1
|
Shi R, Farnsworth DA, Febres-Aldana CA, Chow JLM, Sheena R, Atwal T, Gomez Marti JL, Li S, Thomas KN, Lee CM, Awrey SJ, McDonald PC, Somwar R, Dedhar S, Ladanyi M, Bennewith KL, Lockwood WW. Drug tolerance and persistence to EGFR inhibitor treatment are mediated by an ILK-SFK-YAP signaling axis in lung adenocarcinoma. Oncogene 2025:10.1038/s41388-025-03461-6. [PMID: 40450112 DOI: 10.1038/s41388-025-03461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/09/2025] [Accepted: 05/20/2025] [Indexed: 06/03/2025]
Abstract
Combating resistance to targeted therapy remains a major challenge to improving lung cancer care. Epithelial-mesenchymal transition (EMT) in tumour cells is an established non-genetic resistance mechanism to EGFR tyrosine kinase inhibitors (TKI) that is also associated with worse outcome in patients. Here we demonstrate that integrin-linked kinase (ILK) is an important driver of EMT-mediated TKI resistance in lung adenocarcinoma (LUAD) by promoting a drug-tolerant persister (DTP) cell phenotype. Our results indicate that high ILK expression is associated with EMT in LUAD patients and that genetic suppression of ILK can limit EMT progression and reduce the viability of DTP cells by impairing YAP activation, ultimately improving osimertinib (Osi) sensitivity in LUAD cells. Importantly, LUAD cells with high ILK expression are able to persist during EGFR-TKI treatment, acquiring additional genetic and phenotypic alterations to develop EGFR-TKI resistance. To improve clinical translatability of our findings, we showed that pharmacological inhibition of ILK can suppress EMT and improve Osi response in LUAD cells. Lastly, we found that strong immunohistochemistry staining of ILK in patient biopsies was significantly associated with and may be used to predict receptor tyrosine kinase-independent mechanisms of EGFR-TKI resistance. Overall, our results suggest that ILK is an important regulator of EGFR-TKI response and may be exploited as a predictor for acquired resistance, providing evidence for co-targeting ILK with EGFR to better control minimal residual disease and EGFR-TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Dylan A Farnsworth
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ravinder Sheena
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Tejveer Atwal
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Juan Luis Gomez Marti
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Li
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Kiersten N Thomas
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Che-Min Lee
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shannon J Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin L Bennewith
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Zhou L, Shi Z, Yang X, Zeng J, You Z, Zhang Y, Zhu Z, Liu Z, Niu Y, Yu H, He J, Long Y, Wu Z, Zhang Y, Lyu C, Deng L, Wang Y, Wu C, Du Y. Tension-induced directional migration of hepatic stellate cells potentially coordinates liver fibrosis progression. Nat Biomed Eng 2025:10.1038/s41551-025-01381-0. [PMID: 40410557 DOI: 10.1038/s41551-025-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/25/2025] [Indexed: 05/25/2025]
Abstract
Liver fibrosis is an over-reacted wound healing that becomes lethal in its late stage, when hepatic stellate cells (HSCs) trigger fibrotic response, proliferation of connective tissue and build-up of directional fibrous tissue bands (septa). Current in vitro models of liver fibrosis cannot reproduce liver lobule structure and the dynamic formation of septa at the same time, and the known biochemical cues underlying the progression of liver fibrosis cannot explain directional formation of fibrotic tissue. Here we report a microfabricated in vitro model that reproduces both the hexagonal liver lobule structure and the dynamic directionality of septa formation. By using collagen and primary mouse HSCs or human HSC lines, we found that tension was necessary to coordinate the cell migration that contributes to the band-like cell distribution and that HSCs sensed directional biophysical cues through liquid-liquid phase separation. This system allows the study of the biophysical interaction of HSCs and collagen during the formation of septa structures, and could be used to deepen our understanding of liver fibrosis progression.
Collapse
Affiliation(s)
- Lyu Zhou
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziao Shi
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuesi Yang
- School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Jia'nan Zeng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhifeng You
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuying Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhiyue Zhu
- Department of Mechanical and Industrial Engineering, Ted Rogers Centre For Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Zhiqiang Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yudi Niu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hongsheng Yu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang He
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Long
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaozhao Wu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yan Zhang
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Lyu
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Liping Deng
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Pudlowski R, Xu L, Milenkovic L, Kumar C, Hemsworth K, Aqrabawi Z, Stearns T, Wang JT. A delta-tubulin/epsilon-tubulin/Ted protein complex is required for centriole architecture. eLife 2025; 13:RP98704. [PMID: 40067174 PMCID: PMC11896610 DOI: 10.7554/elife.98704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Centrioles have a unique, conserved architecture formed by three linked, 'triplet', microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.
Collapse
Affiliation(s)
- Rachel Pudlowski
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Lingyi Xu
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | | | - Chandan Kumar
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Katherine Hemsworth
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Zayd Aqrabawi
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Rockefeller UniversityNew York CityUnited States
| | - Jennifer T Wang
- Department of Biology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
5
|
Serio RN, Scheben A, Lu B, Gargiulo DV, Patruno L, Buckholtz CL, Chaffee RJ, Jibilian MC, Persaud SG, Staklinski SJ, Hassett R, Brault LM, Ramazzotti D, Barbieri CE, Siepel AC, Nowak DG. Clonal Lineage Tracing with Somatic Delivery of Recordable Barcodes Reveals Migration Histories of Metastatic Prostate Cancer. Cancer Discov 2024; 14:1990-2009. [PMID: 38969342 PMCID: PMC11984259 DOI: 10.1158/2159-8290.cd-23-1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The patterns by which primary tumors spread to metastatic sites remain poorly understood. Here, we define patterns of metastatic seeding in prostate cancer using a novel injection-based mouse model-EvoCaP (Evolution in Cancer of the Prostate), featuring aggressive metastatic cancer to bone, liver, lungs, and lymph nodes. To define migration histories between primary and metastatic sites, we used our EvoTraceR pipeline to track distinct tumor clones containing recordable barcodes. We detected widespread intratumoral heterogeneity from the primary tumor in metastatic seeding, with few clonal populations instigating most migration. Metastasis-to-metastasis seeding was uncommon, as most cells remained confined within the tissue. Migration patterns in our model were congruent with human prostate cancer seeding topologies. Our findings support the view of metastatic prostate cancer as a systemic disease driven by waves of aggressive clones expanding their niche, infrequently overcoming constraints that otherwise keep them confined in the primary or metastatic site. Significance: Defining the kinetics of prostate cancer metastasis is critical for developing novel therapeutic strategies. This study uses CRISPR/Cas9-based barcoding technology to accurately define tumor clonal patterns and routes of migration in a novel somatically engineered mouse model (EvoCaP) that recapitulates human prostate cancer using an in-house developed analytical pipeline (EvoTraceR).
Collapse
Affiliation(s)
- Ryan N. Serio
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Billy Lu
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | - Lucrezia Patruno
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | | | - Ryan J. Chaffee
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Stephen J. Staklinski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lise M. Brault
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniele Ramazzotti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Christopher E. Barbieri
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Adam C. Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dawid G. Nowak
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Zhang C, Wu BZ, Di Ciano-Oliveira C, Wu YF, Khavkine Binstock SS, Soria-Bretones I, Pham NA, Elia AJ, Chari R, Lam WL, Bray MR, Mak TW, Tsao MS, Cescon DW, Thu KL. Identification of KIFC1 as a putative vulnerability in lung cancers with centrosome amplification. Cancer Gene Ther 2024; 31:1559-1570. [PMID: 39179685 PMCID: PMC11489082 DOI: 10.1038/s41417-024-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors. To sustain the benefits of CA by mitigating its consequences, malignant cells are dependent on adaptive mechanisms that represent therapeutic vulnerabilities. We aimed to discover genetic dependencies associated with CA in lung cancer. Combining a CRISPR/Cas9 functional genomics screen with tumor genomic analyses, we identified the motor protein KIFC1, also known as HSET, as a putative vulnerability specifically in lung adenocarcinoma (LUAD) with CA. KIFC1 expression was positively correlated with CA in LUAD and associated with worse patient outcomes, smoking history, and indicators of GIN. KIFC1 loss-of-function sensitized LUAD cells with high basal KIFC1 expression to potentiation of CA, which was associated with a diminished ability to cluster extra centrosomes into pseudo-bipolar mitotic spindles. Our work suggests that KIFC1 inhibition represents a novel approach for potentiating GIN to lethal levels in LUAD with CA by forcing cells to divide with multipolar spindles, rationalizing further studies to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Benson Z Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Yin Fang Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Sharon S Khavkine Binstock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | | | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Andrew J Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raj Chari
- Laboratory Animal Sciences Program, Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mark R Bray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kelsie L Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Kulkarni A, Mohan V, Tang TT, Post L, Chan YC, Manning M, Thio N, Parker BL, Dawson MA, Rosenbluh J, Vissers JH, Harvey KF. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep 2024; 25:3944-3969. [PMID: 39103676 PMCID: PMC11387499 DOI: 10.1038/s44319-024-00217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Collapse
Affiliation(s)
- Aishwarya Kulkarni
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Varshini Mohan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Tracy T Tang
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Leonard Post
- Vivace Therapeutics Inc., San Mateo, CA, 94404, USA
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Murray Manning
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Joseph Ha Vissers
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
8
|
Ju RJ, Falconer AD, Schmidt CJ, Enriquez Martinez MA, Dean KM, Fiolka RP, Sester DP, Nobis M, Timpson P, Lomakin AJ, Danuser G, White MD, Haass NK, Oelz DB, Stehbens SJ. Compression-dependent microtubule reinforcement enables cells to navigate confined environments. Nat Cell Biol 2024; 26:1520-1534. [PMID: 39160291 DOI: 10.1038/s41556-024-01476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments.
Collapse
Affiliation(s)
- Robert J Ju
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Alistair D Falconer
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Marco A Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto P Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Max Nobis
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paul Timpson
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alexis J Lomakin
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Institute of Medical Chemistry and Pathobiochemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie D White
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K Haass
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Dietmar B Oelz
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia.
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Nagelberg AL, Sihota TS, Chuang YC, Shi R, Chow JLM, English J, MacAulay C, Lam S, Lam WL, Lockwood WW. Integrative genomics identifies SHPRH as a tumor suppressor gene in lung adenocarcinoma that regulates DNA damage response. Br J Cancer 2024; 131:534-550. [PMID: 38890444 PMCID: PMC11300780 DOI: 10.1038/s41416-024-02755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Collapse
Affiliation(s)
- Amy L Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tianna S Sihota
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Chi Chuang
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John English
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Pereira IS, da Cunha M, Leal IP, Luís MP, Gonçalves P, Gonçalves C, Mota LJ. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells. Med Microbiol Immunol 2024; 213:15. [PMID: 39008129 PMCID: PMC11249467 DOI: 10.1007/s00430-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.
Collapse
Affiliation(s)
- Inês Serrano Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria da Cunha
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Pacheco Leal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria Pequito Luís
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Paula Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Carla Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
11
|
Adler J, Bernhem K, Parmryd I. Membrane topography and the overestimation of protein clustering in single molecule localisation microscopy - identification and correction. Commun Biol 2024; 7:791. [PMID: 38951588 PMCID: PMC11217499 DOI: 10.1038/s42003-024-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Manigat F, Connell LB, Stewart BN, LePabic AR, Tessier CJG, Emlaw JR, Calvert ND, Rössl A, Shuhendler AJ, daCosta CJB, Campbell-Valois FX. pUdOs: Concise Plasmids for Bacterial and Mammalian Cells. ACS Synth Biol 2024; 13:485-497. [PMID: 38235654 PMCID: PMC10878396 DOI: 10.1021/acssynbio.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
The plasmids from the Université d'Ottawa (pUdOs) are 28 small plasmids each comprising one of four origins of replication and one of seven selection markers, which together afford flexible use in Escherichia coli and several related gram-negative bacteria. The promoterless multicloning site is insulated from upstream spurious promoters by strong transcription terminators and contains type IIP or IIS restriction sites for conventional or Golden Gate cloning. pUdOs can be converted into efficient expression vectors through the insertion of a promoter at the user's discretion. For example, we demonstrate the utility of pUdOs as the backbone for an improved version of a Type III Secretion System reporter in Shigella. In addition, we derive a series of pUdO-based mammalian expression vectors, affording distinct levels of expression and transfection efficiency comparable to commonly used mammalian expression plasmids. Thus, pUdOs could advantageously replace traditional plasmids in a wide variety of cell types and applications.
Collapse
Affiliation(s)
- France
O. Manigat
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Louise B. Connell
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brittany N. Stewart
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdel-Rahman LePabic
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christian J. G. Tessier
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Johnathon R. Emlaw
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nicholas D. Calvert
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anthony Rössl
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adam J. Shuhendler
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- University
of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Corrie J. B. daCosta
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Centre
for Infection, Immunity and Inflammation, Department of Biochemistry,
Microbiology and Immunology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
14
|
Wan Y, Zhao Y, Cao M, Wang J, Tran SV, Song Z, Hsueh BW, Wang SE. Lung Fibroblasts Take up Breast Cancer Cell-derived Extracellular Vesicles Partially Through MEK2-dependent Macropinocytosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:170-181. [PMID: 38259097 PMCID: PMC10802141 DOI: 10.1158/2767-9764.crc-23-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Extracellular vesicles (EV) have emerged as critical effectors in the cross-talk between cancer and normal cells by transferring intracellular materials between adjacent or distant cells. Previous studies have begun to elucidate how cancer cells, by secreting EVs, adapt normal cells at a metastatic site to facilitate cancer cell metastasis. In this study, we utilized a high-content microscopic screening platform to investigate the mechanisms of EV uptake by primary lung fibroblasts. A selected library containing 90 FDA-approved anticancer drugs was screened for the effect on fibroblast uptake of EVs from MDA-MB-231 breast cancer cells. Among the drugs identified to inhibit EV uptake without exerting significant cytotoxicity, we validated the dose-dependent effect of Trametinib (a MEK1/2 inhibitor) and Copanlisib (a PI3K inhibitor). Trametinib suppressed macropinocytosis in lung fibroblasts and inhibited EV uptake with a higher potency comparing with Copanlisib. Gene knockdown and overexpression studies demonstrated that uptake of MDA-MB-231 EVs by lung fibroblasts required MEK2. These findings provide important insights into the mechanisms underlying lung fibroblast uptake of breast cancer cell-derived EVs, which could play a role in breast cancer metastasis to the lungs and suggest potential therapeutic targets for preventing or treating this deadly disease. SIGNIFICANCE Through a phenotypic screen, we found that MEK inhibitor Trametinib suppressed EV uptake and macropinocytosis in lung fibroblasts, and that EV uptake is mediated by MEK2 in these cells. Our results suggest that MEK2 inhibition could serve as a strategy to block cancer EV uptake by lung fibroblasts.
Collapse
Affiliation(s)
- Yuhao Wan
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Yue Zhao
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Jingyi Wang
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Sheila V. Tran
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Zhixuan Song
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Brent W. Hsueh
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
Andreani C, Bartolacci C, Persico G, Casciaro F, Amatori S, Fanelli M, Giorgio M, Galié M, Tomassoni D, Wang J, Zhang X, Bick G, Coppari R, Marchini C, Amici A. SIRT6 promotes metastasis and relapse in HER2-positive breast cancer. Sci Rep 2023; 13:22000. [PMID: 38081972 PMCID: PMC10713583 DOI: 10.1038/s41598-023-49199-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The histone deacetylase sirtuin 6 (SIRT6) has been endowed with anti-cancer capabilities in many tumor types. Here, we investigate the impact of SIRT6-overexpression (SIRT6-OE) in Delta16HER2 mice, which are a bona fide model of HER2-positive breast cancer. After an initial delay in the tumor onset, SIRT6-OE induces a more aggressive phenotype of Delta16HER2 tumors promoting the formation of higher number of tumor foci and metastases than controls. This phenotype of SIRT6-OE tumors is associated with cancer stem cell (CSC)-like features and tumor dormancy, and low senescence and oxidative DNA damage. Accordingly, a sub-set of HER2-positive breast cancer patients with concurrent SIRT6-OE has a significant poorer relapse-free survival (RFS) probability than patients with low expression of SIRT6. ChIP-seq, RNA-seq and RT-PCR experiments indicate that SIRT6-OE represses the expression of the T-box transcription factor 3 (Tbx3) by deacetylation of H3K9ac. Accordingly, loss-of-function mutations of TBX3 or low TBX3 expression levels are predictive of poor prognosis in HER2-positive breast cancer patients. Our work indicates that high levels of SIRT6 are indicative of poor prognosis and high risk of metastasis in HER2-positive breast cancer and suggests further investigation of TBX3 as a downstream target of SIRT6 and co-marker of poor-prognosis. Our results point to a breast cancer subtype-specific effect of SIRT6 and warrant future studies dissecting the mechanisms of SIRT6 regulation in different breast cancer subtypes.
Collapse
Affiliation(s)
- Cristina Andreani
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA.
| | - Caterina Bartolacci
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
- Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Francesca Casciaro
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, IRCCS-European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Mirco Galié
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134, Verona, Italy
| | - Daniele Tomassoni
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Junbiao Wang
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati, 45219, Cincinnati, OH, USA
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cristina Marchini
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Augusto Amici
- Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
16
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
17
|
Shman TV, Vashkevich KP, Migas AA, Matveyenka MA, Lasiukov YA, Mukhametshyna NS, Horbach KI, Aleinikova OV. Phenotypic and functional characterisation of locally produced natural killer cells ex vivo expanded with the K562-41BBL-mbIL21 cell line. Clin Exp Med 2023; 23:2551-2560. [PMID: 36527513 DOI: 10.1007/s10238-022-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We characterised the expansion, phenotype and functional activity of natural killer (NK) cells obtained for a clinical trial. Nineteen expansion procedures were performed to obtain NK cell products for 16 patients. NK cells were expanded ex vivo from haploidentical donor peripheral blood mononuclear cells in the presence of the locally generated feeder cell line K-562 with ectopic expression of 4-1BBL and mbIL-21. The median duration of expansion was 18 days (interquartile range 15-19). The median number of live cells yielded was 2.26 × 109 (range 1.6-3.4 × 109) with an NK content of 96.6% (range 95.1-97.9%). The median NK cell fold expansion was 171 (range 124-275). NK cell fold expansion depended on the number of seeded NK cells, the initial level of C-myc expression and the initial number of mature and immature NK cells. The majority of expanded NK cells had the phenotype of immature activated cells (NKG2A + , double bright CD56 + + CD16 + + , CD57-) expressing NKp30, NKp44, NKp46, NKG2D, CD69, HLA-DR and CD96. Despite the expression of exhaustion markers, expanded NK cells exhibited high cytolytic activity against leukaemia cell lines, high degranulation activity and cytokine production. There was a noted decrease in the functional activity of NK cells in tests against the patient's blasts.In conclusion, NK cells obtained by ex vivo expansion with locally generated K562-41BBL-mbIL21 cells had a relatively undifferentiated phenotype and enhanced cytolytic activity against cancer cell lines. Expansion of NK cells with feeder cells yielded a sufficient quantity of the NK cell product to reach high cell doses or increase the frequency of cell infusions for adoptive immunotherapy. Registered at clinicaltrials.gov as NCT04327037.
Collapse
Affiliation(s)
- Tatsiana V Shman
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus.
| | - Katsiaryna P Vashkevich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Alexandr A Migas
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Mikhail A Matveyenka
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Yauheni A Lasiukov
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Nastassia S Mukhametshyna
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Katsiaryna I Horbach
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Olga V Aleinikova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| |
Collapse
|
18
|
Wilde BR, Chakraborty N, Matulionis N, Hernandez S, Ueno D, Gee ME, Esplin ED, Ouyang K, Nykamp K, Shuch B, Christofk HR. FH Variant Pathogenicity Promotes Purine Salvage Pathway Dependence in Kidney Cancer. Cancer Discov 2023; 13:2072-2089. [PMID: 37255402 PMCID: PMC10527600 DOI: 10.1158/2159-8290.cd-22-0874] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Fumarate accumulation due to loss of fumarate hydratase (FH) drives cellular transformation. Germline FH alterations lead to hereditary leiomyomatosis and renal cell cancer (HLRCC) where patients are predisposed to an aggressive form of kidney cancer. There is an unmet need to classify FH variants by cancer-associated risk. We quantified catalytic efficiencies of 74 variants of uncertain significance. Over half were enzymatically inactive, which is strong evidence of pathogenicity. We next generated a panel of HLRCC cell lines expressing FH variants with a range of catalytic activities, then correlated fumarate levels with metabolic features. We found that fumarate accumulation blocks de novo purine biosynthesis, rendering FH-deficient cells reliant on purine salvage for proliferation. Genetic or pharmacologic inhibition of the purine salvage pathway reduced HLRCC tumor growth in vivo. These findings suggest the pathogenicity of patient-associated FH variants and reveal purine salvage as a targetable vulnerability in FH-deficient tumors. SIGNIFICANCE This study functionally characterizes patient-associated FH variants with unknown significance for pathogenicity. This study also reveals nucleotide salvage pathways as a targetable feature of FH-deficient cancers, which are shown to be sensitive to the purine salvage pathway inhibitor 6-mercaptopurine. This presents a new rapidly translatable treatment strategy for FH-deficient cancers. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Blake R. Wilde
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | - Nishma Chakraborty
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Stephanie Hernandez
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Daiki Ueno
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Currently: Department of Urology, Yokosuka Kyosai Hospital
| | - Michayla E. Gee
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Brian Shuch
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Heather R. Christofk
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Capik O, Gumus R, Karatas OF. Hypoxia-induced tumor exosomes promote angiogenesis through miR-1825/TSC2/mTOR axis in oral squamous cell carcinoma. Head Neck 2023; 45:2259-2273. [PMID: 37449548 DOI: 10.1002/hed.27460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by enhanced angiogenesis resulting in poor prognosis despite improvements in diagnostic/therapeutic techniques. Here, we aimed at investigating potential roles of miR-1825 enclosed in OSCC-derived exosomes on angiogenesis under hypoxic conditions. METHODS Effects of miR-1825 mimic/inhibitor as well as hypoxia-induced tumor derived exosomes on human umbilical vein endothelial cells (HUVECs) were evaluated using cell viability, migration/invasion, tube formation, and spheroid-based 3D angiogenesis assays. RESULTS Hypoxic conditions caused significant increase in miR-1825 levels in OSCC cells and hiTDEs. miR-1825 alone and within hiTDEs promoted endothelial cell viability, migration, invasion, and angiogenic potential, which is reversed via inhibition of miR-1825 expression. miR-1825 within hiTDEs altered the angiogenesis potential of HUVEC cells via deregulation of TSC2/mTOR axis. CONCLUSIONS We showed that hypoxia led to OSCC-derived exosome mediated transfer of miR-1825 to HUVECs and enhanced angiogenesis in OSCC in vitro.
Collapse
Affiliation(s)
- Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
20
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
21
|
Luís MP, Pereira IS, Bugalhão JN, Simões CN, Mota C, Romão MJ, Mota LJ. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Infect Immun 2023; 91:e0040522. [PMID: 36877064 PMCID: PMC10112248 DOI: 10.1128/iai.00405-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.
Collapse
Affiliation(s)
- Maria Pequito Luís
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Serrano Pereira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana N. Bugalhão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina N. Simões
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
22
|
Gabriel Francia M, Oses C, Lorena Roberti S, Reneé Garcia M, Helio Cozza L, Candelaria Diaz M, Levi V, Sonia Guberman A. SUMOylation and the oncogenic E17K mutation affect AKT1 subcellular distribution and impact on Nanog-binding dynamics to chromatin in embryonic stem cells. J Struct Biol 2023; 215:107961. [PMID: 37059313 DOI: 10.1016/j.jsb.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
AKT/PKB is a kinase involved in the regulation of a plethora of cell processes. Particularly, in embryonic stem cells (ESCs), AKT is crucial for the maintenance of pluripotency. Although the activation of this kinase relies on its recruitment to the cellular membrane and subsequent phosphorylation, multiple other post-translational modifications (PTMs), including SUMOylation, fine-tune its activity and target specificity. Since this PTM can also modify the localization and availability of different proteins, in this work we explored if SUMOylation impacts on the subcellular compartmentalization and distribution of AKT1 in ESCs. We found that this PTM does not affect AKT1 membrane recruitment, but it modifies the AKT1 nucleus/cytoplasm distribution, increasing its nuclear presence. Additionally, within this compartment, we found that AKT1 SUMOylation also impacts on the chromatin-binding dynamics of NANOG, a central pluripotency transcription factor. Remarkably, the oncogenic E17K AKT1 mutant produces major changes in all these parameters increasing the binding of NANOG to its targets, also in a SUMOylation dependent manner. These findings demonstrate that SUMOylation modulates AKT1 subcellular distribution, thus adding an extra layer of regulation of its function, possibly by affecting the specificity and interaction with its downstream targets.
Collapse
Affiliation(s)
- Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Mora Reneé Garcia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Helio Cozza
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Candelaria Diaz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Tessier CJG, Emlaw JR, Sturgeon RM, daCosta CJB. Derepression may masquerade as activation in ligand-gated ion channels. Nat Commun 2023; 14:1907. [PMID: 37019877 PMCID: PMC10076327 DOI: 10.1038/s41467-023-36770-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/16/2023] [Indexed: 04/07/2023] Open
Abstract
Agonists are ligands that bind to receptors and activate them. In the case of ligand-gated ion channels, such as the muscle-type nicotinic acetylcholine receptor, mechanisms of agonist activation have been studied for decades. Taking advantage of a reconstructed ancestral muscle-type β-subunit that forms spontaneously activating homopentamers, here we show that incorporation of human muscle-type α-subunits appears to repress spontaneous activity, and furthermore that the presence of agonist relieves this apparent α-subunit-dependent repression. Our results demonstrate that rather than provoking channel activation/opening, agonists may instead 'inhibit the inhibition' of intrinsic spontaneous activity. Thus, agonist activation may be the apparent manifestation of agonist-induced derepression. These results provide insight into intermediate states that precede channel opening and have implications for the interpretation of agonism in ligand-gated ion channels.
Collapse
Affiliation(s)
- Christian J G Tessier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Johnathon R Emlaw
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Raymond M Sturgeon
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Corrie J B daCosta
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Sun K, Lu T, Hu C, Li Z, Zhu J, Zhang L, Shao X, Chen W. LINC00115 regulates lung adenocarcinoma progression via sponging miR-154-3p to modulate Sp3 expression. Mol Cell Probes 2023; 68:101909. [PMID: 36889558 DOI: 10.1016/j.mcp.2023.101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/10/2023]
Abstract
The most commonly diagnosed and most lethal subtype of lung cancer is lung adenocarcinoma (LUAD). Therefore, more detailed understanding of the potential mechanism and identification of potential targets of lung adenocarcinoma is needed. A growing number of reports reveals that long non-coding RNAs (lncRNAs) play crucial roles in cancer progression. In present study, we found that lncRNA LINC00115 was upregulated in LUAD tissues and cells. Functional studies revealed that LINC00115 knockdown inhibits the proliferation, growth, invasion, and migration of LUAD cells. Mechanically, we indicated that miR-154-3p is target microRNA of LINC00115, and the effect of downregulated LINC00115 on LUAD cells was partially reversed by the miR-154-3p antisense oligonucleotide (ASO-miR-154-3p). Further investigation revealed that Specificity protein 3 (Sp3) directly interacted with miR-154-3p, and the Sp3 level was positively correlated with the LINC00115 expression. Rescue experiments further showed that Sp3 overexpression partially restored the effect of downregulated LINC00115 on LUAD cells. Similarly, in vivo experiments confirmed that downregulated LINC00115 inhibited xenograft growth and Sp3 expression. Our results demonstrated that LINC00115 knockdown inhibited LUAD progression via sponging miR-154-3p to modulate Sp3 expression. These data indicate that the LINC00115/miR-154-3p/Sp3 axis can be a potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Kexin Sun
- School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi, China; College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Tingting Lu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Zhengyi Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Jie Zhu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Li Zhang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Xiaotong Shao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin, China
| | - Wei Chen
- School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi, China.
| |
Collapse
|
25
|
Inoue K, Bostan H, Browne MR, Bevis OF, Bortner CD, Moore SA, Stence AA, Martin NP, Chen SH, Burkholder AB, Li JL, Shaw ND. DUX4 double whammy: The transcription factor that causes a rare muscular dystrophy also kills the precursors of the human nose. SCIENCE ADVANCES 2023; 9:eabq7744. [PMID: 36800423 PMCID: PMC9937577 DOI: 10.1126/sciadv.abq7744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023]
Abstract
SMCHD1 mutations cause congenital arhinia (absent nose) and a muscular dystrophy called FSHD2. In FSHD2, loss of SMCHD1 repressive activity causes expression of double homeobox 4 (DUX4) in muscle tissue, where it is toxic. Studies of arhinia patients suggest a primary defect in nasal placode cells (human nose progenitors). Here, we show that upon SMCHD1 ablation, DUX4 becomes derepressed in H9 human embryonic stem cells (hESCs) as they differentiate toward a placode cell fate, triggering cell death. Arhinia and FSHD2 patient-derived induced pluripotent stem cells (iPSCs) express DUX4 when converted to placode cells and demonstrate variable degrees of cell death, suggesting an environmental disease modifier. HSV-1 may be one such modifier as herpesvirus infection amplifies DUX4 expression in SMCHD1 KO hESC and patient iPSC. These studies suggest that arhinia, like FSHD2, is due to compromised SMCHD1 repressive activity in a cell-specific context and provide evidence for an environmental modifier.
Collapse
Affiliation(s)
- Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Hamed Bostan
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - MaKenna R. Browne
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Owen F. Bevis
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, Research Triangle Park, NC, USA
| | - Steven A. Moore
- Department of Pathology, University of Iowa Carver College of Medicine and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Iowa City, IA, USA
| | - Aaron A. Stence
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Shih-Heng Chen
- Viral Vector Core, NIEHS, Research Triangle Park, NC, USA
| | | | - Jian-Liang Li
- Integrative Bioinformatics, NIEHS, Research Triangle Park, NC, USA
| | - Natalie D. Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| |
Collapse
|
26
|
MDC1 maintains active elongation complexes of RNA polymerase II. Cell Rep 2023; 42:111979. [PMID: 36640322 DOI: 10.1016/j.celrep.2022.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions. Decreased engaged RNAPII subsequently alters the assembly of the spliceosome complex on chromatin, leading to changes in pre-mRNA splicing. Mechanistically, the S/TQ domain of MDC1 modulates RNAPII-mediated transcription. Upon genotoxic stress, MDC1 promotes the abundance of engaged RNAPII complexes at DNA breaks, thereby stimulating nascent transcription at the damaged sites. Of clinical relevance, cancer cells lacking MDC1 display hypersensitivity to RNAPII inhibitors. Overall, we unveil a role of MDC1 in RNAPII-mediated transcription with potential implications for cancer treatment.
Collapse
|
27
|
Murphy RJ, Gunasingh G, Haass NK, Simpson MJ. Growth and adaptation mechanisms of tumour spheroids with time-dependent oxygen availability. PLoS Comput Biol 2023; 19:e1010833. [PMID: 36634128 PMCID: PMC9876349 DOI: 10.1371/journal.pcbi.1010833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/25/2023] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Tumours are subject to external environmental variability. However, in vitro tumour spheroid experiments, used to understand cancer progression and develop cancer therapies, have been routinely performed for the past fifty years in constant external environments. Furthermore, spheroids are typically grown in ambient atmospheric oxygen (normoxia), whereas most in vivo tumours exist in hypoxic environments. Therefore, there are clear discrepancies between in vitro and in vivo conditions. We explore these discrepancies by combining tools from experimental biology, mathematical modelling, and statistical uncertainty quantification. Focusing on oxygen variability to develop our framework, we reveal key biological mechanisms governing tumour spheroid growth. Growing spheroids in time-dependent conditions, we identify and quantify novel biological adaptation mechanisms, including unexpected necrotic core removal, and transient reversal of the tumour spheroid growth phases.
Collapse
Affiliation(s)
- Ryan J. Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K. Haass
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J. Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Abstract
This chapter discusses the methods involved in achieving and analyzing cellular uptake of DNA origami. While cells naturally internalize substances from their surroundings, more than a simple addition of DNA origami in the surrounding cell medium is necessary to ensure DNA origami particles successfully enter the intracellular environment. Starting with the folding of the DNA, careful handling of sterile buffers and tools is essential, as well as the use of an endotoxin free scaffold. We explain how DNA origami needs a certain form of stabilization or protection to survive the degrading low-salt and high-nuclease environment of common cell culture media. Depending on the preferred method of post-uptake analysis (confocal), microscopy, or flow cytometry, we elaborate on the full protocols and crucial steps to prepare cell uptake experiments. Finally, notes are added on the intracellular fate (see Notes 14 and 15), and cellular retention of DNA origami (see Note 16) is discussed.
Collapse
Affiliation(s)
- Maartje M C Bastings
- Programmable Biomaterials Laboratory, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, Switzerland.
| |
Collapse
|
29
|
Chin AR. Challenges for Studying and Isolating Extracellular Vesicles from Cell-Conditioned Media. Methods Mol Biol 2023; 2666:299-315. [PMID: 37166673 DOI: 10.1007/978-1-0716-3191-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EV) are small (100-1000 nm) particles that cells release into the extracellular space that have become increasingly famous for their potential in regenerative medicine and for their alterations in diseases such as cancer to promote disease progression, in particular for their potential for intercellular communication. However, studying EV can be challenging due to the broad diversity of both the EV themselves as well as the methods used to study them. This chapter aims to help investigators new to the EV field by describing challenges with studying EV, methods for enriching EV, and a simple EV enrichment protocol using differential ultracentrifugation.
Collapse
Affiliation(s)
- Andrew R Chin
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Schneeweis C, Diersch S, Hassan Z, Krauß L, Schneider C, Lucarelli D, Falcomatà C, Steiger K, Öllinger R, Krämer OH, Arlt A, Grade M, Schmidt-Supprian M, Hessmann E, Wirth M, Rad R, Reichert M, Saur D, Schneider G. AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cell Mol Life Sci 2023; 80:12. [PMID: 36534167 PMCID: PMC9763154 DOI: 10.1007/s00018-022-04638-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Sandra Diersch
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Daniele Lucarelli
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical Universität München, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Alexander Arlt
- Department for Internal Medicine and Gastroenterology, University Hospital, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Elisabeth Hessmann
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany ,University Medical Center Göttingen Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, 37075 Göttingen, Germany ,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Roland Rad
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| |
Collapse
|
31
|
Farnsworth DA, Inoue Y, Johnson FD, de Rappard-Yuswack G, Lu D, Shi R, Ma LIJ, Mattar MS, Somwar R, Ladanyi M, Unni AM, Lockwood WW. MEK inhibitor resistance in lung adenocarcinoma is associated with addiction to sustained ERK suppression. NPJ Precis Oncol 2022; 6:88. [PMID: 36418460 PMCID: PMC9684561 DOI: 10.1038/s41698-022-00328-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of "drug addiction" in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRASG12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a "drug holiday" to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.
Collapse
Affiliation(s)
- Dylan A. Farnsworth
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | | | - Daniel Lu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Lok In Josephine Ma
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Marissa S. Mattar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Romel Somwar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Marc Ladanyi
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Arun M. Unni
- grid.5386.8000000041936877XMeyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Barger CJ, Suwala AK, Soczek KM, Wang AS, Kim MY, Hong C, Doudna JA, Chang SM, Phillips JJ, Solomon DA, Costello JF. Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer. Nat Commun 2022; 13:5430. [PMID: 36114166 PMCID: PMC9481613 DOI: 10.1038/s41467-022-33099-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.
Collapse
Affiliation(s)
- Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Min Y Kim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David A Solomon
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
33
|
Wang YY, Hung AC, Wu YC, Lo S, Chen HD, Chen YK, Hsieh YC, Hu SCS, Hou MF, Yuan SSF. ADSCs stimulated by resistin promote breast cancer cell malignancy via CXCL5 in a breast cancer coculture model. Sci Rep 2022; 12:15437. [PMID: 36104403 PMCID: PMC9475041 DOI: 10.1038/s41598-022-19290-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment represents one of the main obstacles in breast cancer treatment owing to the presence of heterogeneous stromal cells, such as adipose-derived stem cells (ADSCs), that may interact with breast cancer cells and promote cancer development. Resistin is an adipocytokine associated with adverse breast cancer progression; however, its underlying mechanisms in the context of the breast tumor microenvironment remain largely unidentified. Here, we utilized a transwell co-culture model containing patient-derived ADSCs and breast cancer cell lines to investigate their potential interaction, and observed that breast cancer cells co-cultured with resistin-treated ADSCs (R-ADSCs) showed enhanced cancer cell growth and metastatic ability. Screening by proteome arrays revealed that C-X-C motif chemokine ligand 5 (CXCL5) was released in the conditioned medium of the co-culture system, and phosphorylated ERK was increased in breast cancer cells after co-culture with R-ADSCs. Breast cancer cells treated with the recombinant proteins of CXCL5 showed similarly enhanced cell migration and invasion ability as occurred in the co-culture model, whereas application of neutralizing antibodies against CXCL5 reversed these phenomena. The orthotopic xenograft in mice by breast cancer cells after co-culture with R-ADSCs had a larger tumor growth and more CXCL5 expression than control. In addition, clinical analysis revealed a positive correlation between the expression of resistin and CXCL5 in both tumor tissues and serum specimens of breast cancer patients. The current study suggests that resistin-stimulated ADSCs may interact with breast cancer cells in the tumor microenvironment via CXCL5 secretion, leading to breast cancer cell malignancy.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Amos C Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chia Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steven Lo
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Huan-Da Chen
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology and Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral and Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ching Hsieh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou F Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia 2022; 36:2396-2407. [PMID: 35999260 PMCID: PMC9522593 DOI: 10.1038/s41375-022-01678-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.
Collapse
|
35
|
Huo W, Wang Y, Chen T, Cao T, Zhang Y, Shi Z, Hou S. Triclosan activates c-Jun/miR-218-1-3p/SLC35C1 signaling to regulate cell viability, migration, invasion and inflammatory response of trophoblast cells in vitro. BMC Pregnancy Childbirth 2022; 22:470. [PMID: 35668364 PMCID: PMC9172191 DOI: 10.1186/s12884-022-04791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spontaneous abortion is considered as the commonest complication of pregnancy. Triclosan (TCS) is an antimicrobial agent, which participates in the process of multiple human diseases, including spontaneous abortion. Our study aimed to evaluate the effect of TCS on spontaneous abortion and disclose the possible regulatory mechanism in vitro. RESULTS RT-qPCR analyzed that miR-218-1-3p derived from abortion-associated factor slit guidance ligand 2 (SLIT2) was up-regulated in trophoblast cells under TCS treatment. Supported by western blot analysis, functional experiments demonstrated that miR-218-1-3p overexpression impeded the proliferation, migration and invasion while exacerbating the inflammatory response of trophoblast cells. Moreover, mechanism assays revealed that TCS modulated c-Jun production to promote MIR218-1 transcription and enhance miR-218-1-3p expression. Moreover, solute carrier family 35 member C1 (SLC35C1) was validated as a target gene of miR-218-1-3p, and miR-218-1-3p was sustained to negatively modulate SLC35C1 expression in trophoblast cells. Rescue assays validated the role of TCS/miR-218-1-3p/SLC35C1 axis in regulating the viability, migration, invasion and inflammatory response of trophoblast cells. CONCLUSIONS TCS regulated miR-218-1-3p/SLC35C1 axis to modulate the proliferation, migration, invasion and inflammatory response of trophoblast cells in vitro, which might provide novel insights for spontaneous abortion prevention.
Collapse
Affiliation(s)
- Weiwei Huo
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ying Wang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Tianyue Cao
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yue Zhang
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Shunyu Hou
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Design, synthesis, evaluation of new 3-acetylisoxazolines and their hybrid analogous as anticancer agents: In vitro and in silico analysis. Comput Biol Chem 2022; 98:107666. [DOI: 10.1016/j.compbiolchem.2022.107666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
|
37
|
Pagel CN, Kularathna PK, Sanaei R, Young ND, Hooper JD, Mackie EJ. Protease-activated receptor-2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate 2022; 82:723-739. [PMID: 35167724 DOI: 10.1002/pros.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metastatic prostate cancer lesions in the skeleton are frequently characterized by excessive formation of bone. Prostate cancer cells secrete factors, including serine proteases, that are capable of influencing the behavior of surrounding cells. Some of these proteases activate protease-activated receptor-2 (PAR2 ), which is expressed by osteoblasts (bone-forming cells) and precursors of osteoclasts (bone-resorbing cells). The aim of the current study was to investigate a possible role for PAR2 in regulating the behavior of bone cells exposed to metastatic prostate cancer cells. METHODS The effect of medium conditioned by the PC3, DU145, and MDA-PCa-2b prostate cancer cell lines was investigated in assays of bone cell function using cells isolated from wildtype and PAR2 -null mice. Osteoclast differentiation was assessed by counting tartrate-resistant acid phosphatase-positive multinucleate cells in bone marrow cultured in osteoclastogenic medium. Osteoblasts were isolated from calvariae of neonatal mice, and BrdU incorporation was used to assess their proliferation. Assays of alkaline phosphatase activity and quantitative PCR analysis of osteoblastic gene expression were used to assess osteoblast differentiation. Responses of osteoblasts to medium conditioned by MDA-PCa-2b cells were analyzed by RNAseq. RESULTS Conditioned medium (CM) from all three cell lines inhibited osteoclast differentiation independently of PAR2 . Media from PC3 and DU145 cells had no effect on assays of osteoblast function. Medium conditioned by MDA-PCa-2b cells stimulated BrdU incorporation in both wildtype and PAR2 -null osteoblasts but increased alkaline phosphatase activity and Runx2 and Col1a1 expression in wildtype but not PAR2 -null cells. Functional enrichment analysis of RNAseq data identified enrichment of multiple gene ontology terms associated with lysosomal function in both wildtype and PAR2 -null cells in response to MDA-PCa-2b-CM. Analysis of individual genes identified osteogenesis-associated genes that were either upregulated by MDA-PCa-2b-CM selectively in wildtype cells or downregulated selectively in PAR2 -null cells. CONCLUSIONS Factors secreted by prostate cancer cells influence bone cell behavior through both PAR2 -dependent and -independent mechanisms. Both PAR2 -independent suppression of osteoclast differentiation and PAR2 -dependent stimulation of osteogenesis are likely to determine the nature of prostate cancer metastases in bone.
Collapse
Affiliation(s)
- Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pamu K Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John D Hooper
- Mater Research Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Eleanor J Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Bianco G, Coto-Llerena M, Gallon J, Kancherla V, Taha-Mehlitz S, Marinucci M, Konantz M, Srivatsa S, Montazeri H, Panebianco F, Tirunagaru VG, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Jeselsohn RM, Doebele RC, Bidard FC, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Commun Biol 2022; 5:373. [PMID: 35440675 PMCID: PMC9018745 DOI: 10.1038/s42003-022-03296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.
Collapse
Affiliation(s)
- Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hesam Montazeri
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Marta De Menna
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Viola Paradiso
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Rinath M Jeselsohn
- Division of Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Klose K, Packeiser EM, Granados-Soler JL, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Evaluation of the therapeutic potential of masitinib and expression of its specific targets c-Kit, PDGFR-α, PDGFR-β, and Lyn in canine prostate cancer cell lines. Vet Comp Oncol 2022; 20:641-652. [PMID: 35384248 DOI: 10.1111/vco.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Canine prostate cancer is classified into adenocarcinoma, transitional cell carcinoma with prostatic involvement, and mixed forms. Early metastatic spread leads to poor prognosis and limited treatment options. Masitinib is approved for the treatment of canine mast cell tumours and inhibits tyrosine kinase c-Kit, tyrosine-protein kinase Lyn (Lyn), and platelet-derived growth factor receptors alpha and beta (PDGFR-α, PDGFR-β), which are known to be expressed in canine prostate cancer. The aim of this study was to evaluate masitinib in an in vitro model consisting of cell lines from primary prostate adenocarcinoma, the associated lymph node metastasis of the same patient, and transitional cell carcinoma. To assess the suitability of the model system, the targets of masitinib were investigated by immunocytochemistry in the cell lines and by immunohistochemistry in the respective formalin-fixed, paraffin-embedded (FFPE) original neoplastic tissue. After exposure to masitinib, cell viability, cell count, apoptosis induction, and protein expression of c-Kit, Lyn, PDGFR-α, and PDGFR-β were assessed. To hedge the efficacy, two application protocols of masitinib (single application or 12-h double-dose regimen) were compared. Immunocytochemical and immunohistochemical analysis revealed increased Lyn, PDGFR-α, and PDGFR-β expression in cell lines and FFPE original neoplastic tissue compared to healthy prostate tissue. Masitinib exposure increased apoptosis, while the cell counts and cell viability decreased in a dose- and application interval-dependent manner, with increased impact in the 12-h double-dose regimen. These in vitro effects of masitinib in canine prostate cancer and associated metastasis support further in vivo research and modifications of the clinical treatment protocol in future studies.
Collapse
Affiliation(s)
- Katharina Klose
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Hugo Murua Escobar
- Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
40
|
Liu CC, Kim YJ, Teh R, Garcia A, Hamilton EJ, Cornelius F, Baxter RC, Rasmussen HH. Displacement of Native FXYD Protein From Na+/K+-ATPase With Novel FXYD Peptide Derivatives: Effects on Doxorubicin Cytotoxicity. Front Oncol 2022; 12:859216. [PMID: 35371992 PMCID: PMC8968713 DOI: 10.3389/fonc.2022.859216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The seven mammalian FXYD proteins associate closely with α/β heterodimers of Na+/K+-ATPase. Most of them protect the β1 subunit against glutathionylation, an oxidative modification that destabilizes the heterodimer and inhibits Na+/K+-ATPase activity. A specific cysteine (Cys) residue of FXYD proteins is critical for such protection. One of the FXYD proteins, FXYD3, confers treatment resistance when overexpressed in cancer cells. We developed two FXYD3 peptide derivatives. FXYD3-pep CKCK retained the Cys residue that can undergo glutathionylation and that is critical for protecting the β1 subunit against glutathionylation. FXYD3-pep SKSK had all Cys residues mutated to Serine (Ser). The chemotherapeutic doxorubicin induces oxidative stress, and suppression of FXYD3 with siRNA in pancreatic- and breast cancer cells that strongly express FXYD3 increased doxorubicin-induced cytotoxicity. Exposing cells to FXYD3-pep SKSK decreased co-immunoprecipitation of FXYD3 with the α1 Na+/K+-ATPase subunit. FXYD3-pep SKSK reproduced the increase in doxorubicin-induced cytotoxicity seen after FXYD3 siRNA transfection in pancreatic- and breast cancer cells that overexpressed FXYD3, while FXYD3-pep CKCK boosted the native protein’s protection against doxorubicin. Neither peptide affected doxorubicin’s cytotoxicity on cells with no or low FXYD3 expression. Fluorescently labeled FXYD3-pep SKSK was detected in a perinuclear distribution in the cells overexpressing FXYD3, and plasmalemmal Na+/K+-ATPase turnover could not be implicated in the increased sensitivity to doxorubicin that FXYD3-pep SKSK caused. FXYD peptide derivatives allow rapid elimination or amplification of native FXYD protein function. Here, their effects implicate the Cys residue that is critical for countering β1 subunit glutathionylation in the augmentation of cytotoxicity with siRNA-induced downregulation of FXYD3.
Collapse
Affiliation(s)
- Chia-Chi Liu
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- *Correspondence: Chia-Chi Liu, ; Helge H. Rasmussen,
| | - Yeon Jae Kim
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | - Rachel Teh
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | - Alvaro Garcia
- School of Chemistry, University of Sydney, Camperdown, NSW, Australia
| | - Elisha J. Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
| | | | - Robert C. Baxter
- Hormones and Cancer Laboratories, Kolling Institute, University of Sydney, St Leonards, NSW, Australia
| | - Helge H. Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, St Leonards, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, St Leonards, NSW, Australia
- *Correspondence: Chia-Chi Liu, ; Helge H. Rasmussen,
| |
Collapse
|
41
|
Lu D, Nagelberg A, Chow JLM, Chen YT, Michalchuk Q, Somwar R, Lockwood WW. MET Exon 14 Splice-Site Mutations Preferentially Activate KRAS Signaling to Drive Tumourigenesis. Cancers (Basel) 2022; 14:cancers14061378. [PMID: 35326531 PMCID: PMC8946549 DOI: 10.3390/cancers14061378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MET exon 14 splice-site mutations occur in ~3–4% of lung adenocarcinoma cases, defining a cohort of patients which might benefit from anti-MET targeted therapy. Such therapies have yielded mixed results, however, pointing to the need for better treatment design. Our study sought to aid this by characterizing key changes in mutant MET signaling behaviour. We first compared the transcriptional profiles of lung tumours with either METΔex14 or wild-type MET-amplification. METΔex14-mutant tumours exhibited increased activation of the Ras-MAPK pathway, consistent with our observations in an isogenic model system. Furthermore, sustained activity of this pathway is necessary for proliferation and maintenance of METΔex14 tumours, while forced reactivation of this pathway is sufficient to restore growth in the absence of MET activity. Our findings suggest that the MAPK pathway represents a main effector of METΔex14-driven cancer, lending credence to the possibility of combined MET-MAPK inhibition to improve therapeutic outcomes. Abstract Targeted therapies for MET exon 14-skipping (METΔex14)-driven lung cancers have generated some promising results but response rates remain below that seen for other kinase-driven cancers. One strategy for improving treatment outcomes is to employ rational combination therapies to enhance the suppression of tumour growth and delay or prevent the emergence of resistance. To this end, we profiled the transcriptomes of MET-addicted lung tumours and cell lines and identified the RAS-mitogen-activated protein kinase (MAPK) pathway as a critical effector required for METΔex14-dependent growth. Ectopic expression of MET in an isogenic cell line model showed that overexpression of the mutant MET receptor led to higher levels of MAPK phosphorylation and nuclear import, resulting in increased expression and phosphorylation of nuclear MAPK targets. In comparison, other known MET effectors were unaffected. Inhibition of this pathway by KRAS knockdown in MET-addicted cells in vitro led to decreased viability in only the METΔex14-mutant cells. Conversely, decoupling RAS-MAPK axis, but not other effector pathways, from MET activity via the introduction of constitutively active mutants conferred resistance to MET inhibitors in vitro. Our results suggest that aberrant hyperactivity of the MET receptor caused by the exon 14-skipping mutation does not uniformly upregulate all known downstream effectors, rather gaining a predilection for aberrantly activating and subsequently relying on the RAS-MAPK pathway. These findings provide a rationale for the co-targeting of the RAS-MAPK pathway alongside MET to prolong therapeutic response and circumvent resistance to improve patient survival.
Collapse
Affiliation(s)
- Daniel Lu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Amy Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Justine LM Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
| | - Yankuan T Chen
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Quentin Michalchuk
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
| | - Romel Somwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (D.L.); (A.N.); (J.L.C.); (Y.T.C.); (Q.M.)
- Department of Interdisciplinary Oncology, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- Correspondence:
| |
Collapse
|
42
|
Aytatli A, Barlak N, Sanli F, Caglar HO, Gundogdu B, Tatar A, Ittmann M, Karatas OF. AZD4547 targets the FGFR/Akt/SOX2 axis to overcome paclitaxel resistance in head and neck cancer. Cell Oncol (Dordr) 2022; 45:41-56. [PMID: 34837170 DOI: 10.1007/s13402-021-00645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Development of chemoresistance is one of the major obstacles to the treatment of head and neck squamous cell carcinoma (HNSCC). The PI3K/Akt pathway, involved in drug resistance, has been found to be overactivated in > 90% of HNSCCs. Aberrant activation of the FGF receptors (FGFRs) has been reported to cause overactivation of the PI3K/Akt pathway and to be associated with the maintenance of stem cell features, which is controlled via SOX2 expression. In this study, we aimed at investigating the potential of using AZD4547, an orally bioavailable FGFR inhibitor, to overcome taxol-resistance by targeting the FGFR/Akt/SOX2 axis in HNSCC. METHODS We initially evaluated FGFR2 and SOX2 expression using in silico tools. We analyzed the FGFR/Akt/SOX2 axis in normal/tumor tissue pairs and in recombinant FGF2 treated HNSCC cells. Next, we explored the effects of AZD4547 alone and in combination with taxol on the proliferation, migration and colony forming capacities of parental/taxol-resistant cells using in vitro models. RESULTS We found that the p-FGFR, p-AKT, p-GSK-3β and SOX2 expression levels were higher in tumor tissues than in its corresponding normal tissues, and that AZD4547 effectively suppressed the expression of FGFR and its downstream targets in recombinant FGF2 treated HNSCC cells. We also found that AZD4547 diminished the viability, migration and colony forming capacity of HNSCC cells, and that co-treatment with taxol potentiated the impact of taxol on these cells. Finally, we found that AZD4547 inhibited the overexpressed FGFR/Akt/SOX2 axis and profoundly suppressed cancer-related phenotypes in taxol-resistant HNSCC cells. CONCLUSION From our data we conclude that AZD4547 may increase the impact of taxol during HNSCC treatment. We suggest AZD4547 as a therapeutic agent to overcome taxol-resistance.
Collapse
Affiliation(s)
- Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Onur Caglar
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
43
|
Marinucci M, Ercan C, Taha-Mehlitz S, Fourie L, Panebianco F, Bianco G, Gallon J, Staubli S, Soysal SD, Zettl A, Rauthe S, Vosbeck J, Droeser RA, Bolli M, Peterli R, von Flüe M, Ng CKY, Kollmar O, Coto-Llerena M, Piscuoglio S. Standardizing Patient-Derived Organoid Generation Workflow to Avoid Microbial Contamination From Colorectal Cancer Tissues. Front Oncol 2022; 11:781833. [PMID: 35083141 PMCID: PMC8784867 DOI: 10.3389/fonc.2021.781833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The use of patient-derived organoids (PDO) as a valuable alternative to in vivo models significantly increased over the last years in cancer research. The ability of PDOs to genetically resemble tumor heterogeneity makes them a powerful tool for personalized drug screening. Despite the extensive optimization of protocols for the generation of PDOs from colorectal tissue, there is still a lack of standardization of tissue handling prior to processing, leading to microbial contamination of the organoid culture. Here, using a cohort of 16 patients diagnosed with colorectal carcinoma (CRC), we aimed to test the efficacy of phosphate-buffered saline (PBS), penicillin/streptomycin (P/S), and Primocin, alone or in combination, in preventing organoid cultures contamination when used in washing steps prior to tissue processing. Each CRC tissue was divided into 5 tissue pieces, and treated with each different washing solution, or none. After the washing steps, all samples were processed for organoid generation following the same standard protocol. We detected contamination in 62.5% of the non-washed samples, while the use of PBS or P/S-containing PBS reduced the contamination rate to 50% and 25%, respectively. Notably, none of the organoid cultures washed with PBS/Primocin-containing solution were contaminated. Interestingly, addition of P/S to the washing solution reduced the percentage of living cells compared to Primocin. Taken together, our results demonstrate that, prior to tissue processing, adding Primocin to the tissue washing solution is able to eliminate the risk of microbial contamination in PDO cultures, and that the use of P/S negatively impacts organoids growth. We believe that our easy-to-apply protocol might help increase the success rate of organoid generation from CRC patients.
Collapse
Affiliation(s)
- Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caner Ercan
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Lana Fourie
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sebastian Staubli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Savas D Soysal
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Andreas Zettl
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Stephan Rauthe
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Jürg Vosbeck
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Raoul A Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Ralph Peterli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Otto Kollmar
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
44
|
Abstract
AbstractTumour spheroid experiments are routinely used to study cancer progression and treatment. Various and inconsistent experimental designs are used, leading to challenges in interpretation and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid size and temporal sampling frequencies across multiple cell lines, we collect an abundance of measurements of internal spheroid structure. These data are difficult to compare and interpret. However, using an objective mathematical modelling framework and statistical identifiability analysis we quantitatively compare experimental designs and identify design choices that produce reliable biological insight. Measurements of internal spheroid structure provide the most insight, whereas varying initial spheroid size and temporal measurement frequency is less important. Our general framework applies to spheroids grown in different conditions and with different cell types.
Collapse
|
45
|
Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Biol Open 2022; 11:274281. [PMID: 34994391 PMCID: PMC8822357 DOI: 10.1242/bio.059049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.
Collapse
Affiliation(s)
- Chenxiao Liu
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sven-Göran Eriksson
- Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Angelici B, Shen L, Schreiber J, Abraham A, Benenson Y. An AAV gene therapy computes over multiple cellular inputs to enable precise targeting of multifocal hepatocellular carcinoma in mice. Sci Transl Med 2021; 13:eabh4456. [PMID: 34910545 DOI: 10.1126/scitranslmed.abh4456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bartolomeo Angelici
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Linling Shen
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Joerg Schreiber
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Anthony Abraham
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| |
Collapse
|
47
|
Ravindran Menon D, Li Y, Yamauchi T, Osborne DG, Vaddi PK, Wempe MF, Zhai Z, Fujita M. EGCG Inhibits Tumor Growth in Melanoma by Targeting JAK-STAT Signaling and Its Downstream PD-L1/PD-L2-PD1 Axis in Tumors and Enhancing Cytotoxic T-Cell Responses. Pharmaceuticals (Basel) 2021; 14:1081. [PMID: 34832863 PMCID: PMC8618268 DOI: 10.3390/ph14111081] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, therapies targeting immune checkpoints, such as programmed death-1 (PD-1), have revolutionized the field of cancer immunotherapy. However, low response rates and immune-related adverse events remain a major concern. Here, we report that epigallocatechin gallate (EGCG), the most abundant catechin in green tea, inhibits melanoma growth by modulating an immune response against tumors. In vitro experiments revealed that EGCG treatment inhibited interferon-gamma (IFN-γ)-induced PD-L1 and PD-L2 expression and JAK-STAT signaling. We confirmed that this effect was driven by inhibiting STAT1 gene expression and STAT1 phosphorylation, thereby downregulating the PD-L1/PD-L2 transcriptional regulator IRF1 in both human and mouse melanoma cells. Animal studies revealed that the in vivo tumor-inhibitory effect of EGCG was through CD8+ T cells and that the inhibitory effect of EGCG was comparable to anti-PD-1 therapy. However, their mechanisms of action were different. Dissimilar to anti-PD-1 treatment that blocks PD-1/PD-L1 interaction, EGCG inhibited JAK/STAT signaling and PD-L1 expression in tumor cells, leading to the re-activation of T cells. In summary, we demonstrate that EGCG enhances anti-tumor immune responses by inhibiting JAK-STAT signaling in melanoma. EGCG could be used as an alternative treatment strategy to target the PD-L1/PD-L2-PD-1 axis in cancers.
Collapse
Affiliation(s)
- Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Yang Li
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Prasanna Kumar Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.M.); (Y.L.); (T.Y.); (D.G.O.); (P.K.V.); (Z.Z.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
48
|
A low-cost simple test for weekly detection of Mycoplasma hyorhinis and arginini contaminations in cell cultures and viral preparations. J Virol Methods 2021; 299:114327. [PMID: 34644588 DOI: 10.1016/j.jviromet.2021.114327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Mollicutes (Mycoplasma and Acholeplasma) are parasitic bacteria that adhere to cellular surfaces, naturally resistant to many antibiotics and extremely small. They are often found as contaminants in cultured cells, where they go unnoticed. They may be present in viral stocks because they are present in supernatants of cells where cultured viruses are released. The best way to keep laboratories free of Mycoplasma is to discard infected cultures, but, as judged by the very common finding of Mycoplasma-contaminated cultures in many laboratories, this is not done as often as it should be. A possible reason is that most procedures recommended take as long as performing a simple experiment and many laboratories delay testing to save money and time. Indeed, many methods exist to detect Mycoplasma infection of cell lines, but they take at least a couple of hours of hands-on work, if not more. Here we describe a procedure to screen viral stocks and tissue cultures for Mycoplasma presence. It relies on isolation of Mycoplasma on ordinary horse blood agar directly from exhausted tissue culture supernatants and does not require experienced personnel or expensive equipment. It only requires minutes of hands-on work, and, for this, it may be useful for weekly screening of cultures. It yields semiquantitative results in roughly 5 days, which is the time that usually passes between one subculture passage of cells in vitro to another. Because of its simplicity, it may be useful for detecting Mycoplasma in viral stocks and for frequent screening of cultures in research laboratories.
Collapse
|
49
|
Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS One 2021; 16:e0257403. [PMID: 34570803 PMCID: PMC8476037 DOI: 10.1371/journal.pone.0257403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
An important approach in tumor therapy is combining substances with different action mechanisms aiming to enhance the antineoplastic effect, decrease the therapeutic dosage, and avoid resistance mechanisms. Moreover, evaluating compounds already approved for the treatment of non-neoplastic diseases is promising for new antineoplastic therapies. Sodium dichloroacetate (DCA) reactivates oxidative phosphorylation in the cancer cell mitochondria, reducing apoptosis resistance in cancer cells. Furthermore, metformin inhibits the proliferation of tumor cells and CD133+ cancer -stem-like cells. In the present study, we evaluated the independent and synergistic effect of metformin and DCA on the metabolic activity, cell proliferation, and apoptosis of a canine prostate adenocarcinoma (Adcarc1258) and a transitional cell carcinoma cell line (TCC1506) in comparison to a primary canine fibroblast culture. Determining metformin uptake in tumor cells was performed by quantitative HPLC. Depending on the dosage, metformin as a single agent inhibited the metabolic activity and cell proliferation of the tumor cells, showing only minor effects on the fibroblasts. Furthermore, 1 mM metformin increased apoptosis over 96 h in the tumor cell lines but not in fibroblasts. Additionally, metformin uptake into the tumor cells in vitro was measurable by quantitative HPLC. Synergistic effects for the combination therapy were observed in both neoplastic cell lines as well as in the fibroblasts. Based on these results, metformin might be a promising therapeutic agent for canine urogenital tumors. Further studies on kinetics, toxicology, bioavailability, and application of metformin in dogs are necessary.
Collapse
|
50
|
Banh RS, Kim ES, Spillier Q, Biancur DE, Yamamoto K, Sohn ASW, Shi G, Jones DR, Kimmelman AC, Pacold ME. The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. Nature 2021; 597:420-425. [PMID: 34471290 PMCID: PMC8538427 DOI: 10.1038/s41586-021-03865-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Oxygen is critical for a multitude of metabolic processes that are essential for human life. Biological processes can be identified by treating cells with 18O2 or other isotopically labelled gases and systematically identifying biomolecules incorporating labeled atoms. Here we labelled cell lines of distinct tissue origins with 18O2 to identify the polar oxy-metabolome, defined as polar metabolites labelled with 18O under different physiological O2 tensions. The most highly 18O-labelled feature was 4-hydroxymandelate (4-HMA). We demonstrate that 4-HMA is produced by hydroxyphenylpyruvate dioxygenase-like (HPDL), a protein of previously unknown function in human cells. We identify 4-HMA as an intermediate involved in the biosynthesis of the coenzyme Q10 (CoQ10) headgroup in human cells. The connection of HPDL to CoQ10 biosynthesis provides crucial insights into the mechanisms underlying recently described neurological diseases related to HPDL deficiencies1-4 and cancers with HPDL overexpression5.
Collapse
Affiliation(s)
- Robert S Banh
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Esther S Kim
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Quentin Spillier
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Douglas E Biancur
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Keisuke Yamamoto
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Guangbin Shi
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, New York University Langone Health, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Michael E Pacold
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|