1
|
Szymczak F, Alvelos MI, Marín-Cañas S, Castela Â, Demine S, Colli ML, Op de Beeck A, Thomaidou S, Marselli L, Zaldumbide A, Marchetti P, Eizirik DL. Transcription and splicing regulation by NLRC5 shape the interferon response in human pancreatic β cells. SCIENCE ADVANCES 2022; 8:eabn5732. [PMID: 36103539 PMCID: PMC9473574 DOI: 10.1126/sciadv.abn5732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
IFNα is a key regulator of the dialogue between pancreatic β cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human β cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-βH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of β cell neoantigens, suggesting that it is a central player of the effects of IFNα on β cells that contribute to trigger and amplify autoimmunity in T1D.
Collapse
Affiliation(s)
- Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Stéphane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre De Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Xiao P, Takiishi T, Violato NM, Licata G, Dotta F, Sebastiani G, Marselli L, Singh SP, Sze M, Van Loo G, Dejardin E, Gurzov EN, Cardozo AK. NF-κB-inducing kinase (NIK) is activated in pancreatic β-cells but does not contribute to the development of diabetes. Cell Death Dis 2022; 13:476. [PMID: 35589698 PMCID: PMC9120028 DOI: 10.1038/s41419-022-04931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in β-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic β-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous β-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic β-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of β-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.
Collapse
Affiliation(s)
- Peng Xiao
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Tatiana Takiishi
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Natalia Moretti Violato
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Giada Licata
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Guido Sebastiani
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Sumeet Pal Singh
- Institute for Interdisciplinary Research in Human and Molecular Biology, Medical Faculty, Université libre de Bruxelles, Brussels, Belgium
| | - Mozes Sze
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Geert Van Loo
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Insitute, ULiege, Liège, Belgium
| | - Esteban Nicolas Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
De Franco E, Lytrivi M, Ibrahim H, Montaser H, Wakeling MN, Fantuzzi F, Patel K, Demarez C, Cai Y, Igoillo-Esteve M, Cosentino C, Lithovius V, Vihinen H, Jokitalo E, Laver TW, Johnson MB, Sawatani T, Shakeri H, Pachera N, Haliloglu B, Ozbek MN, Unal E, Yıldırım R, Godbole T, Yildiz M, Aydin B, Bilheu A, Suzuki I, Flanagan SE, Vanderhaeghen P, Senée V, Julier C, Marchetti P, Eizirik DL, Ellard S, Saarimäki-Vire J, Otonkoski T, Cnop M, Hattersley AT. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J Clin Invest 2021; 130:6338-6353. [PMID: 33164986 PMCID: PMC7685733 DOI: 10.1172/jci141455] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes is caused by single gene mutations reducing pancreatic β cell number or impairing β cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in β cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human β cell models (YIPF5 silencing in EndoC-βH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects β cells. Loss of YIPF5 function in stem cell–derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and β cell failure. Partial YIPF5 silencing in EndoC-βH1 cells and a patient mutation in stem cells increased the β cell sensitivity to ER stress–induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in β cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Maria Lytrivi
- ULB Center for Diabetes Research and.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew N Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Federica Fantuzzi
- ULB Center for Diabetes Research and.,Endocrinology and Metabolism, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | | | - Ying Cai
- ULB Center for Diabetes Research and
| | | | | | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | | | | | | | | | | | - Edip Unal
- Dicle University, Faculty of Medicine, Department of Pediatric Endocrinology, Diyarbakır, Turkey
| | - Ruken Yıldırım
- Dicle University, Faculty of Medicine, Department of Pediatric Endocrinology, Diyarbakır, Turkey
| | | | - Melek Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Banu Aydin
- Kanuni Sultan Suleyman Training and Research Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Angeline Bilheu
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ikuo Suzuki
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Pierre Vanderhaeghen
- Institute of Interdisciplinary Research (IRIBHM), ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Welbio, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Senée
- Université de Paris, Faculté de Médecine Paris-Diderot, U958, Paris, France
| | - Cécile Julier
- Université de Paris, Faculté de Médecine Paris-Diderot, U958, Paris, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research and.,Welbio, Université Libre de Bruxelles, Brussels, Belgium.,Indiana Biosciences Research Institute, Indianapolis, Indiana, USA
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miriam Cnop
- ULB Center for Diabetes Research and.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
4
|
Marselli L, Piron A, Suleiman M, Colli ML, Yi X, Khamis A, Carrat GR, Rutter GA, Bugliani M, Giusti L, Ronci M, Ibberson M, Turatsinze JV, Boggi U, De Simone P, De Tata V, Lopes M, Nasteska D, De Luca C, Tesi M, Bosi E, Singh P, Campani D, Schulte AM, Solimena M, Hecht P, Rady B, Bakaj I, Pocai A, Norquay L, Thorens B, Canouil M, Froguel P, Eizirik DL, Cnop M, Marchetti P. Persistent or Transient Human β Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Rep 2020; 33:108466. [PMID: 33264613 DOI: 10.1016/j.celrep.2020.108466] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Amna Khamis
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Gaelle R Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy; School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Centre for Advanced Studies and Technologies (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | | | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of General and Transplant Surgery, Cisanello University Hospital, Pisa 56124, Italy
| | - Paolo De Simone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy; Division of Liver Surgery and Transplantation, Cisanello University Hospital, Pisa 56124, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Nasteska
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Emanuele Bosi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Pratibha Singh
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and the Critical Areas, University of Pisa, Pisa 56126, Italy
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden 01307, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg 85764, Germany
| | - Peter Hecht
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Frankfurt, Germany
| | | | | | | | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille 59000, France
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium; Indiana Biosciences Research Institute, Indianapolis, IN, USA; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels 1070, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy.
| |
Collapse
|
5
|
Lytrivi M, Ghaddar K, Lopes M, Rosengren V, Piron A, Yi X, Johansson H, Lehtiö J, Igoillo-Esteve M, Cunha DA, Marselli L, Marchetti P, Ortsäter H, Eizirik DL, Cnop M. Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics 2020; 21:590. [PMID: 32847508 PMCID: PMC7448506 DOI: 10.1186/s12864-020-07003-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged exposure to elevated free fatty acids induces β-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of β-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of β-cell failure observed in type 2 diabetes. In order to map the β-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS Crossing transcriptome and proteome of palmitate-treated β-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and β-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to β-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed β-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the β-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Kassem Ghaddar
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Victoria Rosengren
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Henrik Johansson
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Henrik Ortsäter
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium. .,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
6
|
Grieco FA, Schiavo AA, Brozzi F, Juan-Mateu J, Bugliani M, Marchetti P, Eizirik DL. The miRNAs miR-211-5p and miR-204-5p modulate ER stress in human beta cells. J Mol Endocrinol 2019; 63:139-149. [PMID: 31277072 PMCID: PMC6938585 DOI: 10.1530/jme-19-0066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.
Collapse
Affiliation(s)
- Fabio Arturo Grieco
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Flora Brozzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Dr. Décio L. Eizirik, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium, 808 Route de Lennik, 1070 Brussels, Belgium, Phone: +32 2 555 6242, Fax: +32 2 555 6239,
| |
Collapse
|
7
|
Yang F, Zheng Z, Zheng L, Qin J, Li H, Xue X, Gao J, Fang G. SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells. Onco Targets Ther 2018; 11:6811-6825. [PMID: 30349314 PMCID: PMC6188175 DOI: 10.2147/ott.s182437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Gastric cancer, the cancer initiated from the stomach, is ranked as the third most
frequent reason of cancer death worldwide. Gastric cancer-initiating cells (CICs) are
one of the crucial causes for the metastasis and recurrence of gastric cancer, and CD44
is considered to be one marker for gastric CICs. Special AT-rich sequence binding
protein 1 (SATB1) is a protein that promotes cancer progression, metastasis, and
invasion and also participates in the maintenance of CICs. In this study, we
investigated the therapeutic effect of SATB1 siRNA against gastric CICs and we
constructed SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies
(CD44-SATB1-ILs) to enhance the therapeutic effect of SATB1 siRNA against gastric
CICs. Methods We investigated the therapeutic effect of the SATB1 suppression by SATB1 siRNA on
CD44+ gastric CICs. CD44-SATB1-ILs were developed by the
lyophilization/hydration approach. The targeting and cytotoxic effect of CD44-SATB1-ILs
toward gastric CICs were evaluated in vitro. Results In this study, for the first time, we confirmed that SATB1 suppression by SATB1 siRNA
preferentially eliminated CD44+ gastric CICs. The results showed that
CD44-SATB1-ILs could efficiently and specifically promote the SATB1 siRNA delivery to
CD44+ gastric CICs, achieving superior therapeutic effects against
CD44+ gastric CICs than non-targeted liposomes. Conclusion As far as we know, our report is the first research that indicated the promotion of
siRNA delivery via nanoparticles to gastric CICs and achievement of superior therapeutic
effect against gastric CICs by utilization of CD44 antibody. Therefore, CD44-SATB1-ILs
represent an up-and-coming approach for eliminating gastric CICs and also a promising
treatment for therapy of gastric cancer.
Collapse
Affiliation(s)
- Feng Yang
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Zhi Zheng
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Luming Zheng
- Department of General Surgery, General Hospital of Jinan Military Area, Jinan 250031, People's Republic of China
| | - Jianmin Qin
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Haijia Li
- Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 201805, People's Republic of China,
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Jie Gao
- Department of Pharmaceutical Science, College of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Guoen Fang
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| |
Collapse
|
8
|
Paula FMM, Leite NC, Borck PC, Freitas-Dias R, Cnop M, Chacon-Mikahil MPT, Cavaglieri CR, Marchetti P, Boschero AC, Zoppi CC, Eizirik DL. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. FASEB J 2018; 32:1524-1536. [PMID: 29133342 DOI: 10.1096/fj.201700710r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent β cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat β cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1β+IFN-γ)- or chemical ER stressor-induced β-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent β-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Flavia M M Paula
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nayara C Leite
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia C Borck
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Freitas-Dias
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physical Therapy, University of Pernambuco, Petrolina, Brazil
| | - Miriam Cnop
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mara P T Chacon-Mikahil
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Claudio C Zoppi
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Decio L Eizirik
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
9
|
Meyerovich K, Violato NM, Fukaya M, Dirix V, Pachera N, Marselli L, Marchetti P, Strasser A, Eizirik DL, Cardozo AK. MCL-1 Is a Key Antiapoptotic Protein in Human and Rodent Pancreatic β-Cells. Diabetes 2017; 66:2446-2458. [PMID: 28667119 DOI: 10.2337/db16-1252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/20/2017] [Indexed: 11/13/2022]
Abstract
Induction of endoplasmic reticulum stress and activation of the intrinsic apoptotic pathway is widely believed to contribute to β-cell death in type 1 diabetes (T1D). MCL-1 is an antiapoptotic member of the BCL-2 protein family, whose depletion causes apoptosis in rodent β-cells in vitro. Importantly, decreased MCL-1 expression was observed in islets from patients with T1D. We report here that MCL-1 downregulation is associated with cytokine-mediated killing of human β-cells, a process partially prevented by MCL-1 overexpression. By generating a β-cell-specific Mcl-1 knockout mouse strain (βMcl-1KO), we observed that, surprisingly, MCL-1 ablation does not affect islet development and function. β-Cells from βMcl-1KO mice were, however, more susceptible to cytokine-induced apoptosis. Moreover, βMcl-1KO mice displayed higher hyperglycemia and lower pancreatic insulin content after multiple low-dose streptozotocin treatment. We found that the kinase GSK3β, the E3 ligases MULE and βTrCP, and the deubiquitinase USP9x regulate cytokine-mediated MCL-1 protein turnover in rodent β-cells. Our results identify MCL-1 as a critical prosurvival protein for preventing β-cell death and clarify the mechanisms behind its downregulation by proinflammatory cytokines. Development of strategies to prevent MCL-1 loss in the early stages of T1D may enhance β-cell survival and thereby delay or prevent disease progression.
Collapse
Affiliation(s)
- Kira Meyerovich
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Natalia M Violato
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Makiko Fukaya
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Decio L Eizirik
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K Cardozo
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
Cunha DA, Cito M, Grieco FA, Cosentino C, Danilova T, Ladrière L, Lindahl M, Domanskyi A, Bugliani M, Marchetti P, Eizirik DL, Cnop M. Pancreatic β-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF). J Biol Chem 2017; 292:14977-14988. [PMID: 28698383 DOI: 10.1074/jbc.m116.769877] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
Cytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic β-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote β-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human β-cells exposed to cytokines or thapsigargin-induced ER stress. THBS1 confers cytoprotection by maintaining expression of mesencephalic astrocyte-derived neutrotrophic factor (MANF) in β-cells and thereby prevents the BH3-only protein BIM (BCL2-interacting mediator of cell death)-dependent triggering of the mitochondrial pathway of apoptosis. Prolonged exposure of β-cells to cytokines or thapsigargin leads to THBS1 and MANF degradation and loss of this prosurvival mechanism. Approaches that sustain intracellular THBS1 and MANF expression in β-cells should be explored as a cytoprotective strategy in type 1 diabetes.
Collapse
Affiliation(s)
- Daniel A Cunha
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Monia Cito
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fabio Arturo Grieco
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Cristina Cosentino
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tatiana Danilova
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Laurence Ladrière
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Lindahl
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Andrii Domanskyi
- the Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marco Bugliani
- the Department of Endocrinology and Metabolism, University of Pisa, 56100 Pisa, Italy, and
| | - Piero Marchetti
- the Department of Endocrinology and Metabolism, University of Pisa, 56100 Pisa, Italy, and
| | - Décio L Eizirik
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- From the Université Libre de Bruxelles Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium, .,the Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
11
|
Dos Santos RS, Daures M, Philippi A, Romero S, Marselli L, Marchetti P, Senée V, Bacq D, Besse C, Baz B, Marroquí L, Ivanoff S, Masliah-Planchon J, Nicolino M, Soulier J, Socié G, Eizirik DL, Gautier JF, Julier C. dUTPase ( DUT) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure. Diabetes 2017; 66:1086-1096. [PMID: 28073829 DOI: 10.2337/db16-0839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022]
Abstract
We describe a new syndrome characterized by early-onset diabetes associated with bone marrow failure, affecting mostly the erythrocytic lineage. Using whole-exome sequencing in a remotely consanguineous patient from a family with two affected siblings, we identified a single homozygous missense mutation (chr15.hg19:g.48,626,619A>G) located in the dUTPase (DUT) gene (National Center for Biotechnology Information Gene ID 1854), affecting both the mitochondrial (DUT-M p.Y142C) and the nuclear (DUT-N p.Y54C) isoforms. We found the same homozygous mutation in an unrelated consanguineous patient with diabetes and bone marrow aplasia from a family with two affected siblings, whereas none of the >60,000 subjects from the Exome Aggregation Consortium (ExAC) was homozygous for this mutation. This replicated observation probability was highly significant, thus confirming the role of this DUT mutation in this syndrome. DUT is a key enzyme for maintaining DNA integrity by preventing misincorporation of uracil into DNA, which results in DNA toxicity and cell death. We showed that DUT silencing in human and rat pancreatic β-cells results in apoptosis via the intrinsic cell death pathway. Our findings support the importance of tight control of DNA metabolism for β-cell integrity and warrant close metabolic monitoring of patients treated by drugs affecting dUTP balance.
Collapse
Affiliation(s)
| | - Mathilde Daures
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Anne Philippi
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Sophie Romero
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Valérie Senée
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Delphine Bacq
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Céline Besse
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Baz Baz
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Laura Marroquí
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Ivanoff
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Julien Masliah-Planchon
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Marc Nicolino
- Hôpital Femme-Mère-Enfant, Division of Pediatric Endocrinology, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - Jean Soulier
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Gérard Socié
- Hematology Transplantation, Department of Hematology, Immunology and Oncology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Gautier
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Cécile Julier
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Juan-Mateu J, Rech TH, Villate O, Lizarraga-Mollinedo E, Wendt A, Turatsinze JV, Brondani LA, Nardelli TR, Nogueira TC, Esguerra JLS, Alvelos MI, Marchetti P, Eliasson L, Eizirik DL. Neuron-enriched RNA-binding Proteins Regulate Pancreatic Beta Cell Function and Survival. J Biol Chem 2017; 292:3466-3480. [PMID: 28077579 PMCID: PMC5336178 DOI: 10.1074/jbc.m116.748335] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic beta cell failure is the central event leading to diabetes. Beta cells share many phenotypic traits with neurons, and proper beta cell function relies on the activation of several neuron-like transcription programs. Regulation of gene expression by alternative splicing plays a pivotal role in brain, where it affects neuronal development, function, and disease. The role of alternative splicing in beta cells remains unclear, but recent data indicate that splicing alterations modulated by both inflammation and susceptibility genes for diabetes contribute to beta cell dysfunction and death. Here we used RNA sequencing to compare the expression of splicing-regulatory RNA-binding proteins in human islets, brain, and other human tissues, and we identified a cluster of splicing regulators that are expressed in both beta cells and brain. Four of them, namely Elavl4, Nova2, Rbox1, and Rbfox2, were selected for subsequent functional studies in insulin-producing rat INS-1E, human EndoC-βH1 cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2 increased beta cell apoptosis, whereas silencing of Rbfox1 and Rbfox2 increased insulin content and secretion. Interestingly, Rbfox1 silencing modulates the splicing of the actin-remodeling protein gelsolin, increasing gelsolin expression and leading to faster glucose-induced actin depolymerization and increased insulin release. Taken together, these findings indicate that beta cells share common splicing regulators and programs with neurons. These splicing regulators play key roles in insulin release and beta cell survival, and their dysfunction may contribute to the loss of functional beta cell mass in diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Tatiana H Rech
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Anna Wendt
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | | | - Letícia A Brondani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jonathan L S Esguerra
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Lena Eliasson
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium; Welbio, Université Libre de Bruxelles, 808 Route de Lennik, CP618, 1070 Brussels, Belgium.
| |
Collapse
|
13
|
Grieco FA, Sebastiani G, Juan-Mateu J, Villate O, Marroqui L, Ladrière L, Tugay K, Regazzi R, Bugliani M, Marchetti P, Dotta F, Eizirik DL. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. Diabetes 2017; 66:100-112. [PMID: 27737950 PMCID: PMC5204315 DOI: 10.2337/db16-0592] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease leading to β-cell destruction. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression and organ formation. They participate in the pathogenesis of several autoimmune diseases, but the nature of miRNAs contributing to β-cell death in T1D and their target genes remain to be clarified. We performed an miRNA expression profile on human islet preparations exposed to the cytokines IL-1β plus IFN-γ. Confirmation of miRNA and target gene modification in human β-cells was performed by real-time quantitative PCR. Single-stranded miRNAs inhibitors were used to block selected endogenous miRNAs. Cell death was measured by Hoechst/propidium iodide staining and activation of caspase-3. Fifty-seven miRNAs were detected as modulated by cytokines. Three of them, namely miR-23a-3p, miR-23b-3p, and miR-149-5p, were downregulated by cytokines and selected for further studies. These miRNAs were found to regulate the expression of the proapoptotic Bcl-2 proteins DP5 and PUMA and consequent human β-cell apoptosis. These results identify a novel cross talk between a key family of miRNAs and proapoptotic Bcl-2 proteins in human pancreatic β-cells, broadening our understanding of cytokine-induced β-cell apoptosis in early T1D.
Collapse
Affiliation(s)
- Fabio Arturo Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Umberto Di Mario ONLUS Foundation-Toscana Life Sciences Foundation, Siena, Italy
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladrière
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Ksenya Tugay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marco Bugliani
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Umberto Di Mario ONLUS Foundation-Toscana Life Sciences Foundation, Siena, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Joglekar MV, Trivedi PM, Kay TW, Hawthorne WJ, O'Connell PJ, Jenkins AJ, Hardikar AA, Thomas HE. Human islet cells are killed by BID-independent mechanisms in response to FAS ligand. Apoptosis 2016; 21:379-89. [PMID: 26758067 DOI: 10.1007/s10495-016-1212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | - Prerak M Trivedi
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Thomas W Kay
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Wayne J Hawthorne
- The Centre for Transplant and Renal Research, Westmead Millennium Research Institute, University of Sydney, Westmead, Australia
| | - Philip J O'Connell
- The Centre for Transplant and Renal Research, Westmead Millennium Research Institute, University of Sydney, Westmead, Australia
| | - Alicia J Jenkins
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia. .,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
15
|
Thrombospondin 1 protects pancreatic β-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ 2016; 23:1995-2006. [PMID: 27588705 DOI: 10.1038/cdd.2016.89] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/21/2022] Open
Abstract
The failure of β-cells has a central role in the pathogenesis of type 2 diabetes, and the identification of novel approaches to improve functional β-cell mass is essential to prevent/revert the disease. Here we show a critical novel role for thrombospondin 1 (THBS1) in β-cell survival during lipotoxic stress in rat, mouse and human models. THBS1 acts from within the endoplasmic reticulum to activate PERK and NRF2 and induce a protective antioxidant defense response against palmitate. Prolonged palmitate exposure causes THBS1 degradation, oxidative stress, activation of JNK and upregulation of PUMA, culminating in β-cell death. These findings shed light on the mechanisms leading to β-cell failure during metabolic stress and point to THBS1 as an interesting therapeutic target to prevent oxidative stress in type 2 diabetes.
Collapse
|
16
|
Brozzi F, Gerlo S, Grieco FA, Juusola M, Balhuizen A, Lievens S, Gysemans C, Bugliani M, Mathieu C, Marchetti P, Tavernier J, Eizirik DL. Ubiquitin D Regulates IRE1α/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells. J Biol Chem 2016; 291:12040-56. [PMID: 27044747 DOI: 10.1074/jbc.m115.704619] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells.
Collapse
Affiliation(s)
- Flora Brozzi
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sarah Gerlo
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Fabio Arturo Grieco
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Matilda Juusola
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Alexander Balhuizen
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sam Lievens
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Conny Gysemans
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Marco Bugliani
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Chantal Mathieu
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Piero Marchetti
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Jan Tavernier
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Décio L Eizirik
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium,
| |
Collapse
|
17
|
Robitaille K, Rourke JL, McBane JE, Fu A, Baird S, Du Q, Kin T, Shapiro AMJ, Screaton RA. High-throughput Functional Genomics Identifies Regulators of Primary Human Beta Cell Proliferation. J Biol Chem 2016; 291:4614-4625. [PMID: 26740620 PMCID: PMC4813485 DOI: 10.1074/jbc.m115.683912] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
The expansion of cells for regenerative therapy will require the genetic dissection of complex regulatory mechanisms governing the proliferation of non-transformed human cells. Here, we report the development of a high-throughput RNAi screening strategy specifically for use in primary cells and demonstrate that silencing the cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21 facilitates cell cycle entry of quiescent adult human pancreatic beta cells. This work identifies p18 and p21 as novel targets for promoting proliferation of human beta cells and demonstrates the promise of functional genetic screens for dissecting therapeutically relevant state changes in primary human cells.
Collapse
Affiliation(s)
- Karine Robitaille
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | | | - Joanne E McBane
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | - Accalia Fu
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5
| | - Stephen Baird
- From the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1
| | - Qiujiang Du
- the Sunnybrook Research Institute, Toronto, Ontario M4N 3M5
| | - Tatsuya Kin
- the Clinical Islet Transplant Program, University of Alberta, 8215-112 Street, Edmonton, Alberta T6G 2C8, and
| | - A M James Shapiro
- the Clinical Islet Transplant Program, University of Alberta, 8215-112 Street, Edmonton, Alberta T6G 2C8, and
| | - Robert A Screaton
- the Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Marroqui L, Dos Santos RS, Fløyel T, Grieco FA, Santin I, Op de Beeck A, Marselli L, Marchetti P, Pociot F, Eizirik DL. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes 2015; 64:3808-17. [PMID: 26239055 DOI: 10.2337/db15-0362] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon (IFN)-regulated pathways and tyrosine kinase 2 (TYK2). Polymorphisms in the TYK2 gene predicted to decrease function are associated with a decreased risk of developing type 1 diabetes. We presently evaluated whether TYK2 plays a role in human pancreatic β-cell apoptosis and production of proinflammatory mediators. TYK2-silenced human β-cells exposed to polyinosinic-polycitidilic acid (PIC) (a mimick of double-stranded RNA produced during viral infection) showed less type I IFN pathway activation and lower production of IFNα and CXCL10. These cells also had decreased expression of major histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets.
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Tina Fløyel
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium Endocrinology and Diabetes Research Group, BioCruces Health Research Institute and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barakaldo, Spain
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Laboratory, University of Pisa, Pisa, Italy
| | - Flemming Pociot
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, Bugliani M, Engin F, Hotamisligil GS, Marchetti P, Eizirik DL. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 2015; 58:2307-16. [PMID: 26099855 DOI: 10.1007/s00125-015-3669-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-βH1 cells were exposed to the cytokines IL-1β, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.
Collapse
Affiliation(s)
- Flora Brozzi
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Isabelle Millard
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Jenny Barthson
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Fabio A Grieco
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Olatz Villate
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Joana M Oliveira
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marina Casimir
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Sabri Ülker Center, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| |
Collapse
|
21
|
Marroqui L, Masini M, Merino B, Grieco FA, Millard I, Dubois C, Quesada I, Marchetti P, Cnop M, Eizirik DL. Pancreatic α Cells are Resistant to Metabolic Stress-induced Apoptosis in Type 2 Diabetes. EBioMedicine 2015; 2:378-85. [PMID: 26137583 PMCID: PMC4485913 DOI: 10.1016/j.ebiom.2015.03.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Pancreatic α cells are exposed to metabolic stress during the evolution of type 2 diabetes (T2D), but it remains unclear whether this affects their survival. We used electron microscopy to search for markers of apoptosis and endoplasmic reticulum (ER) stress in α and β cells in islets from T2D or non-diabetic individuals. There was a significant increase in apoptotic β cells (from 0.4% in control to 6.0% in T2D), but no α cell apoptosis. We observed, however, similar ER stress in α and β cells from T2D patients. Human islets or fluorescence-activated cell sorting (FACS)-purified rat β and α cells exposed in vitro to the saturated free fatty acid palmitate showed a similar response as the T2D islets, i.e. both cell types showed signs of ER stress but only β cells progressed to apoptosis. Mechanistic experiments indicate that this α cell resistance to palmitate-induced apoptosis is explained, at least in part, by abundant expression of the anti-apoptotic protein Bcl2l1 (also known as Bcl-xL).
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Matilde Masini
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa 56126, Italy
| | - Beatriz Merino
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM) Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Isabelle Millard
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Christine Dubois
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Ivan Quesada
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM) Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa 56126, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium ; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
22
|
Brozzi F, Gerlo S, Grieco FA, Nardelli TR, Lievens S, Gysemans C, Marselli L, Marchetti P, Mathieu C, Tavernier J, Eizirik DL. A combined "omics" approach identifies N-Myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-Jun N-terminal kinase in pancreatic beta cells. J Biol Chem 2015; 289:20677-93. [PMID: 24936061 DOI: 10.1074/jbc.m114.568808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from "physiological" to "pathological" UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell "adaptation," "stress response," or "apoptosis" remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells
Collapse
|
23
|
Villate O, Turatsinze JV, Mascali LG, Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe VA, Esguerra JLS, Eliasson L, Marselli L, Marchetti P, Eizirik DL. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 2014; 42:11818-30. [PMID: 25249621 PMCID: PMC4191425 DOI: 10.1093/nar/gku861] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a fundamental mechanism for the regulation of gene expression. It affects more than 90% of human genes but its role in the regulation of pancreatic beta cells, the producers of insulin, remains unknown. Our recently published data indicated that the ‘neuron-specific’ Nova1 splicing factor is expressed in pancreatic beta cells. We have presently coupled specific knockdown (KD) of Nova1 with RNA-sequencing to determine all splice variants and downstream pathways regulated by this protein in beta cells. Nova1 KD altered the splicing of nearly 5000 transcripts. Pathway analysis indicated that these genes are involved in exocytosis, apoptosis, insulin receptor signaling, splicing and transcription. In line with these findings, Nova1 silencing inhibited insulin secretion and induced apoptosis basally and after cytokine treatment in rodent and human beta cells. These observations identify a novel layer of regulation of beta cell function, namely AS controlled by key splicing regulators such as Nova1.
Collapse
Affiliation(s)
- Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Loriana G Mascali
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Michael Sammeth
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis Rio de Janeiro, 25651-076, Brazil
| | - Vishal A Salunkhe
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| |
Collapse
|
24
|
Marroquí L, Santin I, Dos Santos RS, Marselli L, Marchetti P, Eizirik DL. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 2014; 63:2516-27. [PMID: 24608439 DOI: 10.2337/db13-1443] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by specific destruction of pancreatic β-cells by the immune system. Linkage and genome-wide association studies have identified more than 50 loci across the human genome associated with risk of type 1 diabetes. Recently, basic leucine zipper transcription factor 2 (BACH2) has been associated with genetic risk to develop type 1 diabetes, in an effect ascribed to the immune system. We evaluated whether BACH2 may also play a role in immune-mediated pancreatic β-cell apoptosis. BACH2 inhibition exacerbated cytokine-induced β-cell apoptosis in human and rodent β-cells by the mitochondrial pathway of cell death, whereas BACH2 overexpression had protective effects. BACH2 silencing and exposure to proinflammatory cytokines increased phosphorylation of the proapoptotic protein JNK1 by upregulation of mitogen-activated protein kinase kinase 7 (MKK7) and downregulation of PTPN2. JNK1 increased phosphorylation of the proapoptotic protein BIM, and both JNK1 and BIM knockdown protected β-cells against cytokine-induced apoptosis in BACH2-silenced cells. The present findings suggest that the type 1 diabetes candidate gene BACH2 regulates proinflammatory cytokine-induced apoptotic pathways in pancreatic β-cells by crosstalk with another candidate gene, PTPN2, and activation of JNK1 and BIM. This clarifies an unexpected and relevant mechanism by which BACH2 may contribute to diabetes.
Collapse
Affiliation(s)
- Laura Marroquí
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, BelgiumEndocrinology and Diabetes Research Group, BioCruces Health Research Institute and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barakaldo, Spain
| | - Reinaldo Sousa Dos Santos
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, Bugliani M, Ladriere L, Marselli L, McCarthy MI, Marchetti P, Sammeth M, Eizirik DL. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 2014; 63:1978-93. [PMID: 24379348 DOI: 10.2337/db13-1383] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause β-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling β-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced β-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the β-cell level.
Collapse
Affiliation(s)
- Miriam Cnop
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, BelgiumDivision of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Baroj Abdulkarim
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Bottu
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel A Cunha
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Matilde Masini
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Jean-Valery Turatsinze
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Thasso Griebel
- Functional Bioinformatics, Centre Nacional d'Anàlisi Genòmica, Barcelona, Spain
| | - Olatz Villate
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Izortze Santin
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Laurence Ladriere
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, U.K.Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K.Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Michael Sammeth
- Functional Bioinformatics, Centre Nacional d'Anàlisi Genòmica, Barcelona, SpainLaboratório Nacional de Computação Cientifica, Rio de Janeiro, Brazil
| | - Décio L Eizirik
- Laboratory of Experimental Medicine, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Cunha DA, Gurzov EN, Naamane N, Ortis F, Cardozo AK, Bugliani M, Marchetti P, Eizirik DL, Cnop M. JunB protects β-cells from lipotoxicity via the XBP1-AKT pathway. Cell Death Differ 2014; 21:1313-24. [PMID: 24786832 DOI: 10.1038/cdd.2014.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Diets rich in saturated fats may contribute to the loss of pancreatic β-cells in type 2 diabetes. JunB, a member of the activating protein 1 (AP-1) transcription factor family, promotes β-cell survival and mediates part of the beneficial effects of GLP-1 agonists. In this study we interrogated the molecular mechanisms involved in JunB-mediated β-cell protection from lipotoxicity. The saturated fatty acid palmitate decreased JunB expression, and this loss may contribute to β-cell apoptosis, as overexpression of JunB protected cells from lipotoxicity. Array analysis of JunB-deficient β-cells identified a gene expression signature of a downregulated endoplasmic reticulum (ER) stress response and inhibited AKT signaling. JunB stimulates XBP1 expression via the transcription factor c/EBPδ during ER stress, and forced expression of XBP1s rescued the viability of JunB-deficient cells, constituting an important antiapoptotic mechanism. JunB silencing inhibited AKT activation and activated the proapoptotic Bcl-2 protein BAD via its dephosphorylation. BAD knockdown reversed lipotoxic β-cell death potentiated by JunB siRNA. Interestingly, XBP1s links JunB and AKT signaling as XBP1 knockdown also reduced AKT phosphorylation. GLP-1 agonists induced cAMP-dependent AKT phosphorylation leading to β-cell protection against palmitate-induced apoptosis. JunB and XBP1 knockdown or IRE1 inhibition decreased AKT activation by cAMP, leading to β-cell apoptosis. In conclusion, JunB modulates the β-cell ER stress response and AKT signaling via the induction of XBP1s. The activation of the JunB gene network and the crosstalk between the ER stress and AKT pathway constitute a crucial defense mechanism by which GLP-1 agonists protect against lipotoxic β-cell death. These findings elucidate novel β-cell-protective signal transduction in type 2 diabetes.
Collapse
Affiliation(s)
- D A Cunha
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - E N Gurzov
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - N Naamane
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - F Ortis
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - A K Cardozo
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - P Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - D L Eizirik
- Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - M Cnop
- 1] Laboratory of Experimental Medicine and ULB Center of Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium [2] Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L, Rondas D, Korf H, Overbergh L, Dotta F, Marchetti P, Mathieu C, Eizirik DL. IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia 2014; 57:502-11. [PMID: 24352375 DOI: 10.1007/s00125-013-3135-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Cytotoxic T cells and macrophages contribute to beta cell destruction in type 1 diabetes at least in part through the production of cytokines such as IL-1β, IFN-γ and TNF-α. We have recently shown the IL-17 pathway to be activated in circulating T cells and pancreatic islets of type 1 diabetes patients. Here, we studied whether IL-17A upregulates the production of chemokines by human pancreatic islets, thus contributing to the build-up of insulitis. METHODS Human islets (from 18 donors), INS-1E cells and islets from wild-type and Stat1 knockout mice were studied. Dispersed islet cells were left untreated, or were treated with IL-17A alone or together with IL-1β+IFN-γ or TNF-α+IFN-γ. RNA interference was used to knock down signal transducer and activator of transcription 1 (STAT1). Chemokine expression was assessed by quantitative RT-PCR, ELISA and histology. Cell viability was evaluated with nuclear dyes. RESULTS IL-17A augmented IL-1β+IFN-γ- and TNF-α+IFN-γ-induced chemokine mRNA and protein expression, and apoptosis in human islets. Beta cells were at least in part the source of chemokine production. Knockdown of STAT1 in human islets prevented cytokine- or IL-17A+cytokine-induced apoptosis and the expression of particular chemokines, e.g. chemokine (C-X-C motif) ligands 9 and 10. Similar observations were made in islets isolated from Stat1 knockout mice. CONCLUSIONS/INTERPRETATION Our findings indicate that IL-17A exacerbates proinflammatory chemokine expression and secretion by human islets exposed to cytokines. This suggests that IL-17A contributes to the pathogenesis of type 1 diabetes by two mechanisms, namely the exacerbation of beta cell apoptosis and increased local production of chemokines, thus potentially aggravating insulitis.
Collapse
Affiliation(s)
- Fabio A Grieco
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Miani M, Barthson J, Colli ML, Brozzi F, Cnop M, Eizirik DL. Endoplasmic reticulum stress sensitizes pancreatic beta cells to interleukin-1β-induced apoptosis via Bim/A1 imbalance. Cell Death Dis 2013; 4:e701. [PMID: 23828564 PMCID: PMC3730410 DOI: 10.1038/cddis.2013.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1.
Collapse
Affiliation(s)
- M Miani
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 2013; 9:e1003532. [PMID: 23737756 PMCID: PMC3667755 DOI: 10.1371/journal.pgen.1003532] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/12/2013] [Indexed: 12/19/2022] Open
Abstract
Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1β + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS. Pancreatic beta cell dysfunction and death is a central event in the pathogenesis of diabetes. Genome-wide association studies have identified a large number of associations between specific loci and the two main forms of diabetes, namely type 1 and type 2 diabetes, but the mechanisms by which these candidate genes predispose to diabetes remain to be clarified. The GLIS3 gene region has been identified as a susceptibility risk locus for both type 1 and type 2 diabetes—it is actually the only locus showing association with both forms of diabetes and the regulation of blood glucose. We show that decreased expression of GLIS3 may contribute to diabetes by favouring beta cell apoptosis. This is mediated by the mitochondrial pathway of apoptosis, activated via alternative splicing (a process by which exons are joined in multiple ways, leading to the generation of several proteins by a single gene) of the pro-apoptotic protein Bim, which favours formation of the most pro-apoptotic variant. The present data provides the first evidence that a susceptibility gene for diabetes may contribute to disease via regulation of alternative splicing of a pro-apoptotic gene in pancreatic beta cells.
Collapse
|
30
|
Huang B, Zhou H, Wang X, Liu Z. Silencing SATB1 with siRNA inhibits the proliferation and invasion of small cell lung cancer cells. Cancer Cell Int 2013; 13:8. [PMID: 23379909 PMCID: PMC3582488 DOI: 10.1186/1475-2867-13-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Small cell lung cancer (SCLC) is a special kind of lung cancers, lymph or blood metastasis of SCLC usually occurs in early stage. Studies in breast and colon cancer showed over expression of SATB1 could promote tumor cell growth and inhibit apoptosis. Therefore, we studied the expression of SATB1 in SCLC. METHODS The level of SATB1 was analyzed in SCLC tissues, metastatic lymphoid nodes and adjacent normal lung tissues by immunohistochemistry. Meanwhile, small interfering SATB1-targeting RNA was constructed and transfected into human SCLC cell line NCI-H446 to evaluate the effects of SATB1-siRNA on cell proliferation, invasion and apoptosis. RESULT SATB1 protein was overexpressed in SCLC tissues and metastasis lymphoid nodes compared with adjacent normal lung tissues. Compared with control group, SATB1-siRNA inhibits the proliferation and invasion of SCLC cells and induces SCLC cells apoptosis statistically (P<0.05) in vitro. CONCLUSION Our results suggest that SATB1 plays an important role in the metastasis of human SCLC cell.
Collapse
Affiliation(s)
- Bo Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Hongli Zhou
- Department of Kidney diseases, the First Affiliated Hospital of Liaoning Medical University, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Xiaodong Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Zhiliang Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
31
|
USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis 2012; 3:e419. [PMID: 23152055 PMCID: PMC3542594 DOI: 10.1038/cddis.2012.158] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease targeting pancreatic beta cells. Genome-wide association studies and gene expression analysis identified interferon (IFN)-driven gene networks as crucial pathways in the pathogenesis of T1D. IFNs are linked to the response to viral infections and might contribute to the initiation of the autoimmune process in T1D. We presently analyzed the role of ubiquitin-specific peptidase 18 (USP18), an interferon-stimulated gene 15-specific protease, on IFN-induced pancreatic beta cell inflammation and apoptosis. Our findings indicate that USP18 inhibition induces inflammation by increasing the STAT signaling and exacerbates IFN-induced beta cell apoptosis by the mitochondrial pathway of cell death. USP18 regulates activation of three BH3-only proteins, namely, DP5, Bim and PUMA in pancreatic beta cells, suggesting a direct link between regulators of the type I IFN signaling pathway and members of the BCL-2 family. USP18 depletion increases the expression of the T1D candidate gene MDA5, leading to an upregulation of double-stranded RNA-induced chemokine production. These data suggest a cross talk between the type I IFN signaling pathway and a candidate gene for T1D to increase pro-inflammatory responses in beta cells. The present study shows that USP18 is a key regulator of IFN signaling in beta cells and underlines the importance of this pathway in beta cell inflammation and death.
Collapse
|
32
|
The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS One 2012; 7:e31062. [PMID: 22347430 PMCID: PMC3275575 DOI: 10.1371/journal.pone.0031062] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/01/2012] [Indexed: 12/31/2022] Open
Abstract
In the course of Type 1 diabetes pro-inflammatory cytokines (e.g., IL-1β, IFN-γ and TNF-α) produced by islet-infiltrating immune cells modify expression of key gene networks in β-cells, leading to local inflammation and β-cell apoptosis. Most known cytokine-induced transcription factors have pro-apoptotic effects, and little is known regarding “protective” transcription factors. To this end, we presently evaluated the role of the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) on β-cell apoptosis and production of inflammatory mediators in the rat insulinoma INS-1E cells, in purified primary rat β-cells and in human islets. C/EBPδ is expressed and up-regulated in response to the cytokines IL-1β and IFN-γ in rat β-cells and human islets. Small interfering RNA-mediated C/EBPδ silencing exacerbated IL-1β+IFN-γ-induced caspase 9 and 3 cleavage and apoptosis in these cells. C/EBPδ deficiency increased the up-regulation of the transcription factor CHOP in response to cytokines, enhancing expression of the pro-apoptotic Bcl-2 family member BIM. Interfering with C/EBPδ and CHOP or C/EBPδ and BIM in double knockdown approaches abrogated the exacerbating effects of C/EBPδ deficiency on cytokine-induced β-cell apoptosis, while C/EBPδ overexpression inhibited BIM expression and partially protected β-cells against IL-1β+IFN-γ-induced apoptosis. Furthermore, C/EBPδ silencing boosted cytokine-induced production of the chemokines CXCL1, 9, 10 and CCL20 in β-cells by hampering IRF-1 up-regulation and increasing STAT1 activation in response to cytokines. These observations identify a novel function of C/EBPδ as a modulatory transcription factor that inhibits the pro-apoptotic and pro-inflammatory gene networks activated by cytokines in pancreatic β-cells.
Collapse
|