1
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Singh I, Kim J, Touhidul Islam SM, Fei Q, Singh AK, Won J. The role of S-nitrosoglutathione reductase (GSNOR) in T cell-mediated immunopathology of experimental autoimmune encephalomyelitis (EAE). Neuroscience 2025; 564:1-12. [PMID: 39532197 DOI: 10.1016/j.neuroscience.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Previously, we reported that both S-nitrosoglutathione (GSNO), a carrier of cellular nitric oxide, and N6022, an injectable form of GSNO reductase (GSNOR) inhibitor that increases endogenous GSNO levels, alleviate experimental autoimmune encephalomyelitis (EAE) in mice by suppressing Th1 and Th17 immune responses. Building on these findings, we explored the role of GSNOR in EAE pathogenesis and evaluated the efficacy of an orally active GSNOR inhibitor (N91115) in treating the EAE disease. EAE mice exhibited heightened expression/activity of GSNOR in the spinal cord, and the knockout of the GSNOR gene resulted in much milder clinical manifestations of EAE, with lower degrees of demyelination and axonal loss, reduced microglial and astrocyte activations, as well as suppressed Th1 and Th17 cell responses, alongside bolstered Treg immune responses. Next, we evaluated the efficacy of N91115 against EAE immunopathology. Consistent with our findings in GSNOR deficient EAE mice, daily N91115 administration reduced clinical EAE severity, with less spinal cord demyelination and axonal loss compared to untreated EAE mice. Furthermore, N91115 treated EAE mice showed diminished Th1 and Th17 immune responses and enhanced Treg responses. This observation underscores the potential of increased GSNOR expression and activity as a risk factor exacerbating EAE immunopathology, while simultaneously highlighting its potential as a target for modifying the disease. Furthermore, the balanced immune regulation provided by orally active N91115 (IL-6/IL-17a vs. IL-10) presents a promising alternative to immunosuppressive drugs, reducing the risk of opportunistic infections.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/metabolism
- Spinal Cord/immunology
- Mice, Inbred C57BL
- Female
- Mice, Knockout
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Mice
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Aldehyde Oxidoreductases/metabolism
- Aldehyde Oxidoreductases/antagonists & inhibitors
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Alcohol Dehydrogenase
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Qiao Fei
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
5
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
6
|
Veh J, Mangold C, Felsen A, Ludwig C, Gerstner L, Reinhardt P, Schrezenmeier H, Fabricius D, Jahrsdörfer B. Phorbol-12-myristate-13-acetate is a potent enhancer of B cells with a granzyme B + regulatory phenotype. Front Immunol 2023; 14:1194880. [PMID: 37588597 PMCID: PMC10426744 DOI: 10.3389/fimmu.2023.1194880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction The infusion of ex-vivo-generated regulatory B cells may represent a promising novel therapeutic approach for a variety of autoimmune and hyperinflammatory conditions including graft-versus-host disease. Methods Previously, we developed a protocol for the generation of a novel population of regulatory B cells, which are characterized by secretion of enzymatically active granzyme B (GraB cells). This protocol uses recombinant interleukin 21 (IL-21) and goat-derived F(ab)'2 fragments against the human B cell receptor (anti-BCR). Generally, the use of xenogeneic material for the manufacturing of advanced therapy medicinal products should be avoided to prevent adverse immune reactions as well as potential transmission of so far unknown diseases. Results In the present work we demonstrated that phorbol-12-myristate-13-acetate (PMA/TPA), a phorbol ester with a particular analogy to the second messenger diacylglycerol (DAG), is a potent enhancer of IL-21-induced differentiation of pre-activated B cells into GraB cells. The percentage of GraB cells after stimulation of pre-activated B cells with IL-21 and PMA/TPA was not significantly lower compared to stimulation with IL-21 and anti-BCR. Discussion Given that PMA/TPA has already undergone encouraging clinical testing in patients with certain haematological diseases, our results suggest that PMA/TPA may be a safe and feasible alternative for ex-vivo manufacturing of GraB cells.
Collapse
Affiliation(s)
- Johanna Veh
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Charlotte Mangold
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Anja Felsen
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Lisa Gerstner
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Peter Reinhardt
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
7
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
8
|
De Biase D, Prisco F, Pepe P, Bosco A, Piegari G, d'Aquino I, Russo V, Papparella S, Maurelli MP, Rinaldi L, Paciello O. Evaluation of the Local Immune Response to Hydatid Cysts in Sheep Liver. Vet Sci 2023; 10:vetsci10050315. [PMID: 37235398 DOI: 10.3390/vetsci10050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In order to characterize the inflammatory phenotype of livers of sheep naturally infected by cystic echinococcosis, 100 sheep livers have been macroscopically assessed for the presence of hydatid cysts and sampled for histopathological and molecular analysis. According to gross and microscopic examination, livers were subsequently classified into three groups: normal liver (Group A), liver with the presence of fertile hydatid cysts (Group B), and liver with the presence of sterile hydatid cysts (Group C). Immunohistochemical analyses were accomplished using primary antibodies anti-Iba1, anti-CD3, anti-CD20, anti-TGF-β, and anti-MMP9. Finally, real-time PCR was performed in order to estimate the concentration levels of tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin (IL)-12, IL-10, and TGF-β. Immunohistochemical analysis showed a diffuse immunolabelling of mononuclear cells for Iba-1 and TGF-β and a higher amount of CD20+ B cells compared to CD3+ T cells in both Groups B and C. The expression levels of Th-1-like immune cytokines TNF-α, INF-γ, and IL-12 did not show significant statistical differences. However, we found a significant increase in expression levels of Th-2 immune cytokines TGF-β and IL-10 in Groups B and C compared to Group A. Taken together, our findings suggest that macrophages have a predominant role in the local immune response to cystic echinococcosis. Moreover, we can speculate that Th2 immunity may be dominant, corroborating the idea that B cells are decisively essential in the control of the immune response during parasitic infection and that the immunomodulatory role of IL-10 and TGF-β may ensure the persistence of the parasite within the host.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Paola Pepe
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Ilaria d'Aquino
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| |
Collapse
|
9
|
Yang G, Suo L, Hu S, Liu H, Wang X, Xiao X, Liu J, Zeng X, Hong J, Guan L, Xue J, Yang P. Characterization of the immune regulatory property of CD22 + CD9 + B cells. Immunol Suppl 2022; 167:328-339. [PMID: 35754150 DOI: 10.1111/imm.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Immunodisruptive homeostasis is recognized in allergic disorders. The mechanism of restoration of immunologic homeostasis in the body is not fully understood. Galectin-9 (Gal9) and CD22 have immune regulatory functions. The goal of this study is to test the role of CD22+ CD9+ B regulatory cells in immune homeostasis the body. A much smaller amount of IL-10 in B10 cells was detected in patients with AR in contrast to healthy subjects. The IL-10 expression levels in B10 cells were positively correlated with the CD22 expression. CD22 mediated the effects of Gal9 on the enhanced expression of IL-10 in AR B10 cells. Gal9 overcame the refractory induction of IL-10 in B-cells of AR subjects. The immune regulatory ability of AR B10 cells could be restored by Gal9. Combination of Gal9 and SIT induced and activated antigen-specific B10 cells. The B10 cells of Gal9/specific immunotherapy-treated AR mice showed immunosuppressive functions on T-cell activities and induction of type 1 regulatory T cells in an antigen-specific manner. Administration of Gal9 potentiated the effects of specific immunotherapy in mice with AR. In summary, a fraction of regulatory B cells, the CD19+ CD22+ CD9+ B cells, was characterized in the present study. CD22 mediates the effects of Gal9 to promote immunotherapy for allergic diseases by inducing B10 cells. In an antigen specific manner, the B10 cells suppressed CD4+ T cell activities, and alleviated experimental AR.
Collapse
Affiliation(s)
- Gui Yang
- Department of Otolaryngology & Allergy, Longgang Central Hospital, Shenzhen, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Suqing Hu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiaojun Xiao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Jie Liu
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xianhai Zeng
- Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Jingyi Hong
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Li Guan
- Department of Allergy, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.,Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| |
Collapse
|
10
|
Sarkesh A, Sorkhabi AD, Ahmadi H, Abdolmohammadi-Vahid S, Parhizkar F, Yousefi M, Aghebati-Maleki L. Allogeneic lymphocytes immunotherapy in female infertility: Lessons learned and the road ahead. Life Sci 2022; 299:120503. [PMID: 35381221 DOI: 10.1016/j.lfs.2022.120503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The endometrium is an essential tissue in the normal immunologic dialogue between the mother and the conceptus, which is necessary for the proper establishment and maintenance of a successful pregnancy. It's become evident that the maternal immune system plays a key role in the normal pregnancy's initiation, maintenance, and termination. In this perspective, the immune system contributes to regulating all stages of pregnancy, thus immunological dysregulation is thought to be one of the major etiologies of implantation failures. Many researchers believe that immune therapies are useful tactics for improving the live births rate in certain situations. Lymphocyte immunotherapy (LIT) is an active form of immunotherapy that, when used on the relevant subgroups of patients, has been shown in multiple trials to dramatically enhance maternal immunological balance and pregnancy outcome. The primary goal of LIT is to regulate the immune system in order to create a favorable tolerogenic immune milieu and tolerance for embryo implantation. However, there are a plethora of influential factors influencing its therapeutic benefits that merit to be addressed. The objective of our study is to discuss the mechanisms and challenges of allogeneic LIT.
Collapse
Affiliation(s)
- Aila Sarkesh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Li M, Wang H, Ni Y, Li C, Xu X, Chang H, Xu Z, Hou M, Ji M. Helminth-induced CD9 + B-cell subset alleviates obesity-associated inflammation via IL-10 production. Int J Parasitol 2021; 52:111-123. [PMID: 34863801 DOI: 10.1016/j.ijpara.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production.
Collapse
Affiliation(s)
- Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Lynall ME, Kigar SL, Lehmann ML, DePuyt AE, Tuong ZK, Listwak SJ, Elkahloun AG, Bullmore ET, Herkenham M, Clatworthy MR. B-cells are abnormal in psychosocial stress and regulate meningeal myeloid cell activation. Brain Behav Immun 2021; 97:226-238. [PMID: 34371135 PMCID: PMC8453122 DOI: 10.1016/j.bbi.2021.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
There is increasing interest in how immune cells, including those within the meninges at the blood-brain interface, influence brain function and mood disorders, but little data on humoral immunity in this context. Here, we show that in mice exposed to psychosocial stress, there is increased splenic B cell activation and secretion of the immunoregulatory cytokine interleukin (IL)-10. Meningeal B cells were prevalent in homeostasis but substantially decreased following stress, whereas Ly6Chi monocytes increased, and meningeal myeloid cells showed augmented expression of activation markers. Single-cell RNA sequencing of meningeal B cells demonstrated the induction of innate immune transcriptional programmes following stress, including genes encoding antimicrobial peptides that are known to alter myeloid cell activation. Cd19-/- mice, that have reduced B cells, showed baseline meningeal myeloid cell activation and decreased exploratory behaviour. Together, these data suggest that B cells may influence behaviour by regulating meningeal myeloid cell activation.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; National Institute of Mental Health, Bethesda, MA, USA; Department of Psychiatry, University of Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | - Stacey L Kigar
- National Institute of Mental Health, Bethesda, MA, USA; Department of Medicine, Cambridge, UK
| | | | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | | | | | | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, UK.
| |
Collapse
|
13
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
14
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
15
|
Qiu Z, Li Q, Lu Y, Wang Q. Clinical significance and prognostic value of circulating B10 cells in colorectal cancer. Asia Pac J Clin Oncol 2021; 18:e157-e162. [PMID: 34314570 DOI: 10.1111/ajco.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND B10 cells, a subset of regulatory B cells, can inhibit antitumor response and thus promote tumor development. This study explored the clinical meaning and prognostic value of circulating B10 cells in colorectal cancer (CRC). MATERIALS AND METHODS The proportion of B10 cells in peripheral blood in CRC patients and healthy controls was detected by multicolor flow cytometry. RESULTS The proportion of circulating B10 cells was remarkably elevated in CRC patients compared to normal controls (% of CD19+ B cells; 16.6% (IQR 6.0%) versus 9.0% (IQR 5.7%), p < 0.001). B10 cells proportion was associated with tumor size, depth of invasion, lymph node metastasis, and TNM stage in CRC. Kaplan-Meier analysis indicated that CRC patients with high B10 cells proportion suffered worse overall survival than those with low B10 cells proportion. Multivariate analysis revealed that the proportion of B10 cells was an independent prognostic indicator for CRC patients. CONCLUSION Our results indicate that the proportion of circulating B10 cells is an independent prognostic factor for patients with CRC and thus may help guide the clinical decision in CRC.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Yixun Lu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
17
|
IL-10 producing B cells regulated 1,3-β-glucan induced Th responses in coordinated with Treg. Immunol Lett 2021; 235:15-21. [PMID: 33951473 DOI: 10.1016/j.imlet.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Repeated exposure to fungi-contaminated dust can lead to multiple adverse effects on the lung, such as hypersensitivity pneumonitis, granuloma even irreversible fibrosis. 1,3-β-glucan, a major cell wall component of fungi, is considered as its exposure biomarker. Existing studies showed that a series of Th responses were involved in 1,3-β-glucan induced hypersensitivity pneumonitis, in which macrophages, Treg, and IL-10 producing B cells were reported to participate. The reciprocal interaction among those critical immune cells in 1,3-β-glucan induced inflammation was not investigated yet. To clarify the regulatory mechanism of IL-10 producing B cells on Th and Treg, the current study set up a primary cell co-culture system. The anti-CD22 antibody was injected intraperitoneally to generate IL-10 producing B cells deficiency mouse model. Cells were isolated and purified from C57BL∖6 mice in different groups. Flow cytometry was used to check the phenotype of different cell subtypes. CBA assay and real-time PCR were used to examine the levels of multiple cytokines. Our results indicated that IL-10 producing B cells could modulate the 1,3-β-glucan induced inflammatory response. The modulation of IL-10 producing B cells on Th response after 1,3-β-glucan treatment was cell contact independent. What's more, the modulation pattern of IL-10 producing B cells might be impaired without Treg response. IL-10-producing B cells regulated 1,3-β-glucan induced Th responses in co-ordination with Treg cells.
Collapse
|
18
|
Purification of Murine IL-10 + B Cells for Analyses of Biological Functions and Transcriptomics. Methods Mol Biol 2021. [PMID: 33479906 DOI: 10.1007/978-1-0716-1237-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
B10 cells are the most frequently investigated subset of Breg cells, capable of suppressing immunity through the expression of the immunosuppressive cytokine IL-10. B10 cells are enriched in phenotypically diverse B-cell subsets. Recently, CD9 was identified as a marker of B10 cells in mice (human B10 cells have a separate set of markers that do not overlap with murine B10 cells). Together with a combination of other B10 markers, CD9 can be used to distinguish both mature and immature B10 cells from nonregulatory B cells and support selective purification of B10 cells. Here we provide five methods for the characterization and activity evaluation of CD9+ B cells. The first method is used for the preparation of leukocytes, the second and third are used for the characterization of CD9+ B cells, while the last two methods serve to evaluate CD9+ B-cell activities. Finally, we detail the purification of RNA from B10 cells and the performance of transcriptomic assays.
Collapse
|
19
|
Becker PD, Ratnasothy K, Sen M, Peng Q, Romano M, Bazoer J, Suvitra E, Stout A, Hylton SG, Dorling A, Lechler RI, Smyth LA, Lombardi G. B lymphocytes contribute to indirect pathway T cell sensitization via acquisition of extracellular vesicles. Am J Transplant 2021; 21:1415-1426. [PMID: 32483894 DOI: 10.1111/ajt.16088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
Abstract
B cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4+ T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (Kd ) skin. The absence of B cells at the time of transplantation prolonged skin graft survival. To study the mechanisms behind this observation, T cells with indirect allospecificity were transferred in mice receiving a Kd skin transplant. T cell proliferation was markedly inhibited in the absence of recipient B cells, suggesting that B cells contribute to indirect pathway sensitization. Furthermore, we have shown that a possible way in which B cells present alloantigens is via acquisition of MHC-peptide complexes. Finally, we demonstrate that the addition of B cell depletion to the transfer of regulatory T cells (Tregs) with indirect alloresponse further prolonged skin graft survival. This study supports an important role for B cells in indirect T cell priming and further emphasizes the advantage of combination therapies in prolonging transplant survival.
Collapse
Affiliation(s)
- Pablo D Becker
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Kulachelvy Ratnasothy
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Monica Sen
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - Qi Peng
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marco Romano
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jordan Bazoer
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Erik Suvitra
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Anas Stout
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Shannon G Hylton
- School of Health, Sports and Biosciences, University of East London, London, UK
| | - Anthony Dorling
- MRC Centre for Transplantation, Department of Inflammation Biology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lesley A Smyth
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
20
|
Phillips BE, Garciafigueroa Y, Engman C, Liu W, Wang Y, Lakomy RJ, Meng WS, Trucco M, Giannoukakis N. Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All- trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front Immunol 2021; 12:586220. [PMID: 33763059 PMCID: PMC7982719 DOI: 10.3389/fimmu.2021.586220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFβ1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFβ1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFβ1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFβ1-based micro/nanoparticle “vaccines” as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.
Collapse
Affiliation(s)
- Brett E Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wen Liu
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yiwei Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Robert J Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2020; 299:10-30. [PMID: 33345311 DOI: 10.1111/imr.12937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
B cells have classically been recognized for their unique and indispensable role in the production of antibodies. Their potential as immunoregulatory cells with anti-inflammatory functions has received increasing attention during the last two decades. Herein, we highlight pioneering studies in the field of regulatory B cell (Breg) research. We will review the literature on Bregs with a particular focus on their role in the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
22
|
Wang Y, Hu Y, Pan K, Li H, Shang S, Wang Y, Tang G, Han X. In-vivo imaging revealed antigen-directed gingival B10 infiltration in experimental periodontitis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165991. [PMID: 33080346 DOI: 10.1016/j.bbadis.2020.165991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Our previous study demonstrated that IL-10 secreting B (B10) cells alleviate inflammation and bone loss in experimental periodontitis. The purpose of this study is to determine whether antigen-specificity is required for the local infiltration of B10 cells. Experimental periodontitis was induced in the recipient mice by placement of silk ligature with or without the presence of live Porphyromonas gingivalis (P. gingivalis). Donor mice were pre-immunized by intraperitoneal (IP) injection of formalin-fixed P. gingivalis, or PBS as non-immunized control. Spleen B cells were purified and treated with LPS and CpG for 48 h to expand the B10 population in vitro. Fluorescence-labelled B10 cells were transferred into the recipient mice by tail vein injection and were tracked on day 0, 3, 5 and 10 using IVIS Spectrum in vivo imaging system. The number of B10 cells and P. gingivalis-binding B cells were significantly increased after in vitro treatment of LPS and CpG. On day 5, the fluorescence intensity in gingival tissues was the highest in mice transferred with B10 cells from pre-immunized donor mice. Gingival expression of IL-6, TNF-α, RANKL/OPG ratio and periodontal bone loss in recipient mice were significantly reduced, and the expression of IL-10 and the number of CD19+ B cells were significantly increased after pre-immunized B10 cell transfer in the presence of antigen, compared to those with non-immunized B10 cell transfer or no antigen presence. This study suggests that antigen specificity dictate the local infiltration of B10 cells into periodontal tissue and these antigen-specific B10 cells promote anti-inflammatory responses.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China; Department of Immunology and Infectious Diseases, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, United States
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Keqing Pan
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, United States; Department of Stomatology, the affiliated hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Hao Li
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, United States; Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Shu Shang
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuhua Wang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, United States; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Lu J, Xu X, Li Y, Yu N, Ding Y, Shi Y. Local reinfusion of
B10
cells is effective in the treatment of pustular psoriasis. Dermatol Ther 2020; 33:e13645. [PMID: 32441485 DOI: 10.1111/dth.13645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Xin Xu
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Ying Li
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital Tongji University School of Medicine Shanghai China
- Institute of Psoriasis Tongji University School of Medicine Shanghai China
| |
Collapse
|
25
|
Guan H, Peng J, Jiang L, Mo G, Li X, Peng X. CD19 +CD1d hiCD5 hi B Cells Can Downregulate Malaria ITV Protection by IL-10 Secretion. Front Public Health 2020; 8:77. [PMID: 32257991 PMCID: PMC7090139 DOI: 10.3389/fpubh.2020.00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Infection treatment vaccine (ITV) can lead to sterile protection against malaria infection in mice and humans. However, parasite breakthrough is frequently observed post-challenge. The mechanism of rapid decline in protection after the last immunization is unclear. Herein, C57BL/6 mice were immunized with 103, 105, or 107 ITV thice at 14-day intervals. Mice were challenged with 103 parasites at 1, 3, and 6 months after last immunization and the protection was checked using blood smear. The phenotypes of B cells were analyzed by flow cytometry. The levels of serum cytokines were quantified using cytometric bead array. The 103 ITV vaccination group exhibited 100% protection at 1 month after last immunization, and the 105 group showed sterile protection at 3 months after last immunization. However, the 107 group showed only partial protection. Further, the protection declined to 16.7% at 6 months after last immunization in 105 and 107 groups, whereas it maintained for more than 60% in 103 group. The number of memory B cells (MBC) decreased along with the decline in protection. However, programmed cell death protein 1 (PD-1) expressed on MBCs did not show significant variation among the three groups. Interestingly, CD19+CD1dhiCD5hi B cells, defined as B10 cells, exhibited negative regulation with respect to protection. The numbers of CD19+CD1dhiCD5hi B cells in the 103 group at 1 months and in the 105 group at 3 months post-immunization were the lowest compared to those in the other groups. Moreover, the serum levels of interleukin 10 (IL-10) in these two groups were also significantly lower than those in other groups. We conclude that higher immunization dose may not lead to better protection with the malaria vaccine as CD19+CD1dhiCD5hi B cells can downregulate ITV protection against malaria via IL-10 secretion. These results could facilitate the design of an effective long-lasting malaria vaccine with the aim of maintaining MBC function.
Collapse
Affiliation(s)
- Hongli Guan
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Jiacong Peng
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Liping Jiang
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Gang Mo
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Xiang Li
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Xiaohong Peng
- Department of Parasitology, Guilin Medical University, Guilin, China
| |
Collapse
|
26
|
Abstract
B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1+ B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-β and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China.
| |
Collapse
|
27
|
Guzman-Genuino RM, Eldi P, Garcia-Valtanen P, Hayball JD, Diener KR. Uterine B Cells Exhibit Regulatory Properties During the Peri-Implantation Stage of Murine Pregnancy. Front Immunol 2019; 10:2899. [PMID: 31921160 PMCID: PMC6917594 DOI: 10.3389/fimmu.2019.02899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023] Open
Abstract
A successful outcome to pregnancy is dependent on the ability of the maternal uterine microenvironment to regulate inflammation processes and establish maternal tolerance. Recently, B cells have been shown to influence pregnancy outcomes as aberrations in their numbers and functions are associated with obstetric complications. In this study, we aimed to comprehensively examine the population frequency and phenotypic profile of B cells over the course of murine pregnancy. Our results demonstrated a significant expansion in B cells within the uterus during the peri-implantation period, accompanied by alterations in B cell phenotype. Functional evaluation of uterine B cells purified from pregnant mice at day 5.5 post-coitus established their regulatory capacity as evidenced by effective suppression of proliferation and activation of syngeneic CD4+ T cells. Flow cytometric analysis revealed that the uterine B cell population has an expanded pool of IL-10-producing B cells bearing upregulated expression of co-stimulatory molecules CD80 and CD86 and activation marker CD27. Our investigations herein demonstrate that during the critical stages surrounding implantation, uterine B cells are amplified and phenotypically modified to act in a regulatory manner that potentially contributes toward the establishment of maternal immunological tolerance in early pregnancy.
Collapse
Affiliation(s)
- Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci U S A 2019; 116:21673-21684. [PMID: 31591231 PMCID: PMC6815157 DOI: 10.1073/pnas.1911464116] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myocardial infarction (MI) provokes an inflammatory response in the heart that removes damaged tissues to facilitate tissue repair/regeneration. However, overactive and prolonged inflammation compromises healing, which may be counteracted by antiinflammatory mechanisms. A key regulatory factor in an inflammatory response is the antiinflammatory cytokine IL-10, which can be produced by a number of immune cells, including subsets of B lymphocytes. Here, we investigated IL-10-producing B cells in pericardial adipose tissues (PATs) and their role in the healing process following acute MI in mice. We found that IL-10-producing B cells were enriched in PATs compared to other adipose depots throughout the body, with the majority of them bearing a surface phenotype consistent with CD5+ B-1a cells (CD5+ B cells). These cells were detected early in life, maintained a steady presence during adulthood, and resided in fat-associated lymphoid clusters. The cytokine IL-33 and the chemokine CXCL13 were preferentially expressed in PATs and contributed to the enrichment of IL-10-producing CD5+ B cells. Following acute MI, the pool of CD5+ B cells was expanded in PATs. These cells accumulated in the infarcted heart during the resolution of MI-induced inflammation. B cell-specific deletion of IL-10 worsened cardiac function, exacerbated myocardial injury, and delayed resolution of inflammation following acute MI. These results revealed enrichment of IL-10-producing B cells in PATs and a significant contribution of these cells to the antiinflammatory processes that terminate MI-induced inflammation. Together, these findings have identified IL-10-producing B cells as therapeutic targets to improve the outcome of MI.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| | - Rajeev Dalal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Connie D Cao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - J Luke Postoak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Guan Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zhizhang Wang
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Hind Lal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| |
Collapse
|
29
|
Hasan MM, Thompson-Snipes L, Klintmalm G, Demetris AJ, O'Leary J, Oh S, Joo H. CD24 hiCD38 hi and CD24 hiCD27 + Human Regulatory B Cells Display Common and Distinct Functional Characteristics. THE JOURNAL OF IMMUNOLOGY 2019; 203:2110-2120. [PMID: 31511354 DOI: 10.4049/jimmunol.1900488] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
Although IL-10-producing regulatory B cells (Bregs) play important roles in immune regulation, their surface phenotypes and functional characteristics have not been fully investigated. In this study, we report that the frequency of IL-10-producing Bregs in human peripheral blood, spleens, and tonsils is similar, but they display heterogenous surface phenotypes. Nonetheless, CD24hiCD38hi transitional B cells (TBs) and CD24hiCD27+ B cells (human equivalent of murine B10 cells) are the major IL-10-producing B cells. They both suppress CD4+ T cell proliferation as well as IFN-γ/IL-17 expression. However, CD24hiCD27+ B cells were more efficient than TBs at suppressing CD4+ T cell proliferation and IFN-γ/IL-17 expression, whereas they both coexpress IL-10 and TNF-α. TGF-β1 and granzyme B expression were also enriched within CD24hiCD27+ B cells, when compared with TBs. Additionally, CD24hiCD27+ B cells expressed increased levels of surface integrins (CD11a, CD11b, α1, α4, and β1) and CD39 (an ecto-ATPase), suggesting that the in vivo mechanisms of action of the two Breg subsets are not the same. Lastly, we also report that liver allograft recipients with plasma cell hepatitis had significant decreases of both Breg subsets.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259.,Institute of Biomedical Studies, Baylor University, Waco, TX 76706
| | | | - Goran Klintmalm
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246; and
| | | | - Jacqueline O'Leary
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246; and
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259; .,Institute of Biomedical Studies, Baylor University, Waco, TX 76706
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259; .,Institute of Biomedical Studies, Baylor University, Waco, TX 76706
| |
Collapse
|
30
|
Luo L, Liu Q, Peng S, Meng Y, Du W, Luo D, Wang Q, Ding J, Dong X, Ma X. The Number of Regulatory B Cells is Increased in Mice with Collagen-induced Arthritis. Open Life Sci 2019; 14:12-18. [PMID: 33817132 PMCID: PMC7874759 DOI: 10.1515/biol-2019-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to investigate changes in regulatory B cells (Bregs) and the expression of related cytokines such as interleukin-10 (IL-10) and transforming growth factor (TGF)-β in a mouse model of collagen-induced arthritis (CIA). A total 20 DBA/1 mice (6-8 weeks old) were randomly divided into control and CIA disease groups. For the CIA disease group, animals were injected intradermally with chicken collagen type II and complete Freund's adjuvant. The calculated arthritis index score of the CIA group was significantly higher than that in control group. Hematoxylin and eosin staining showed tumid synovial cells with irregular arrangement and obvious hyperplasia, with a high degree of inflammatory cell infiltration in CIA model group. Cytometric bead array technology and quantitative RT-PCR indicated that the levels of IL-10 and TGF-β in serum, and synovial cells were significantly increased in the CIA group. The proportion of Bregs in the spleen of the CIA group was significantly increased compared to the control group. In conclusion, our findings demonstrate that the number of Bregs and the expression of TGF-β and IL-10 are enhanced in mice with CIA.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qing Liu
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Shanshan Peng
- College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Yan Meng
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Wenjing Du
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Demei Luo
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Qian Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| | - Xunan Dong
- The Fifth Affiliated Hospital of Xinjiang Medical University, No. 118 West Henan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China
| | - Xiumin Ma
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, No. 137 South Liyushan Road, Urumqi 830011, Xinjiang Uygur Autonomous Region, Urumqi P.R. China.,College of Basic Medicine, Xinjiang Medical University, Urumqi 830011, Urumqi P.R. China
| |
Collapse
|
31
|
Lundqvist S, Modvig S, Fischer EA, Frederiksen JL, Degn M. Frequency and immunophenotype of IL10-producing regulatory B cells in optic neuritis. Immunology 2018; 156:259-269. [PMID: 30452090 DOI: 10.1111/imm.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022] Open
Abstract
Mouse models of multiple sclerosis (MS) have shown the importance of interleukin-10 (IL-10) -producing regulatory B (Breg) cells in dampening disease activity and inhibiting disease initiation and progression. In MS and other autoimmune diseases decreased frequency and functionality of Breg cells correlate with disease activity and the percentage of IL-10-producing Breg cells decreases during relapse and normalizes in remission. Optic neuritis (ON) is a common first clinical manifestation of MS and IL-10-producing Breg cells may be crucial in the transition from ON to MS, we therefore investigate the frequency and function of Breg cells in ON as a clinical model of early demyelinating disease. B cells were purified from 27 patients with ON sampled close to symptom onset (median 23 days, range 7-41 days) and 13 healthy controls. The B cells were stimulated and cultured for 48 hr with CD40 ligand and CpG before measurement of intracellular IL-10 and the surface markers CD19, CD1d, CD5, CD24, CD38 and CD27 by flow cytometry. The frequency of B-cell subsets was analysed in peripheral blood and cerebral spinal fluid (CSF) of patients. Sixty-five per cent of the IL-10-producing Breg cells co-expressed CD24 and CD38, and only 14% were CD24high CD27+ , suggesting that the naive B cells are the primary source of IL-10 in the B-cell culture, followed by memory cells in both healthy controls and patients. The frequency of naive CD19+ CD24+ CD38+ Breg cells was higher in patients with ON compared with controls. The ability of Breg cells to produce IL-10 was at normal levels in both ON patients with high risk and those with low risk of progression to MS. We found no correlation between Breg cell function and the presence of brain white matter lesions by magnetic resonance imaging or CSF oligoclonal bands indicative of ON patients carrying a higher risk of conversion to MS. The frequencies of IL-10-producing B cells did not correlate with the conversion to MS at 2-year follow up. Interleukin-10 was primarily produced by naive and memory B cells. The frequency of IL-10-secreting B cells did not correlate with risk factors of MS. Breg cell function at clinical onset of ON is not a determining factor for conversion to MS.
Collapse
Affiliation(s)
- Sara Lundqvist
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Signe Modvig
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Emilie A Fischer
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jette L Frederiksen
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Matilda Degn
- MS Clinic, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
32
|
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4 +Th1 Immunity. iScience 2018; 11:13-30. [PMID: 30572206 PMCID: PMC6299163 DOI: 10.1016/j.isci.2018.11.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
The importance of Th1/interferon (IFN)-γ-mediated responses in mycobacterial infection has been well established. However, little is known about B cell-mediated immunity during Mycobacterium tuberculosis (Mtb) infection. Interleukin (IL)-10-producing B cells (B10 cells), a subset of B regulatory cells (Bregs), are implicated in modulating the immune response. Herein, we found that B10 cells were significantly increased in patients with tuberculosis. Furthermore, mannose-capped lipoarabinomannan (ManLAM), a major surface lipoglycan component from Mtb, induced a significant increase in B10 cells, which enriched in CD5+ B1a B cells. ManLAM induced IL-10 production mainly by activating MyD88/PI3K/AKT/Ap-1 and K63-linked ubiquitination of NF-κB essential modulator/nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathways in B cells via Toll-like receptor 2. IL-10 production by ManLAM-treated B cells further inhibited CD4+ Th1 polarization, leading to increased susceptibility to mycobacterial infection compared with ManLAM-treated IL-10−/− B group. Thus, we report a new immunoregulation mechanism in which Mtb ManLAM-induced B10 cells negatively regulate host anti-TB cellular immunity. Mtb mannose-capped lipoarabinomannan (ManLAM) induces IL-10 production in B cells ManLAM-induced B10 cells enrich in CD5+ B1a B cells ManLAM binding with TLR2 triggers MyD88 signaling pathways of B cells ManLAM-induced B10 cells hinder CD4+Th1 immunity during Mtb infection in mice
Collapse
Affiliation(s)
- Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Jiangan, Wuhan 430015, China
| | - Zi-Lu Qu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| |
Collapse
|
33
|
Pan W, Xu HW, Hao WT, Sun FF, Qin YF, Hao SS, Liu H, Cao JP, Shen YJ, Zheng KY. The excretory-secretory products of Echinococcus granulosus protoscoleces stimulated IL-10 production in B cells via TLR-2 signaling. BMC Immunol 2018; 19:29. [PMID: 30355335 PMCID: PMC6201587 DOI: 10.1186/s12865-018-0267-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Excretory-secretory products released by Echinococcus granulosus protoscoleces (EgPSC-ESPs) are well-known to regulate T cell responses. However, their direct influence on the differentiation of B cell subsets remains largely elusive. This study investigated the effects of EgPSC-ESPs on the differentiation of IL-10-producing B cells (B10), and explored the possible role of Toll-like receptor 2 (TLR-2) signaling in this process. Results In comparison to phosphate buffered saline (PBS), B cells exposed to the excretory–secretory products (ESPs) generated higher percentages of B10 cells, with higher expression of IL-10 mRNA, and larger amount of IL-10 production, which were in a dose dependent way. The mRNA and protein expression of TLR-2 in the ESPs-stimulated B cells were significantly higher than those in PBS, which was consistent to the results in B cells isolated from EgPSC infected mice. Moreover, TLR-2−/− B cells in response to ESPs stimulation expressed lower levels of IL-10 mRNA and produced undetectable IL-10 in comparison to those in normal B cells. In addition, Phosphatase and tensin homolog deleted on chromosome ten/AKT/Phosphatidylinositol-3 kinase (PTEN/AKT/PI3K) pathway was activated in ESPs-treated B cells, which was also dependent on TLR-2 signaling. Pam3CSK4, the agonist of TLR-2, could mock the effects of ESPs on the expression of PTEN, AKT and PI3K. Conclusion Overall, this study revealed that TLR-2 signaling was required for B10 induction mediated by EgPSC-ESPs, which might be an immunomodulatory target against the parasite infection. Electronic supplementary material The online version of this article (10.1186/s12865-018-0267-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China
| | - Hui-Wen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China.,Faculty of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wen-Ting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fen-Fen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China
| | - Yan-Fang Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shan-Shan Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yu-Juan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China. .,National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, Jiangsu Province, China.
| |
Collapse
|
34
|
The Role of CD38 on the Function of Regulatory B Cells in a Murine Model of Lupus. Int J Mol Sci 2018; 19:ijms19102906. [PMID: 30257456 PMCID: PMC6213330 DOI: 10.3390/ijms19102906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Previous work from our group has shown that Cd38-/- mice develop a milder pristane-induced lupus disease than WT or Art2-/- counterparts, demonstrating a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via a Transient Receptor Potential Melastatin 2 (TRPM2)-dependent apoptosis-driven mechanism. In this study we asked whether CD38 may play a role in the expression and function of regulatory B cells (IL-10-producing B cells or B10 cells). In pristane-treated mice the frequency of spleen CD19⁺CD1dhiCD5⁺ B cells, which are highly enriched in B10 cells, was significantly increased in Cd38-/- splenocytes compared to WT, while the frequency of peritoneal plasmacytoid dendritic cells (pDCs), which are major type I Interferon (IFN) producers, was greatly diminished. The low proportion of pDCs correlated with lower amounts of IFN-α in the peritoneal lavage fluids of the Cd38-/- mice than of WT and Art2-/- mice. Functional ex vivo assays showed increased frequencies of IL-10-producing B cells in Cd38-/- splenocytes than in WT upon stimulation with an agonist anti-CD40 mAb. Overall these results strongly suggest that Cd38-/- mice are better suited than WT mice to generate and expand regulatory B10 cells following the appropriate stimulation.
Collapse
|
35
|
Lighaam LC, Unger PPA, Vredevoogd DW, Verhoeven D, Vermeulen E, Turksma AW, Ten Brinke A, Rispens T, van Ham SM. In vitro-Induced Human IL-10 + B Cells Do Not Show a Subset-Defining Marker Signature and Plastically Co-express IL-10 With Pro-Inflammatory Cytokines. Front Immunol 2018; 9:1913. [PMID: 30258433 PMCID: PMC6143818 DOI: 10.3389/fimmu.2018.01913] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Regulatory B cells (Breg) have been described as a specific immunological subsets in several mouse models. Identification of a human counterpart has remained troublesome, because unique plasma membrane markers or a defining transcription factor have not been identified. Consequently, human Bregs are still primarily defined by production of IL-10. In this study, we sought to elucidate if in vitro-induced human IL-10 producing B cells are a dedicated immunological subset. Using deep immune profiling by multicolor flow cytometry and t-SNE analysis, we show that the majority of cells induced to produce IL-10 co-express pro-inflammatory cytokines IL-6 and/or TNFα. No combination of markers can be identified to define human IL-10+TNFα−IL-6− B cells and rather point to a general activated B cell phenotype. Strikingly, upon culture and restimulation, a large proportion of formerly IL-10 producing B cells lose IL-10 expression, showing that induced IL-10 production is not a stable trait. The combined features of an activated B cell phenotype, transient IL-10 expression and lack of subset-defining markers suggests that in vitro-induced IL-10 producing B cells are not a dedicated subset of regulatory B cells.
Collapse
Affiliation(s)
- Laura C Lighaam
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Peter-Paul A Unger
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David W Vredevoogd
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dorit Verhoeven
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen Vermeulen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annelies W Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Rincón-Arévalo H, Villa-Pulgarín J, Tabares J, Rojas M, Vásquez G, Ramírez-Pineda JR, Castaño D, Yassin LM. Interleukin-10 production and T cell-suppressive capacity in B cell subsets from atherosclerotic apoE -/- mice. Immunol Res 2018; 65:995-1008. [PMID: 28744806 DOI: 10.1007/s12026-017-8939-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evidence regarding the role of regulatory B cells (Breg) in atherosclerosis are scarce, and there are contradictory data about their atheroprotective properties. Due to the demonstrated protective function of Breg in different inflammatory diseases mainly through interleukin-10 (IL-10) production, the knowledge of their participation in atherosclerosis immunopathology would be very valuable. To further study which B cell subsets participate in IL-10 production and their regulatory role, splenocytes from apolipoprotein-E-deficient mice were evaluated by ex vivo and in vitro cultures. Atherosclerotic mice had increased frequency of IL-10+ B cells, which presented high CD1d, CD19, and IgM, but variable CD5, CD21, and CD23 expression. IL-10+ B cells were not enriched in B cell subsets previously reported as Breg. Increased frequency of IL-10+ B cells with transitional 1-like (T1-like) and follicular (FO) and reduced CD5+ and marginal zone (MZ) phenotypes were observed ex vivo. Increased frequency of IL-10+ B cells with T1-like and MZ, and decreased IL-10+ FO and T2 phenotypes were also observed in vitro. To determine regulatory capacity of B cells in the atherosclerotic model, each subset were co-cultured with CD4+CD25- T cells. CD5+, FO, MZ, and T1-like cells from atherosclerotic mice exhibited regulation in an IL-10-dependent manner. However, only FO cells decreased both frequency of interferon gamma (IFN-γ)+ and tumor necrosis factor alpha (TNF-α)+ and proliferation of T cells. Finally, splenocytes showed increased frequency of IFN-γ+ and TNF-α+ cells only when FO-depleted B cells were evaluated. These results suggest that mainly FO B cells can modulate in some level the inflammatory responses observed in atherosclerosis.
Collapse
Affiliation(s)
- Héctor Rincón-Arévalo
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Janny Villa-Pulgarín
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Jorge Tabares
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| | - Lina M Yassin
- Grupo de Investigaciones Biomédicas Uniremington, Corporación Universitaria Remington, Medellín, Colombia.
| |
Collapse
|
37
|
Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis 2018; 9:109. [PMID: 29371592 PMCID: PMC5833552 DOI: 10.1038/s41419-017-0152-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
Abstract
Kidney transplantation is the optimal treatment for end-stage renal diseases. Although great improvement has been achieved, immune tolerance is still the Holy Grail that every organ transplant practitioner pursues. The role of B cells in transplantation has long been considered simply to serve as precursors of plasma cells, which produce alloantibodies and induce antibody-mediated rejection. Recent research indicates that a specialized subset of B cells plays an important role in immune regulation, which has been well demonstrated in autoimmune diseases, infections, and cancers. This category of regulatory B cells (Bregs) differs from conventional B cells, and they may help develop a novel immunomodulatory therapeutic strategy to achieve immune tolerance in transplantation. Here, we review the latest evidence regarding phenotypes, functions, and effectors of Bregs and discuss their diverse effects on kidney transplantation.
Collapse
|
38
|
The IL-10-producing regulatory B cells (B10 cells) and regulatory T cell subsets in neuromyelitis optica spectrum disorder. Neurol Sci 2018; 39:543-549. [PMID: 29349658 DOI: 10.1007/s10072-018-3248-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023]
Abstract
B cells contribute to the pathogenesis of neuromyelitis optica (NMO) by producing Aquaporin 4-specific autoantibodies (AQP4-ab); on the other hand, there are certain B cells that suppress immune responses by producing regulatory cytokines, such as IL-10. In this study, we investigated the presence of IL-10-producing Breg cells among lymphocyte subsets. Twenty-two seropositive NMO spectrum disorder (NMOSD) patients (29 samples) and 13 healthy controls (HCs) (14 samples) were enrolled. All NMOSD patients have received one or more immunosuppressive drugs. The phenotype and frequency of B cell and T cell subsets in the peripheral blood were measured by flow cytometry. We defined Breg cells as IL-10-producing B (B10) cells, which are CD19+CD39+CD1d+IL-10+. The potential relations were evaluated between specific lymphocyte subsets and AQP4-ab intensity measured by the cell-based indirect immunofluorescence assay. The frequency of B10 cells was higher in patients with NMOSD regardless of the disease status than that in HCs (attack samples; p = 0.009 and remission samples; p < 0.001, respectively). In addition, the frequency of IL-17+ Treg cells among Treg cells was higher during remission than during an attack (uncorrected p = 0.032). Among the lymphocyte subsets, B10 cells alone showed a positive correlation with the intensity of AQP4-ab positivity (ρ [rho] = 0.402 and p = 0.031). It was suggested that the suppressive subsets including B10 and IL-17+ Treg cells might have important roles in controlling disease status in NMOSD. Further functional studies may help to elucidate the immunological role of B10 and IL-17+ Treg cells in NMOSD.
Collapse
|
39
|
Forestier A, Guerrier T, Jouvray M, Giovannelli J, Lefèvre G, Sobanski V, Hauspie C, Hachulla E, Hatron PY, Zéphir H, Vermersch P, Labalette M, Launay D, Dubucquoi S. Altered B lymphocyte homeostasis and functions in systemic sclerosis. Autoimmun Rev 2018; 17:244-255. [PMID: 29343447 DOI: 10.1016/j.autrev.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
Beyond the production of autoantibodies, B-cells are thought to play a role in systemic sclerosis (SSc) by secreting proinflammatory/profibrotic cytokines. B-cells are a heterogeneous population with different subsets distinguished by their phenotypes and cytokine production. Data about B-cell subsets, cytokine production and intracellular pathways leading to this production are scarce in SSc. The aim of our study was to describe B-cell homeostasis, activation, proliferation, cytokine production in B-cells and serum and B-cell intracellular signaling pathways in SSc. We hypothezided that B-cell homeostasis and cytokine production were altered in SSc and could be explained by serum cytokine as well as by intracellular signaling pathway abnormalities. Forty SSc patients and 20 healthy controls (HC) were prospectively included. B-cell subsets were determined by flow cytometry using CD19, CD21, CD24, CD38, CD27, IgM and IgD. CD25, CD80, CD95, HLA-DR were used to assess B-cell activation. Intracellular production of IL-10 and IL-6 were assessed by flow cytometry after TLR9 and CD40 stimulation. IL-6, IL-10, Ki67, Bcl2 mRNA were quantified in B-cells. Cytokine production was also assessed in sera and supernatants of B-cell culture, using a multiplex approach. Signaling pathways were studied through phosphorylation of mTOR, ERK, STAT3, STAT5 using a flow cytometry approach. We found that SSc patients exhibited an altered peripheral blood B-cell subset distribution, with decreased memory B-cells but increased proportion of naive and CD21LoCD38Lo B-cell subsets. We observed an increased expression of activation markers (CD80, CD95, HLA-DR) on some B-cell subsets, mainly the memory B-cells. Secretion of IL-6, BAFF and CXCL13 were increased in SSc sera. There was no correlation between the peripheral blood B-cell subsets and the serum concentrations of these cytokines. After stimulation, we observed a lower proportion of IL-10 and IL-6 producing B-cells in SSc. Finally, we observed a significant decrease of mTOR phosphorylation in SSc patient B-cells. In conclusion, we observed an altered B-cell homeostasis in SSc patients compared to HC. Memory B-cells were both decreased and activated in patients. IL-10 producing B-cells were decreased in SSc. This decrease was associated with an alteration of mTOR phosphorylation in B-cells. Conversely, there was no correlation between serum cytokine profile and B-cell homeostasis alterations.
Collapse
Affiliation(s)
- Alexandra Forestier
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Thomas Guerrier
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France
| | - Mathieu Jouvray
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Jonathan Giovannelli
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Guillaume Lefèvre
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - Vincent Sobanski
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Carine Hauspie
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - Eric Hachulla
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Pierre-Yves Hatron
- CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France
| | - Hélène Zéphir
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Service de neurologie, F-59000 Lille, France
| | - Patrick Vermersch
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Service de neurologie, F-59000 Lille, France
| | - Myriam Labalette
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Département de médecine interne et immunologie clinique, F-59000 Lille, France; Centre national de référence maladies systémiques et auto-immunes rares, France.
| | - Sylvain Dubucquoi
- Univ. Lille, U995, Lille Inflammation Research International Center (LIRIC), F-59000 Lille, France; Inserm, U995, F-59000 Lille, France; CHU Lille, Institut d'immunologie, F-59000 Lille, France
| |
Collapse
|
40
|
In-vitro generation of interleukin-10 secreting B-regulatory cells from donor adipose tissue derived mesenchymal stem cells and recipient peripheral blood mononuclear cells for potential cell therapy. Biomed J 2017; 40:49-54. [PMID: 28411882 PMCID: PMC6138595 DOI: 10.1016/j.bj.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/15/2016] [Indexed: 11/20/2022] Open
Abstract
Background Interleukin-10 secreting B-cells are a major subset of B-regulatory cells (B-regs), commonly recognized as CD19+/38hi/24hi/IL10+. They carry out immunomodulation by release of specific cytokines and/or cell-to-cell contact. We have generated B-regs in-vitro from donor adipose tissue derived mesenchymal stem cells (AD-MSC) and renal allograft recipient (RAR) peripheral blood mononuclear cells (PBMC) for potential cell therapy. Material and methods Mononuclear cells separated by density gradient centrifugation from 50 ml anti-coagulated blood of 15-RAR and respective donors were analysed for baseline B-regs using appropriate antibodies. Equal amount (20 × 106 cells/ml) of stimulator (irradiated at 7.45 Gy/min for 10 min) and responder (non-irradiated) cells were co-cultured with in-vitro generated AD-MSC (1 × 106 cells/ml) in proliferation medium containing lipopolysaccharide from E. coli K12 strain at 37 °C with 5% CO2. Cells were harvested on day-7 and analyzed for viability, sterility, quantity, morphology and phenotyping. In-vitro generated B-reg levels were compared with baseline B-regs. Results In-vitro generated B-reg count increased to 16.75% from baseline count of 3.35%. Conclusion B-regs can be successfully generated in-vitro from donor AD-MSC and RAR PBMC for potential cell therapy.
Collapse
|
41
|
Guzman-Genuino RM, Diener KR. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer. Front Immunol 2017; 8:172. [PMID: 28261223 PMCID: PMC5313489 DOI: 10.3389/fimmu.2017.00172] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/26/2022] Open
Abstract
The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.
Collapse
Affiliation(s)
- Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia , Adelaide, SA , Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
42
|
Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave JC, Guerrier T, Lefèvre G, Sobanski V, Savina A, Hachulla E, Hatron PY, Labalette M, Batteux F, Dubucquoi S, Launay D. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol 2017; 8:53. [PMID: 28223983 PMCID: PMC5293837 DOI: 10.3389/fimmu.2017.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction During systemic sclerosis (SSc), peripheral B cells display alterations in subset homeostasis and functional properties and are a promising therapeutic target. However, there is only few data regarding whether these anomalies are accurately reproduced in animal models of SSc. Objective In this work, we assessed the B cell homeostasis modifications in an experimental model of SSc [hypochlorous acid (HOCl)-induced mouse], both at a phenotypic and functional level, during the course of the disease. Methods Balb/c mice underwent daily intradermal injections of HOCl (or phosphate-buffered saline) and were then sacrificed at day 21 (early inflammatory stage) or day 42 (late fibrotic stage). For phenotypic studies, the distribution of the main spleen cell subsets (B cells, T CD4 and CD8 cells, NK cells, macrophages) and splenic B cell subsets (immature, mature naïve, germinal center, antibody-secreting, memory, B1) was assessed by flow cytometry. For functional studies, splenic B cells were immediately MACS-sorted. Production of interleukin (IL)-6, CCL3, IL-10, and transforming growth factor (TGF)-β was assessed ex vivo by RT-PCR and after 48 h of culture by ELISA. Regulatory B cell (Breg) counts were quantified by flow cytometry. Results Phenotypic analyses showed an early expansion of transitional B cells, followed by a late expansion of the mature naive subset and decrease in plasmablasts and memory B cells. These anomalies are similar to those encountered in SSc patients. Functional analyses revealed a B-cell overproduction of pro-inflammatory cytokines (IL-6 and CCL3) and an impairment of their anti-inflammatory capacities (decreased production of IL-10 and TGF-β, reduced levels of Bregs) at the early inflammatory stage; and an overproduction of pro-fibrotic cytokines (TGF-β and IL-6) at the late fibrotic stage. These results approximate the anomalies observed in human SSc. Conclusion This work reports the existence of anomalies in B cell homeostasis and functional properties in an animal model of SSc that approximate those displayed by SSc patients. These anomalies vary over the course of the disease, which pleads for their participation in inflammatory and fibrotic events. This makes the HOCl mouse a relevant experimental model for the study of B cells, and therefore, B-cell-targeted therapies in SSc.
Collapse
Affiliation(s)
- Sébastien Sanges
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Manel Jendoubi
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Niloufar Kavian
- Faculté de Médecine, Institut Cochin INSERM U1016 et Laboratoire d'immunologie biologique, AP-HP Hôpital Cochin, Université Paris Descartes, Sorbonne Paris-Cité , Paris , France
| | - Carine Hauspie
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Silvia Speca
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Jean-Charles Crave
- Octapharma France SAS, Medical Department , Boulogne-Billancourt , France
| | - Thomas Guerrier
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France
| | - Guillaume Lefèvre
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Vincent Sobanski
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | | | - Eric Hachulla
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Pierre-Yves Hatron
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Myriam Labalette
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - Frédéric Batteux
- Faculté de Médecine, Institut Cochin INSERM U1016 et Laboratoire d'immunologie biologique, AP-HP Hôpital Cochin, Université Paris Descartes, Sorbonne Paris-Cité , Paris , France
| | - Sylvain Dubucquoi
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Institut d'Immunologie, CHU Lille, Lille, France
| | - David Launay
- U995, LIRIC - Lille Inflammation Research International Center, Université de Lille, Lille, France; INSERM, U995, Lille, France; Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France; Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| |
Collapse
|
43
|
Kalampokis I, Venturi GM, Poe JC, Dvergsten JA, Sleasman JW, Tedder TF. The Regulatory B Cell Compartment Expands Transiently During Childhood and Is Contracted in Children With Autoimmunity. Arthritis Rheumatol 2017; 69:225-238. [PMID: 27429419 PMCID: PMC5195882 DOI: 10.1002/art.39820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Regulatory B cells that inhibit immune responses through interleukin-10 (IL-10) secretion (B10 cells) have been characterized in adult subjects with autoimmune disease. The aim of this study was to characterize B10 cells in individuals across the entire age range of normal human development and changes in their frequency and numbers in children with autoimmunity. METHODS The phenotype and numbers of B10 cells in blood were examined in healthy individuals and children with autoimmunity, using flow cytometry. B10 cell function was assessed by measuring the effect of B cell-derived IL-10 on interferon-γ (IFNγ) expression by CD4+ T cells. Serum cytokine levels were measured by enzyme-linked immunosorbent assay. RESULTS The frequency of B10 cells transiently increased during childhood, when up to 30% of B cells were competent to produce IL-10, compared with the low frequencies in healthy newborns (3-4%) and adults (7-9%). The surface phenotype of B10 cells in children revealed age-dependent variability. B10 cells from children were distinct from proinflammatory cytokine-producing B cells and down-regulated IFNγ production by CD4+ T cells in vitro. Compared with age-matched healthy controls, children with autoimmunity had lower numbers and frequencies of B10 cells (decreased by 39% and 48%, respectively), higher IFNγ levels, and lower IL-21 levels in serum. IFNγ inhibited, whereas IL-21 promoted, B cell IL-10 competence in vitro. CONCLUSION B10 cells, a functionally defined cell subset with a variable surface phenotype reflective of overall B cell development, transiently expand during childhood. B10 cell frequencies and numbers were decreased in children with autoimmunity, which may be explained in part by alterations in serum IFNγ and IL-21 that differentially regulate B10 cell development.
Collapse
Affiliation(s)
- Ioannis Kalampokis
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - Jonathan C. Poe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | | | - John W. Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
44
|
Regulatory B Cells Induce Formation of IL-10-Expressing T Cells in Mice with Autoimmune Neuroinflammation. J Neurosci 2016; 36:12598-12610. [PMID: 27821578 DOI: 10.1523/jneurosci.1994-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Although B cells are traditionally known for their role in propagating proinflammatory immune responses, their immunosuppressive effects have only recently begun to be appreciated. How these regulatory B cells (Bregs) suppress the immune response remains to be worked out in detail. In this article, we show that Bregs can induce the formation of conventional FoxP3+ regulatory T cells (Tregs), as well as a more recently described CD49b+CD223+ regulatory T-cell subset, known as type 1 regulatory T cells (Tr1s). When Bregs are transferred into mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, they home to the spleen and mesenteric lymph nodes, leading to an expansion of Tregs and Tr1 in vivo Tregs and Tr1s are also found in greater proportions in the CNS of mice with EAE treated with Bregs and are correlated with the remission of symptoms. The discovery that Bregs induce the formation of regulatory T-cell subsets in vivo may herald their use as immunosuppressive agents in adoptive cellular therapies for autoimmune pathologies. SIGNIFICANCE STATEMENT Although B cells are traditionally known for their role in propagating proinflammatory immune responses, their immunosuppressive effects have only recently begun to be appreciated. How regulatory B cells (Bregs) suppress the immune response remains to be fully understood. In this article, we show that Bregs can induce the formation of conventional regulatory T cells (Tregs) as well as type 1 regulatory T cells (Tr1s). When Bregs are transferred into mice with experimental autoimmune encephalomyelitis (EAE), they home to secondary lymphoid organs, leading to an expansion of Tregs and Tr1s in vivo Tregs and Tr1s are also found in greater proportions in the CNS of mice with EAE treated with Bregs and are correlated with the remission of symptoms.
Collapse
|
45
|
Bjarnadóttir K, Benkhoucha M, Merkler D, Weber MS, Payne NL, Bernard CCA, Molnarfi N, Lalive PH. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation. Sci Rep 2016; 6:34594. [PMID: 27708418 PMCID: PMC5052622 DOI: 10.1038/srep34594] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 10/25/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1-/-) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1-/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1-/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.
Collapse
Affiliation(s)
- Kristbjörg Bjarnadóttir
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Natalie L Payne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Claude C A Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Nicolas Molnarfi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, Division of Neurology, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
46
|
Liu F, Dai W, Li C, Lu X, Chen Y, Weng D, Chen J. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis. Sci Rep 2016; 6:28911. [PMID: 27354007 PMCID: PMC4926212 DOI: 10.1038/srep28911] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion.
Collapse
Affiliation(s)
- Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Wujing Dai
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Xiaowei Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| |
Collapse
|
47
|
Tang A, Dadaglio G, Oberkampf M, Di Carlo S, Peduto L, Laubreton D, Desrues B, Sun CM, Montagutelli X, Leclerc C. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer 2016; 139:1358-71. [DOI: 10.1002/ijc.30169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur; Paris France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Selene Di Carlo
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Lucie Peduto
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Daphné Laubreton
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Belinda Desrues
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Cheng-Ming Sun
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Unité de Génétique fonctionnelle de la souris; Paris France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| |
Collapse
|
48
|
Qiu Z, Yu P, Bai B, Hao Y, Wang S, Zhao Z, Hang Z, Wang Q, Guo M, Feng Q, Zhao Q. Regulatory B10 cells play a protective role in severe acute pancreatitis. Inflamm Res 2016; 65:647-54. [PMID: 27085321 DOI: 10.1007/s00011-016-0947-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND B10 cells are specific B cell subsets with the capacity of producing IL-10 to inhibit immune responses. Several studies have demonstrated that B10 cells are correlated with some immune and inflammatory diseases, such as experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis (CA), colitis and contact hypersensitivity. However, its role in severe acute pancreatitis (SAP) has not been clearly demonstrated yet. PURPOSE In this study, we show that B10 cells can inhibit inflammation of severe acute pancreatitis (SAP). MATERIALS AND METHODS Blood from 17 patients with SAP and 22 age-matched healthy volunteers were collected to detect the proportion of B10 cells. CD19-/- mice were used as B10 cell-deficient mice. Amylase and lipase levels, pancreatic edema and HE staining were tested to assess the severity of SAP. RESULTS CD19-/- mice, which lack B10 cells, suffered a more severe inflammation in pancreas compared with wild-type mice after caerulein injection. The frequency of B10 cells was decreased both in SAP patients and SAP animal models. Adoptive transfer of B10 cells ameliorates inflammatory injury of pancreatitis in CD19-/- mice. CONCLUSION Thus, we identified B10 cells as a protective factor for SAP and provided a novel target for SAP treatment.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengfei Yu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yiming Hao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqi Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhanwei Zhao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenning Hang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Min Guo
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quanxin Feng
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
49
|
Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions. Immunol Cell Biol 2016; 94:719-28. [PMID: 27029896 DOI: 10.1038/icb.2016.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Abstract
Plasma cell alloantigen 1 (PC1), also known as ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1), is an enzyme involved primarily in hydrolysis of adenosine triphosphate at the cell surface. Although the expression pattern of PC1 is relatively broad, its expression in B cells is found at significant levels only in terminally differentiated germinal center B cells, plasma cells and a subset of B-1a cells in mice. Here we describe studies designed to determine whether expression of PC1 might define novel populations of human B cells with similarities to mouse B cells. We found that PC1 is expressed in small populations of human B lineage cells in peripheral blood, cord blood, tonsils, bone marrow and pediatric peritoneal fluid, with the highest levels in plasma cells. The characteristics of human PC1(+) B cells differ from mouse peritoneal B-1a subsets and from features of the human CD20(+)CD27(+)CD43(+)CD70(-) B-cell subset proposed to be human B-1 cells. Expression of PC1 was greatly increased in B cells stimulated with the combination of CD40 ligand, interleukin (IL)-4 and IL-21. In addition, PC1(+) B cells activated CD4(+) T regulatory cells. ENPP1 thus defines a subset of human B cells that differs significantly from mouse peritoneal B-1a and proposed human B-1 cells.
Collapse
|
50
|
Floudas A, Amu S, Fallon PG. New Insights into IL-10 Dependent and IL-10 Independent Mechanisms of Regulatory B Cell Immune Suppression. J Clin Immunol 2016; 36 Suppl 1:25-33. [DOI: 10.1007/s10875-016-0263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
|