emilia, Modena, Italy
| | | | - Frank Anania
- Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Nürnberger S, Miller I, Duvigneau JC, Kavanagh ET, Gupta S, Hartl RT, Hori O, Gesslbauer B, Samali A, Kungl A, Redl H, Kozlov AV. Impairment of endoplasmic reticulum in liver as an early consequence of the systemic inflammatory response in rats. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1373-83. [PMID: 23064756 DOI: 10.1152/ajpgi.00056.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well known that systemic inflammatory response (SIR) often causes liver dysfunction. The aim of this study was to identify the intracellular compartment in the liver most susceptible to SIR. We analyzed morphology, ultrastructure, proteome, and expression of relevant genes in livers of rats subjected to endotoxic shock. Histological examination revealed that focal necrosis in liver was insignificant to explain liver dysfunction. Electron microscopy revealed no morphological changes in the mitochondrial structure and in the cytosol, but dilated endoplasmic reticulum (ER) cisterns were frequently observed. Apoptosis was found in white blood cells within liver tissue but not in hepatocytes. Mitochondrial, ER, and cytosolic fractions were subjected to proteome analysis by difference gel electrophoresis, and the protein spots with the highest degree of differential regulation were identified with mass spectrometry. The most pronounced proteome changes appeared in the ER, manifested as a remarkable downregulation of several proteins essential for ER functions, such as protein synthesis and transport, whereas the changes in mitochondrial and cytosolic fractions suggested a compensatory response. ER stress, as an underlying mechanism for ER impairment, was confirmed by analysis of upstream (splicing X-box-binding protein 1 mRNA) and downstream (e.g., 78-kDa glucose-regulated protein mRNA) markers, suggesting ongoing unresolved ER stress as a cause for ER dilation. Because ER is the intracellular compartment responsible for the major liver functions, our data suggest that inflammatory mediators induce unresolved ER stress, resulting in the biochemical, functional, and morphological impairment of ER that in turn causes liver dysfunction. The pathway activating ER stress in response to SIR is not known yet.
Collapse
Affiliation(s)
- Sylvia Nürnberger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt Research Center, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T, Mancini FP. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation 2012; 125:2363-73. [PMID: 22586291 DOI: 10.1161/circulationaha.111.085787] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, 1st School of Medicine, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Arrojo E Drigo R, Bianco AC. Type 2 deiodinase at the crossroads of thyroid hormone action. Int J Biochem Cell Biol 2011; 43:1432-41. [PMID: 21679772 PMCID: PMC3163779 DOI: 10.1016/j.biocel.2011.05.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/29/2022]
Abstract
Thyroid hormone action can be customized on a cell-specific fashion through the controlled action of the deiodinase group of enzymes, which are homodimeric thioredoxin fold containing selenoproteins. Whereas the type II deiodinase (D2) initiates thyroid hormone signaling by activating the pro-hormone thyroxine (T4) to the biologically active T3 molecule, the type III deiodinase (D3) terminates thyroid hormone action by catalyzing the inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. Whereas both Dio2 and Dio3 are transcriptionally regulated, ubiquitination of D2 is a switch mechanism that controls D2 activity and intracellular T3 production. The hedgehog-inducible WSB-1 and the yeast Doa10 mammalian ortholog TEB4 are two E3 ligases that inactivate D2 via ubiquitination. Inactivation involves disruption of the D2:D2 dimer and can be reversed via two ubiquitin-specific proteases, USP20 and USP33, rescuing catalytic activity and T3 production. The ubiquitin-based switch mechanism that controls D2 activity illustrates how different cell types fine-tune thyroid hormone signaling, making D2 a suitable target for pharmacological intervention. This article reviews the cellular and molecular aspects of D2 regulation and the current models of D2-mediated thyroid hormone signaling.
Collapse
Affiliation(s)
- Rafael Arrojo E Drigo
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | | |
Collapse
|
25
|
Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab 2011; 22:353-63. [PMID: 21616678 PMCID: PMC3163828 DOI: 10.1016/j.tem.2011.04.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR) affects not only the regulation of carbohydrate metabolism but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of VLDL and increased plasma triglycerides, as well as with hepatic steatosis, despite the increased VLDL secretion. Here we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein (HDL) cholesterol and low density lipoprotein (LDL) size, is proatherogenic. Hepatic steatosis is a risk factor for steatohepatitis and cirrhosis. Understanding the complex inter-relationships between IR and these abnormalities of liver lipid homeostasis will provide insights relevant to new therapies for these increasing clinical problems.
Collapse
Affiliation(s)
- Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, New York, NY, USA
- whom correspondence should be addressed.
| |
Collapse
|
26
|
Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc Natl Acad Sci U S A 2011; 108:14670-5. [PMID: 21873226 DOI: 10.1073/pnas.1107163108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Leptin has been shown to reduce hyperglycemia in rodent models of type 1 diabetes. We investigated the effects of leptin administration in University of California, Davis, type 2 diabetes mellitus (UCD-T2DM) rats, which develop adult-onset polygenic obesity and type 2 diabetes. Animals that had been diabetic for 2 mo were treated with s.c. injections of saline (control) or murine leptin (0.5 mg/kg) twice daily for 1 mo. Control rats were pair-fed to leptin-treated animals. Treatment with leptin normalized fasting plasma glucose and was accompanied by lowered HbA1c, plasma glucagon, and triglyceride concentrations and expression of hepatic gluconeogenic enzymes compared with vehicle (P < 0.05), independent of any effects on body weight and food intake. In addition, leptin-treated animals exhibited marked improvement of insulin sensitivity and glucose homeostasis compared with controls, whereas pancreatic insulin content was 50% higher in leptin-treated animals (P < 0.05). These effects coincided with activation of leptin and insulin signaling pathways and down-regulation of the PKR-like endoplasmic reticulum (ER) kinase/eukaryotic translation inhibition factor 2α (PERK-eIF2α) arm of ER stress in liver, skeletal muscle, and adipose tissue as well as increased pro-opiomelanocortin and decreased agouti-related peptide in the hypothalamus. In contrast, several markers of inflammation/immune function were elevated with leptin treatment in the same tissues (P < 0.05), suggesting that the leptin-mediated increase of insulin sensitivity was not attributable to decreased inflammation. Thus, leptin administration improves insulin sensitivity and normalizes fasting plasma glucose in diabetic UCD-T2DM rats, independent of energy intake, via peripheral and possibly centrally mediated actions, in part by decreasing circulating glucagon and ER stress.
Collapse
|