1
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
2
|
Alonso Baez L, Bacete L. Cell wall dynamics: novel tools and research questions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6448-6467. [PMID: 37539735 PMCID: PMC10662238 DOI: 10.1093/jxb/erad310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Years ago, a classic textbook would define plant cell walls based on passive features. For instance, a sort of plant exoskeleton of invariable polysaccharide composition, and probably painted in green. However, currently, this view has been expanded to consider plant cell walls as active, heterogeneous, and dynamic structures with a high degree of complexity. However, what do we mean when we refer to a cell wall as a dynamic structure? How can we investigate the different implications of this dynamism? While the first question has been the subject of several recent publications, defining the ideal strategies and tools needed to address the second question has proven to be challenging due to the myriad of techniques available. In this review, we will describe the capacities of several methodologies to study cell wall composition, structure, and other aspects developed or optimized in recent years. Keeping in mind cell wall dynamism and plasticity, the advantages of performing long-term non-invasive live-imaging methods will be emphasized. We specifically focus on techniques developed for Arabidopsis thaliana primary cell walls, but the techniques could be applied to both secondary cell walls and other plant species. We believe this toolset will help researchers in expanding knowledge of these dynamic/evolving structures.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
| | - Laura Bacete
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
3
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
4
|
Liu XQ, Yan XH, Liang J, Kuang HX, Xia YG. Microwave assisted free radical degradation of Schisandra polysaccharides: Optimization, identification and application. Int J Biol Macromol 2023; 237:124107. [PMID: 36958456 DOI: 10.1016/j.ijbiomac.2023.124107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
In order to establish structural-fingerprinting of polysaccharides for improvement of quality assessment, a sample preparation method based on microwave assisted free radical degradation (MFRD) of plant polysaccharides was proposed to produce oligosaccharides and small Mw polysaccharides. As a case study of Schisandra chinensis and S. sphenanthera fruit polysaccharides (SCP and SSP), the MFRD condition (i.e., 100 °C, 30 s and 80 W) was confirmed to be optimal. The potential structures of the MFRD products of SCP and SSP were further discussed by combinations of HILIC-ESI--QTOF-MSE and HILIC-ESI--Q-OT-IT-MS/MS. As followed, multivariable statistical analysis shows a clear separation of SCP and the SSP in PCA and OPLS-DA plots based HILIC-ESI--QTOF-MSE data. The VIP plot unveils several key Q-markers (e.g., peaks 3, 8, 9, 10, 15, 25, 26, 28, 29 and 30) with significant differences and stable emergences. Furthermore, a low-polymerization compositional fingerprinting was successfully constructed for SCP and SSP using a high-performance anion-exchange chromatography with pulsed amperometric detection. Compared to the conventional sample preparation methods, the MFRD took only a few thousandth of the time to accomplish degradations of plant polysaccharides. It significantly improves sample preparations and is generally applicable to various polysaccharide samples.
Collapse
Affiliation(s)
- Xue-Qing Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xiao-Hui Yan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
5
|
Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, Neidert M, Poschmann G, Malisic M, Thiele M, Stühler K, Dama M, Pauly M, Zuccaro A. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. THE PLANT CELL 2022; 34:2765-2784. [PMID: 35441693 PMCID: PMC9252488 DOI: 10.1093/plcell/koac114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.
Collapse
Affiliation(s)
| | - Alan Wanke
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Lisa Mahdi
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Miriam Neidert
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Milena Malisic
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Meik Thiele
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Murali Dama
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
6
|
Sathitnaitham S, Suttangkakul A, Wonnapinij P, McQueen-Mason SJ, Vuttipongchaikij S. Gel-permeation chromatography-enzyme-linked immunosorbent assay method for systematic mass distribution profiling of plant cell wall matrix polysaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1776-1790. [PMID: 33788319 DOI: 10.1111/tpj.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.
Collapse
Affiliation(s)
- Sukhita Sathitnaitham
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
| | | | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
7
|
Amicucci MJ, Nandita E, Galermo AG, Castillo JJ, Chen S, Park D, Smilowitz JT, German JB, Mills DA, Lebrilla CB. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat Commun 2020; 11:3963. [PMID: 32770134 PMCID: PMC7414865 DOI: 10.1038/s41467-020-17778-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Polysaccharides are the most abundant biomolecules in nature, but are the least understood in terms of their chemical structures and biological functions. Polysaccharides cannot be simply sequenced because they are often highly branched and lack a uniform structure. Furthermore, large polymeric structures cannot be directly analyzed by mass spectrometry techniques, a problem that has been solved for polynucleotides and proteins. While restriction enzymes have advanced genomic analysis, and trypsin has advanced proteomic analysis, there has been no equivalent enzyme for universal polysaccharide digestion. We describe the development and application of a chemical method for producing oligosaccharides from polysaccharides. The released oligosaccharides are characterized by advanced liquid chromatography-mass spectrometry (LC-MS) methods with high sensitivity, accuracy and throughput. The technique is first used to identify polysaccharides by oligosaccharide fingerprinting. Next, the polysaccharide compositions of food and feces are determined, further illustrating the utility of technique in food and clinical studies.
Collapse
Affiliation(s)
- Matthew J Amicucci
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA, USA
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Eshani Nandita
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Ace G Galermo
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Juan Jose Castillo
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Siyu Chen
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, USA
- Foods For Health Institute, University of California, Davis, CA, USA
| | - Jennifer T Smilowitz
- Foods For Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - J Bruce German
- Foods For Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - David A Mills
- Foods For Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Carlito B Lebrilla
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA, USA.
- Department of Chemistry, University of California, Davis, CA, USA.
- Foods For Health Institute, University of California, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
8
|
The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 2020; 117:20316-20324. [PMID: 32737163 PMCID: PMC7443942 DOI: 10.1073/pnas.2007245117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant cells have a polysaccharide-based wall that maintains their structural and functional integrity and determines their shape. Reorganization of wall components is required to allow growth and differentiation. One matrix polysaccharide that is postulated to play an important role in this reorganization is xyloglucan (XyG). While the structure of XyG is well understood, its biosynthesis is not. Through genetic studies with Arabidopsis CSLC genes, we demonstrate that they are responsible for the synthesis of the XyG glucan backbone. A quintuple cslc mutant is able to grow and develop normally but lacks detectable XyG. These results raise important questions regarding cell wall structure and its reorganization during growth. The series of cslc mutants will be valuable tools for investigating these questions. Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.
Collapse
|
9
|
Amicucci MJ, Galermo AG, Guerrero A, Treves G, Nandita E, Kailemia MJ, Higdon SM, Pozzo T, Labavitch JM, Bennett AB, Lebrilla CB. Strategy for Structural Elucidation of Polysaccharides: Elucidation of a Maize Mucilage that Harbors Diazotrophic Bacteria. Anal Chem 2019; 91:7254-7265. [PMID: 30983332 DOI: 10.1021/acs.analchem.9b00789] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recruitment of a bacterial consortium by the host is a strategy not limited to animals but is also used in plants. A maize aerial root mucilage has been found that harbors nitrogen fixing bacteria that are attracted to the carbohydrate rich environment. This synbiotic relationship is facilitated by a polysaccharide, whose complicated structure has been previously unknown. In this report, we present the characterization of the maize polysaccharide by employing new analytical strategies combining chemical depolymerization, oligosaccharide sequencing, and monosaccharide and glycosidic linkage quantitation. The mucilage contains a single heterogeneous polysaccharide composed of a highly fucosylated and xylosylated galactose backbone with arabinan and mannoglucuronan branches. This unique polysaccharide structure may select for the diazotrophic community by containing monosaccharides and linkages that correspond to the glycosyl hydrolases associated with the microbial community. The elucidation of this complicated structure illustrates the power of the analytical methods, which may serve as a general platform for polysaccharide analysis in the future.
Collapse
Affiliation(s)
- Matthew J Amicucci
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Ace G Galermo
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Andres Guerrero
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Guy Treves
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Eshani Nandita
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Muchena J Kailemia
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| | - Shawn M Higdon
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Tania Pozzo
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - John M Labavitch
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Alan B Bennett
- Department of Plant Sciences , University of California-Davis , Davis , California 95616 , United States
| | - Carlito B Lebrilla
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| |
Collapse
|
10
|
Zhu L, Dama M, Pauly M. Identification of an arabinopyranosyltransferase from Physcomitrella patens involved in the synthesis of the hemicellulose xyloglucan. PLANT DIRECT 2018; 2:e00046. [PMID: 31245712 PMCID: PMC6508525 DOI: 10.1002/pld3.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
The hemicellulose xyloglucan consists of a backbone of a β-1,4 glucan substituted with xylosyl moieties and many other, diverse side chains that are important for its proper function. Many, but not all glycosyltransferases involved in the biosynthesis of xyloglucan have been identified. Here, we report the identification of an hitherto elusive xyloglucan:arabinopyranosyltransferase. This glycosyltransferase was isolated from the moss Physcomitrella patens, where it acts as a xyloglucan "D"-side chain transferase (XDT). Heterologous expression of PpXDT in the Arabidopsis thaliana double mutant mur3.1 xlt2, where xyloglucan consists of a xylosylated glucan without further glycosyl substituents, results in the production of the arabinopyranose-containing "D" side chain as characterized by oligosaccharide mass profiling, glycosidic linkage analysis, and NMR analysis. In addition, expression of a related Physcomitrella glycosyltransferase ortholog of PpXLT2 leads to the production of the galactose-containing "L" side chain. The presence of the "D" and "L" xyloglucan side chains in the Arabidopsis double mutant Atmur3.1 xlt2 expressing PpXDT and PpXLT2, respectively, rescues the dwarfed phenotype of untransformed Atmur3.1 xlt2 mutants to nearly wild-type height. Expression of PpXDT and PpXLT2 in the Atmur3.1 xlt2 mutant also enhanced root growth.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Murali Dama
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| |
Collapse
|
11
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
12
|
Abstract
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become an important tool for the analysis of biomolecules, such as DNA, peptides, and oligosaccharides. This technique has been developed as a rapid, sensitive, and accurate means for analyzing cell wall polysaccharide structures. Here, we describe a method using mass spectrometry to provide xyloglucan composition and structure information of Brachypodium plants which will be useful for functional characterization of xyloglucan biosynthesis pathway in Brachypodium distachyon.
Collapse
|
13
|
Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition. Proc Natl Acad Sci U S A 2017; 114:6860-6865. [PMID: 28607074 DOI: 10.1073/pnas.1619033114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic improvement of the plant cell wall has enormous potential to increase the quality of food, fibers, and fuels. However, the identification and characterization of genes involved in plant cell wall synthesis is far from complete. Association mapping is one of the few techniques that can help identify candidate genes without relying on our currently incomplete knowledge of cell wall synthesis. However, few cell wall phenotyping methodologies have proven sufficiently precise, robust, or scalable for association mapping to be conducted for specific cell wall polymers. Here, we created high-density carbohydrate microarrays containing chemically extracted cell wall polysaccharides collected from 331 genetically diverse Brassica napus cultivars and used them to obtain detailed, quantitative information describing the relative abundance of selected noncellulosic polysaccharide linkages and primary structures. We undertook genome-wide association analysis of data collected from 57 carbohydrate microarrays and identified molecular markers reflecting a diversity of specific xylan, xyloglucan, pectin, and arabinogalactan moieties. These datasets provide a detailed insight into the natural variations in cell wall carbohydrate moieties between B. napus genotypes and identify associated markers that could be exploited by marker-assisted breeding. The identified markers also have value beyond B. napus for functional genomics, facilitated by the close genetic relatedness to the model plant Arabidopsis Together, our findings provide a unique dissection of the genetic architecture that underpins plant cell wall biosynthesis and restructuring.
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
15
|
Abedi T, Khalil MFM, Asai T, Ishihara N, Kitamura K, Ishida N, Tanaka N. UDP-galactose transporter gene hUGT1 expression in tobacco plants leads to hyper-galactosylated cell wall components. J Biosci Bioeng 2016; 121:573-83. [PMID: 26507776 DOI: 10.1016/j.jbiosc.2015.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants.
Collapse
Affiliation(s)
- Tayebeh Abedi
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | - Toshihiko Asai
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nami Ishihara
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nobuhiro Ishida
- Department of Environmental Security Systems, Faculty of Risk and Crisis Management, Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Nobukazu Tanaka
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
| |
Collapse
|
16
|
Gerber L, Öhman D, Kumar M, Ranocha P, Goffner D, Sundberg B. High-throughput microanalysis of large lignocellulosic sample sets by pyrolysis-gas chromatography/mass spectrometry. PHYSIOLOGIA PLANTARUM 2016; 156:127-138. [PMID: 26477543 PMCID: PMC4738464 DOI: 10.1111/ppl.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 05/08/2023]
Abstract
High-throughput analytical techniques to assess the chemistry of lignocellulosic plant material are crucial to plant cell-wall research. We have established an analytical platform for this purpose and demonstrated its usefulness with two applications. The system is based on analytical pyrolysis, coupled to gas chromatography/mass spectrometry - a technique particularly suited for analysis of lignocellulose. Automated multivariate-based data-processing methods are used to obtain results within a few hours after analysis, with an experimental batch of 500 analyzed samples. The usefulness of multivariate sample discrimination methods and hierarchical clustering of samples is demonstrated. We have analyzed an Arabidopsis mutant collection consisting of 300 samples representing 31 genotypes. The mutant collection is presented through cluster analysis, based on chemotypic difference, with respect to wild type. Further, we have analyzed 500 thin sections from five biological replicate trees to create a spatial highly resolved profile of the proportions of syringyl-, guaiacyl- and p-hydroxyphenyl lignin across phloem, developing and mature wood in aspen. The combination of biologically easy to interpret information, the low demand of sample amount and the flexibility in sample types amenable to analysis makes this technique a valuable extension to the range of established high-throughput biomaterial analytical platforms.
Collapse
Affiliation(s)
- Lorenz Gerber
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Öhman
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj Kumar
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, Castanet-Tolosan, France
| | - Deborah Goffner
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, Castanet-Tolosan, France
| | - Björn Sundberg
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
17
|
Petrović DM, Kok I, Woortman AJJ, Ćirić J, Loos K. Characterization of oligocellulose synthesized by reverse phosphorolysis using different cellodextrin phosphorylases. Anal Chem 2015; 87:9639-46. [PMID: 26291473 DOI: 10.1021/acs.analchem.5b01098] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much progress was made in the straightforward and eco-friendly enzymatic synthesis of shorter cellulose chains (oligocellulose). Here, we report the determination of a molar mass distribution of the oligocellulose synthesized from cellobiose (CB) and α-glucose 1-phosphate by reverse phosphorolysis, using enzymes cellodextrin phosphorylase from Clostridium stercorarium or Clostridium thermocellum as catalyst. The oligocellulose molar mass distribution was analyzed using three different methods: (1)H NMR spectroscopy, matrix assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) and size exclusion chromatography (SEC). The molar mass distribution of the synthesized oligocellulose was only dependent on the concentration of cellobiose used in the reaction. Data obtained from MALDI-ToF MS and SEC were almost identical and showed that oligocellulose synthesized using 10 mM CB has an average degree of polymerization (DPn) of ∼7, while a DPn of ∼14 was achieved when 0.2 mM CB was used in the reaction. Because of solvent limitation in SEC analysis, MALDI-ToF MS was shown to be the technique of choice for accurate, easy and fast oligocellulose molar mass distribution determination.
Collapse
Affiliation(s)
- Dejan M Petrović
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Inge Kok
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Albert J J Woortman
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jelena Ćirić
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
18
|
Liu L, Paulitz J, Pauly M. The presence of fucogalactoxyloglucan and its synthesis in rice indicates conserved functional importance in plants. PLANT PHYSIOLOGY 2015; 168:549-60. [PMID: 25869654 PMCID: PMC4453794 DOI: 10.1104/pp.15.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
The predominant structure of the hemicellulose xyloglucan (XyG) found in the cell walls of dicots is a fucogalactoXyG with an XXXG core motif, whereas in the Poaceae (grasses and cereals), the structure of XyG is less xylosylated (XXGGn core motif) and lacks fucosyl residues. However, specialized tissues of rice (Oryza sativa) also contain fucogalactoXyG. Orthologous genes of the fucogalactoXyG biosynthetic machinery of Arabidopsis (Arabidopsis thaliana) are present in the rice genome. Expression of these rice genes, including fucosyl-, galactosyl-, and acetyltransferases, in the corresponding Arabidopsis mutants confirmed their activity and substrate specificity, indicating that plants in the Poaceae family have the ability to synthesize fucogalactoXyG in vivo. The data presented here provide support for a functional conservation of XyG structure in higher plants.
Collapse
Affiliation(s)
- Lifeng Liu
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Jonathan Paulitz
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Energy Biosciences Institute (L.L., J.P., M.P.) andDepartment of Plant and Microbial Biology (M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
19
|
Park YB, Cosgrove DJ. Xyloglucan and its Interactions with Other Components of the Growing Cell Wall. ACTA ACUST UNITED AC 2015; 56:180-94. [DOI: 10.1093/pcp/pcu204] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
20
|
Dardelle F, Le Mauff F, Lehner A, Loutelier-Bourhis C, Bardor M, Rihouey C, Causse M, Lerouge P, Driouich A, Mollet JC. Pollen tube cell walls of wild and domesticated tomatoes contain arabinosylated and fucosylated xyloglucan. ANNALS OF BOTANY 2015; 115:55-66. [PMID: 25434027 PMCID: PMC4284112 DOI: 10.1093/aob/mcu218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.
Collapse
Affiliation(s)
- Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - François Le Mauff
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Corinne Loutelier-Bourhis
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Muriel Bardor
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Christophe Rihouey
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Mathilde Causse
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, Normandy University, IRIB, VASI, 76821 Mont-Saint-Aignan Cedex, France, COBRA, UMR6014 and FR3038, Normandy University, INSA Rouen, CNRS, IRCOF, 76821 Mont-Saint-Aignan Cedex, France, Laboratoire Polymères, Biopolymères, Surfaces, UMR CNRS 6270, Normandy University, 76821 Mont-Saint-Aignan Cedex, France and Génétique et Amélioration des Fruits et Légumes, INRA UR1052, 84143 Montfavet Cedex, France
| |
Collapse
|
21
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|