1
|
Kang HJ, Kang YW, Lee HY, Ha S, Kim JO, Kim WY, Baik T. Dual Disruption of DNA Repair by a Novel CHK2 Inhibitor, ART-446, and Olaparib is a Promising Strategy for Triple-Negative Breast Cancer Therapy. Biomol Ther (Seoul) 2025; 33:458-469. [PMID: 40195731 DOI: 10.4062/biomolther.2025.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking targeted therapies and is characterized by high recurrence rates and poor prognosis. Recent advances in targeting DNA damage response (DDR) pathways using poly (ADP‒ribose) polymerase (PARP) inhibitors offer promising therapeutic strategies, especially for TNBC patients with BRCA1/2 mutations. This study reports the development and characterization of ART-446, a novel and selective CHK2 inhibitor. ART-446 showed potent activity against TNBC, regardless of BRCA deficiency, and it also reversed PARP inhibitor resistance. ART-446 potently inhibited CHK2 (IC50: 9.06 nM) with high selectivity over other kinases; it synergized with the PARP inhibitor olaparib, enhancing DNA damage, inducing G2/M cell cycle arrest, and promoting apoptosis in both BRCA-mutant and wild-type TNBC cells. Mechanistic analyses revealed that ART-446 sensitized BRCA mutant and WT cells to PARP inhibitors by impairing DNA repair and increasing the accumulation of DNA damage. Importantly, ART-446 disrupted both homologous recombination and nonhomologous end-joining repair pathways, addressing a key limitation of PARP inhibitor monotherapy-resistance in BRCA-proficient cancers. In vivo, the combination of ART-446 and olaparib significantly reduced tumor growth in TNBC xenograft models without noticeable toxicity. The combined treatment increased DNA damage signaling, as evidenced by elevated γH2AX levels, and enhanced the sensitivity of BRCA2-deficient cells to ART-446. These findings underscore the potential of ART-446 to exploit DNA repair deficiencies and overcome resistance mechanisms associated with PARP inhibitors. By addressing the limitations of current treatments and expanding the utility of PARP inhibitors, ART-446 represents a promising candidate for DDR-targeted therapies, offering a novel approach to improve the outcomes of patients with TNBC.
Collapse
Affiliation(s)
| | | | - Ha-Young Lee
- Arum therapeutics, Seoul 07793, Republic of Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Taegon Baik
- Arum therapeutics, Seoul 07793, Republic of Korea
| |
Collapse
|
2
|
Gu Kang B, Kang SU, Jin Kim J, Kwon JS, Gagné JP, Yun Lee S, Kim S, Lee KS, Ha S, Seop Jeong J, Lee YI, Zhu H, Kim D, Poirier GG, Chul Kang H, Dawson VL, Dawson TM. Proteome-wide microarray-based screening of PAR-binding proteins. Nucleic Acids Res 2025; 53:gkaf300. [PMID: 40239998 PMCID: PMC12000866 DOI: 10.1093/nar/gkaf300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/18/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Poly (ADP-ribose) (PAR) plays a crucial role in intracellular signaling and scaffolding through covalent modification or non-covalent binding to target proteins. The non-covalent PAR binding proteome (PARylome) has not been extensively characterized. Here we performed a PAR-binding screen using a human protein microarray that covers most of the human proteome to characterize the non-covalent binding PARylome. A total of 356 PAR-binding proteins were identified. The PAR-binding PARylome suggests that PAR binding regulates a variety of biological processes beyond DNA damage signaling and DNA repair. Proteins that may be reprogrammed by PAR binding include signaling molecules, transcription factors, nucleic acid binding proteins, calcium binding proteins, ligases, oxidoreductases, enzymes, transferases, hydrolases, and receptors. The global database of PAR-binding proteins that we established will be a valuable tool for further in-depth analysis of the role of PARylation in a wide range of biological contexts.
Collapse
Affiliation(s)
- Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Jin Kim
- Genomic Instability Research Center, Ajou University, School of Medicine, Suwon 16499, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ji-Sun Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jean-Philippe Gagné
- Oncology Division, CHU de Québec Research Center - CHUL, Quebec City, QCG1V 4G2, Canada
| | - Seo Yun Lee
- Genomic Instability Research Center, Ajou University, School of Medicine, Suwon 16499, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University, School of Medicine, Suwon 16499, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Karl S Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jun Seop Jeong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- High Through Put Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Yun-Il Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- High Through Put Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Ho Chul Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Genomic Instability Research Center, Ajou University, School of Medicine, Suwon 16499, Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Yang J, Wan SY, Song QY, Xie YH, Wan J, Zhou YH, Zhang ZT, Xiao YS, Li X, Chen H, Liu XR, Xu L, You HJ, Hu DS, Petersen RB, Zhang YH, Zheng L, Zhang Y, Huang K. Angiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates. Cell Death Differ 2025; 32:672-688. [PMID: 39592710 PMCID: PMC11982567 DOI: 10.1038/s41418-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024] Open
Abstract
Upon genotoxic stresses, cells employ various DNA damage responses (DDRs), including DNA damage repair or apoptosis, to safeguard genome integrity. However, the determinants among different DDRs choices are largely unknown. Here, we report angiopoietin-like protein 8 (ANGPTL8), a secreted regulator of lipid metabolism, localizes to the nucleus and acts as a dynamic switch that directs DDRs towards apoptosis rather than DNA repair after genotoxin exposure. ANGPTL8 deficiency alleviates DNA damage and apoptosis in cells exposed to genotoxins, as well as in the liver or kidney of mice injured by hepatic ischemia/reperfusion or cisplatin treatment. Mechanistically, ANGPTL8 physically interacts with Poly (ADP-ribose) polymerase 1 (PARP1), in a PARylation-independent manner, and reduces the fluidity of PARP1-DNA condensates, thereby enhancing the pro-apoptotic accumulation of PARP1 and PAR chains on DNA lesions. However, the transcription of ANGPTL8 is gradually decreased following genotoxin treatment, partly due to downregulation of CCAAT enhancer binding protein alpha (CEBPA), presumably to avoid further cytotoxicity. Together, we provide new insights by which genotoxic stress induced DDRs are channeled to suicidal apoptosis to safeguard genome integrity.
Collapse
Affiliation(s)
- Jing Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Yuan Wan
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Yi Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hao Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Hao Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zi-Tong Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Shuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Ran Liu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48858, USA
| | - Yong-Hui Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Tongji-Rong Cheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Solomon AD, Gouttia OG, Wang L, Zhu S, Wang F, Li Y, Paydar M, Bessho T, Kwok BH, Peng A. γ-tubulin mediates DNA double-strand break repair. J Cell Sci 2025; 138:jcs262255. [PMID: 40135584 PMCID: PMC12050090 DOI: 10.1242/jcs.262255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/20/2024] [Indexed: 03/27/2025] Open
Abstract
Double-strand breaks (DSBs) in DNA pose a critical threat to genomic integrity, potentially leading to the onset and progression of various diseases, including cancer. Cellular responses to such lesions entail sophisticated repair mechanisms primarily mediated by non-homologous end joining (NHEJ) and homologous recombination (HR). Interestingly, the efficient recruitment of repair proteins and completion of DSB repair likely involve complex, inter-organelle communication and coordination of cellular components. In this study, we report a role of γ-tubulin in DSB repair. γ-tubulin is a major microtubule nucleation factor governing microtubule dynamics. We show that γ-tubulin is recruited to the site of DNA damage and is required for efficient DSB repair via both NHEJ and HR. Suppression of γ-tubulin impedes DNA repair and exacerbates DNA damage accumulation. Furthermore, γ-tubulin mediates the mobilization and formation of DNA damage foci, which serve as repair centers, thereby facilitating the recruitment of HR and NHEJ repair proteins on damaged chromatin. Finally, pharmacological inhibition of γ-tubulin enhances the cytotoxic effect of DNA-damaging agents, consistent with the DNA repair function of γ-tubulin, and underscoring the potential of its therapeutic intervention in cancer therapy.
Collapse
Affiliation(s)
- Abhishikt David Solomon
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Odjo G. Gouttia
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Wang
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Songli Zhu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Yanqui Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal H3C 3J7, Canada
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin H. Kwok
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Aimin Peng
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Chiang JC, Shang Z, Rosales T, Cai L, Chen WM, Cai F, Vu H, Minna JD, Ni M, Davis AJ, Timmerman RD, DeBerardinis RJ, Zhang Y. Lipoylation inhibition enhances radiation control of lung cancer by suppressing homologous recombination DNA damage repair. SCIENCE ADVANCES 2025; 11:eadt1241. [PMID: 40073141 PMCID: PMC11900879 DOI: 10.1126/sciadv.adt1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit. LIPT1 covalently conjugates mitochondrial 2-ketoacid dehydrogenases with lipoic acid, facilitating enzymatic functions involved in the tricarboxylic acid cycle. Inhibiting lipoylation, either through genetic LIPT1 knockout or a lipoylation inhibitor (CPI-613), enhanced tumor control by radiation. Mechanistically, lipoylation inhibition increased 2-hydroxyglutarate, leading to H3K9 trimethylation, disrupting TIP60 recruitment and ataxia telangiectasia mutated (ATM)-mediated DNA damage repair signaling, impairing homologous recombination repair. In summary, our findings reveal a critical role of LIPT1 in regulating DNA damage and chromosome stability and may suggest a means to enhance therapeutic outcomes with DNA-damaging agents.
Collapse
Affiliation(s)
- Jui-Chung Chiang
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zengfu Shang
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tracy Rosales
- Howard Hughes Medical Institute, Eugene McDermott Center for Human Growth and Development, and Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ling Cai
- Peter O’Donnell, Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Howard Hughes Medical Institute, Eugene McDermott Center for Human Growth and Development, and Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hieu Vu
- Howard Hughes Medical Institute, Eugene McDermott Center for Human Growth and Development, and Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Howard Hughes Medical Institute, Eugene McDermott Center for Human Growth and Development, and Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Anthony J. Davis
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert D. Timmerman
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Howard Hughes Medical Institute, Eugene McDermott Center for Human Growth and Development, and Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yuanyuan Zhang
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Nikulenkov F, Carbain B, Biswas R, Havel S, Prochazkova J, Sisakova A, Zacpalova M, Chavdarova M, Marini V, Vsiansky V, Weisova V, Slavikova K, Biradar D, Khirsariya P, Vitek M, Sedlak D, Bartunek P, Daniel L, Brezovsky J, Damborsky J, Paruch K, Krejci L. Discovery of new inhibitors of nuclease MRE11. Eur J Med Chem 2025; 285:117226. [PMID: 39793442 DOI: 10.1016/j.ejmech.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
Collapse
Affiliation(s)
- Fedor Nikulenkov
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Benoit Carbain
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Raktim Biswas
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Stepan Havel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Melita Chavdarova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vit Vsiansky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Veronika Weisova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Kristina Slavikova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Dhanraj Biradar
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Marco Vitek
- Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Petr Bartunek
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Lukas Daniel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Brezovsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Espín R, Medina-Jover F, Sigüenza-Andrade J, Farran-Matas S, Mateo F, Figueras A, Sanz R, Vicent G, Shabbir A, Ruiz-Auladell L, Racionero-Andrés E, García I, Baiges A, Franco-Luzón L, Martínez-Tebar A, Pardo-Cea M, Martínez-Iniesta M, Wang X, Cuyàs E, Menendez J, Lopez-Cerda M, Muñoz P, Richaud I, Raya A, Fabregat I, Villanueva A, Serrat X, Cerón J, Alemany M, Guix I, Herencia-Ropero A, Serra V, Krishnan R, Mekhail K, Hakem R, Bruna J, Barcellos-Hoff M, Viñals F, Aytes Á, Pujana M. Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment. NAR Cancer 2025; 7:zcaf007. [PMID: 40061566 PMCID: PMC11886861 DOI: 10.1093/narcan/zcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is suppressed by hypoxia while positively associated with MYC (myelocytomatosis oncogene) transcriptional activity. Hypoxia reduces PARP1 and POLQ expression, decreases MYC binding at their promoters, and lowers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with HIF1A mutations overexpress the alt-EJ gene signature. Inhibition of hypoxia-inducible factor 1α or HIF1A expression depletion, combined with PARP or POLθ inhibition, synergistically reduces the colony-forming capacity of cancer cells. Deep learning reveals the anticorrelation between alt-EJ and hypoxia across regions in tumor images, and the predictions for these and MYC activity achieve area under the curve values between 0.70 and 0.86. These findings further highlight the critical role of hypoxia in modulating DNA repair and present a strategy for predicting and improving outcomes centered on targeting alt-EJ.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ferran Medina-Jover
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Javier Sigüenza-Andrade
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Sònia Farran-Matas
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Agnes Figueras
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lara Ruiz-Auladell
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | | | - Irene García
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lídia Franco-Luzón
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Adrián Martínez-Tebar
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Martínez-Iniesta
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xieng Chen Wang
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elisabet Cuyàs
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Javier A Menendez
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Marta Lopez-Cerda
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Purificacion Muñoz
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ivonne Richaud
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Angel Raya
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Isabel Fabregat
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Networking Centre in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alberto Villanueva
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Montserrat Alemany
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Inés Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Andrea Herencia-Ropero
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona 08193, Spain
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordi Bruna
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Francesc Viñals
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Álvaro Aytes
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| |
Collapse
|
8
|
Rendo V, Schubert M, Khuu N, Suarez Peredo Rodriguez MF, Whyte D, Ling X, van den Brink A, Huang K, Swift M, He Y, Zerbib J, Smith R, Raaijmakers J, Bandopadhayay P, Guenther LM, Hwang JH, Iniguez A, Moody S, Seo JH, Stover EH, Garraway L, Hahn WC, Stegmaier K, Medema RH, Chowdhury D, Colomé-Tatché M, Ben-David U, Beroukhim R, Foijer F. A compendium of Amplification-Related Gain Of Sensitivity genes in human cancer. Nat Commun 2025; 16:1077. [PMID: 39870664 PMCID: PMC11772776 DOI: 10.1038/s41467-025-56301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed. Combining these approaches, we propose a class of 'Amplification-Related Gain Of Sensitivity' (ARGOS) genes located in commonly amplified regions, yet expressed at lower levels than expected by their copy number, and toxic when overexpressed. We validate RBM14 as an ARGOS gene in lung and breast cancer cells, and suggest a toxicity mechanism involving altered DNA damage response and STING signaling. We additionally observe increased patient survival in a radiation-treated cancer cohort with RBM14 amplification.
Collapse
Affiliation(s)
- Veronica Rendo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany.
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Nicholas Khuu
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Declan Whyte
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao Ling
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Kaimeng Huang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yizhou He
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Zerbib
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonne Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pratiti Bandopadhayay
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lillian M Guenther
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Justin H Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Iniguez
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Moody
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth H Stover
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Levi Garraway
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dipanjan Chowdhury
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
9
|
Kim MA, Kim B, Jeon J, Lee J, Jang H, Baek M, Seo SU, Shin D, Dutta A, Lee KY. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol Med 2025; 31:18. [PMID: 39844055 PMCID: PMC11753094 DOI: 10.1186/s10020-025-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ. Therefore, identifying novel regulators of NHEJ could provide valuable insights into the mechanisms underlying PARPi resistance. METHODS Cellular DSBs were assessed using neutral comet assays and phospho-H2AX immunoblotting. Fluorescence-based reporter assays quantified repair via NHEJ or HR. The recruitment of proteins that promote NHEJ and HR to DSBs was analyzed using immunostaining, live-cell imaging following laser-induced microirradiation, and FokI-inducible single DSB generation. Loss-of-function experiments were performed in multiple human cancer cell lines using siRNA-mediated knockdown or CRISPR-Cas9 gene knockout. Cell viability assays were conducted to evaluate resistance to PARP inhibitors. Additionally, bioinformatic analyses of public databases were performed to investigate the association between TLK expression and BRCA1 status. RESULTS We demonstrate that human tousled-like kinase (TLK) orthologs are essential for NHEJ-mediated repair of DSBs and for PARPi sensitivity in cells with BRCA1 mutation. TLK1 and TLK2 exhibit redundant roles in promoting NHEJ, and their deficiency results in a significant accumulation of DSBs. TLKs are required for the proper localization of 53BP1, a key factor in promoting the NHEJ pathway. Consequently, TLK deficiency induces PARPi resistance in triple-negative breast cancer (TNBC) and ovarian cancer (OVCA) cell lines with BRCA1 deficiency, as TLK deficiency in BRCA1-depleted cells, impairs 53BP1 recruitment to DSBs and reduces NHEJ efficiency, while restoring HR. CONCLUSIONS We have identified TLK proteins as novel regulators of NHEJ repair and PARPi sensitivity in BRCA1-depleted cells, suggesting that TLK repression may represent a previously unrecognized mechanism by which BRCA1 mutant cancers acquire PARPi resistance.
Collapse
Affiliation(s)
- Min-Ah Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Banseok Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jihyeon Jeon
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jonghyun Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyeji Jang
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Minjae Baek
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dongkwan Shin
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
10
|
Samsa WE, Zhang Z, Gong Z. CBFβ Regulates RUNX3 ADP-Ribosylation to Mediate Homologous Recombination Repair. J Cell Physiol 2025; 240:e31503. [PMID: 39696918 DOI: 10.1002/jcp.31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
RUNX3 is a master developmental transcriptional factor that has been implicated as a tumor suppressor in many cancers. However, the exact role of RUNX3 in cancer pathogenesis remains to be completely elucidated. Recently, it has emerged that RUNX3 is involved in the DNA damage response. Here, we demonstrate that heterodimerization of RUNX3 with CBFβ is necessary for its stability by protecting RUNX3 from RUNX3 ADP-ribosylation-dependent ubiquitination and degradation. We further identify new amino acid residues that are targets for PARylation and demonstrate that RUNX3 PARylation at these residues is necessary for localization of RUNX3 to DNA double strand break sites (DBSs). We also demonstrate that both RUNX3 PARylation and CBFβ heterodimerization with RUNX3 positively regulates homologous recombination (HR) repair, in part by promoting the recruitment of CtIP and phospho-RPA2 to the DBSs to mediate HR repair. In summary, we provide evidence that RUNX3 regulates HR repair activity in a PARylation-dependent manner.
Collapse
Affiliation(s)
- William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. DNA Repair (Amst) 2025; 145:103791. [PMID: 39615226 DOI: 10.1016/j.dnarep.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Menon S, Gracilla D, Breese MR, Lin YP, Cruz FD, Feinberg T, de Stanchina E, Galic AF, Allegakoen H, Perati S, Wen N, Heslin A, Horlbeck MA, Weissman J, Sweet-Cordero EA, Bivona TG, Tulpule A. FET fusion oncoproteins disrupt physiologic DNA repair networks in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.30.538578. [PMID: 37205599 PMCID: PMC10187251 DOI: 10.1101/2023.04.30.538578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
While oncogenes promote cancer cell growth, unrestrained proliferation represents a significant stressor to cellular homeostasis networks such as the DNA damage response (DDR). To enable oncogene tolerance, many cancers disable tumor suppressive DDR signaling through genetic loss of DDR pathways and downstream effectors (e.g., ATM or p53 tumor suppressor mutations). Whether and how oncogenes can help "self-tolerize" by creating analogous functional defects in physiologic DDR networks is not known. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWSR1-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET family members are among the earliest factors recruited to DNA double-strand breaks (DSBs), though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. We discover that the EWSR1-FLI1 fusion oncoprotein is recruited to DNA DSBs and interferes with native FET (EWSR1) protein function in activating the DNA damage sensor ATM. In multiple FET rearranged cancers, FET fusion oncoproteins induce functional ATM defects, rendering the compensatory ATR signaling axis as a collateral dependency and therapeutic target. More generally, we find that aberrant recruitment of a fusion oncoprotein to sites of DNA damage can disrupt physiologic DSB repair, revealing a mechanism for how growth-promoting oncogenes can also create functional defects within tumor suppressive DDR networks.
Collapse
Affiliation(s)
- Shruti Menon
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Daniel Gracilla
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Marcus R. Breese
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Yone Phar Lin
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Tamar Feinberg
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Elisa de Stanchina
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Ana-Florina Galic
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| | - Hannah Allegakoen
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Shruthi Perati
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Nicholas Wen
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
| | - Ann Heslin
- Division of Pediatric Oncology, University of California, San Francisco, San Francisco, CA 94143
| | - Max A. Horlbeck
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, 02115
| | - Jonathan Weissman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, 68-132, Cambridge, MA 02139
| | | | - Trever G. Bivona
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Asmin Tulpule
- Tow Center for Developmental Oncology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 444 East 68th Street, 9th Floor, New York, NY 10065
| |
Collapse
|
13
|
Li X, Huang Y, Zu D, Liu H, He H, Bao Q, He Y, Liang C, Luo G, Teng Y, Shi Y, Ye Z, Cheng X. PMMA nanoplastics induce gastric epithelial cellular senescence and cGAS-STING-mediated inflammation via ROS overproduction and NHEJ suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117284. [PMID: 39515200 DOI: 10.1016/j.ecoenv.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The increasing environmental presence of nanoplastics (NPs) has raised concerns about their potential impact on biological systems. We investigated the repercussions of polymethyl methacrylate (PMMA) NPs exposure on normal gastric epithelial cells and revealed a pronounced increase in senescence-associated β-galactosidase activity and G1 phase cell cycle arrest. Our study demonstrated a dose-dependent increase in reactive oxygen species (ROS) and DNA damage, underscoring the pivotal role of ROS in PMMA NPs-mediated effects, a novel contribution to the existing body of knowledge dominated by polystyrene particles. Furthermore, we explored the influence of PMMA NPs on DNA damage response mechanisms, highlighting the significant inhibition of nonhomologous end-joining (NHEJ). Our findings help to elucidate the consequent genomic instability, as evidenced by increased chromosomal aberrations and micronuclei formation. By connecting these cellular manifestations to organism-level effects, we hypothesize that PMMA NPs play a critical role in aging processes. Our work revealed an activated cGAS-STING signaling pathway after PMMA NPs exposure, which correlated with aging-related inflammation and behavioral changes in mice. Importantly, our study provides comprehensive evidence of PMMA NPs-induced premature aging in gastric epithelial cells, shedding light on the molecular intricacies underlying DNA damage, repair impairment, and inflammation. Our research prompts heightened caution regarding the risks of NPs exposure and calls for further investigation into the broader implications of these environmental pollutants on aging processes in higher organisms.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; School of Life Sciences, Tianjin University, Tianjin 300100, China
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Hanyi He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Chen Liang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Guoyan Luo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yaoshu Teng
- Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yin Shi
- Department of Biochemistry, and Department of Pulmonology Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
14
|
Grelloni C, Garraffo R, Setti A, Rossi F, Peruzzi G, Cinquanta M, Di Rosa MC, Pierotti MA, Beltran M, Bozzoni I. BRCA1 levels and DNA-damage response are controlled by the competitive binding of circHIPK3 or FMRP to the BRCA1 mRNA. Mol Cell 2024; 84:4079-4094.e10. [PMID: 39389065 DOI: 10.1016/j.molcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules widely expressed in eukaryotes and deregulated in several pathologies, including cancer. Many studies point to their activity as microRNAs (miRNAs) and protein sponges; however, we propose a function based on circRNA-mRNA interaction to regulate mRNA fate. We show that the widely tumor-associated circHIPK3 directly interacts in vivo with the BRCA1 mRNA through the back-splicing region in human cancer cells. This interaction increases BRCA1 translation by competing for the binding of the fragile-X mental retardation 1 protein (FMRP) protein, which we identified as a BRCA1 translational repressor. CircHIPK3 depletion or disruption of the circRNA-mRNA interaction decreases BRCA1 protein levels and increases DNA damage, sensitizing several cancer cells to DNA-damage-inducing agents and rendering them susceptible to synthetic lethality. Additionally, blocking FMRP interaction with BRCA1 mRNA with locked nucleic acid (LNA) restores physiological protein levels in BRCA1 hemizygous breast cancer cells, underscoring the importance of this circRNA-mRNA interaction in regulating DNA-damage response.
Collapse
Affiliation(s)
- Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Mario Cinquanta
- Cogentech ltd Benefit C. Registered Office, 20133 Milan, Italy
| | | | | | - Manuel Beltran
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy.
| |
Collapse
|
15
|
Lin X, Soni A, Hessenow R, Sun Y, Mladenov E, Guberina M, Stuschke M, Iliakis G. Talazoparib enhances resection at DSBs and renders HR-proficient cancer cells susceptible to Polθ inhibition. Radiother Oncol 2024; 200:110475. [PMID: 39147034 DOI: 10.1016/j.radonc.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. The purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells. METHODS AND MATERIALS Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis. RESULTS Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib, or rucaparib were ineffective radiosensitizers under our experimental conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also back up each other. CONCLUSION We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. The combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.
Collapse
Affiliation(s)
- Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Razan Hessenow
- West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Yanjie Sun
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147, Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Department of Radiation Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147, Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany; Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
16
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. PLoS Genet 2024; 20:e1011479. [PMID: 39561207 PMCID: PMC11614213 DOI: 10.1371/journal.pgen.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian RAD52 is a DNA repair factor with strand annealing and recombination mediator activities that appear important in both interphase and mitotic cells. Nonetheless, RAD52 is dispensable for cell viability. To query RAD52 synthetic lethal relationships, we performed genome-wide CRISPR knock-out screens and identified hundreds of candidate synthetic lethal interactions. We then performed secondary screening and identified genes for which depletion causes reduced viability and elevated genome instability (increased 53BP1 nuclear foci) in RAD52-deficient cells. One such factor was ERCC6L, which marks DNA bridges during anaphase, and hence is important for genome stability in mitosis. Thus, we investigated the functional interrelationship between RAD52 and ERCC6L. We found that RAD52 deficiency increases ERCC6L-coated anaphase ultrafine bridges, and that ERCC6L depletion causes elevated RAD52 foci in prometaphase and interphase cells. These effects were enhanced with replication stress (i.e. hydroxyurea) and topoisomerase IIα inhibition (ICRF-193), where post-treatment effect timings were consistent with defects in addressing stress in mitosis. Altogether, we suggest that RAD52 and ERCC6L co-compensate to protect genome stability in mitosis.
Collapse
Affiliation(s)
- Beth Osia
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Xiaoli Ping
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
17
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
18
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
19
|
Salunkhe S, Daley JM, Kaur H, Tomimatsu N, Xue C, Raina VB, Jasper AM, Rogers CM, Li W, Zhou S, Mojidra R, Kwon Y, Fang Q, Ji JH, Badamchi Shabestari A, Fitzgerald O, Dinh H, Mukherjee B, Habib AA, Hromas R, Mazin AV, Wasmuth EV, Olsen SK, Libich DS, Zhou D, Zhao W, Greene EC, Burma S, Sung P. Promotion of DNA end resection by BRCA1-BARD1 in homologous recombination. Nature 2024; 634:482-491. [PMID: 39261729 PMCID: PMC11539920 DOI: 10.1038/s41586-024-07910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.
Collapse
Affiliation(s)
- Sameer Salunkhe
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James M Daley
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Hardeep Kaur
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Jasper
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wenjing Li
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shuo Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rahul Mojidra
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qingming Fang
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jae-Hoon Ji
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hoang Dinh
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David S Libich
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Sandeep Burma
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
20
|
Li P, Zhu X, Qu H, Han Z, Yao X, Wei Y, Li B, Chen H. Synergistic Effect of Ubiquitin-Specific Protease 14 and Poly(ADP-Ribose) Glycohydrolase Co-Inhibition in BRCA1-Mutant, Poly(ADP-Ribose) Polymerase Inhibitor-Resistant Triple-Negative Breast Cancer Cells. Onco Targets Ther 2024; 17:741-753. [PMID: 39258222 PMCID: PMC11385694 DOI: 10.2147/ott.s463217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose The clinical benefits of poly(ADP-ribose) polymerase (PARP) inhibitors are limited to triple-negative breast cancer (TNBC) with BRCA deficiency due to primary and acquired resistance. Thus, there is a pressing need to develop alternative treatment regimens to target BRCA-mutated TNBC tumors that are resistant to PARP inhibition. Similar to PARP, poly(ADP-ribose) glycohydrolase (PARG) plays a role in DNA replication and repair. However, there are conflicting reports on the vulnerability of BRCA1-deficient tumor cells to PARG inhibition. This study aims to investigate the synergistically lethal effect of the PARG inhibitor COH34 and the ubiquitin-specific protease (USP) 14 inhibitor IU1-248 and the underlying mechanisms in BRCA1-mutant, PARP inhibitor-resistant TNBC cells. Methods The cytotoxicity of PARG inhibition alone or in combination with USP14 inhibition in the BRCA-mutant, PARP inhibitor-resistant TNBC cell lines, HCC1937 and SUM149PT, was analyzed using cell viability and proliferation assays and flow cytometry. The molecular mechanisms underlying the synergistic effects of IU1-248 and COH34 were evaluated by immunofluorescence staining, DNA repair reporter assays and Western blot analysis. Results It was found that HCC1937 and SUM149PT cells exhibited moderate responsiveness to PARG inhibition alone. To the best of our knowledge, this research is the first to demonstrate that the combination of IU1-248 and COH34 produces synergistic effects against TNBC cells in the same setting. Mechanistically, the blockade of USP14 by IU1-248 was shown to increase DNA damage and promote error-prone non-homologous end joining (NHEJ), as evidenced by the accumulation of γH2AX and 53BP1 in the nucleus and the activation of a reporter assay. Additionally, it was demonstrated that the inhibition of NHEJ repair activity attenuates the synergistic effects of concomitant PARG and USP14 inhibition. IU1-248 promotes NHEJ repair through the downregulation of the expression of c-Myc. Conclusion USP14 inhibition may be a plausible strategy for expanding the utility of PARG inhibitors in TNBC in BRCA-mutant, PARP inhibitor-resistant settings.
Collapse
Affiliation(s)
- Pisong Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui Qu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Zhongbin Han
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xingyu Yao
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Yuan Wei
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Baijun Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hongshen Chen
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| |
Collapse
|
21
|
Shokrollahi M, Stanic M, Hundal A, Chan JNY, Urman D, Jordan CA, Hakem A, Espin R, Hao J, Krishnan R, Maass PG, Dickson BC, Hande MP, Pujana MA, Hakem R, Mekhail K. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat Struct Mol Biol 2024; 31:1319-1330. [PMID: 38632359 DOI: 10.1038/s41594-024-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly(ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anisha Hundal
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Defne Urman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chris A Jordan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Roderic Espin
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Hao
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Philipp G Maass
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Manoor P Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel A Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Razqallah Hakem
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
22
|
Zhang X, Zhu T, Li X, Zhao H, Lin S, Huang J, Yang B, Guo X. DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc Natl Acad Sci U S A 2024; 121:e2321204121. [PMID: 39172782 PMCID: PMC11363268 DOI: 10.1073/pnas.2321204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Upon DNA damage, numerous proteins are targeted for ubiquitin-dependent proteasomal degradation, which is an integral part of the DNA repair program. Although details of the ubiquitination processes have been intensively studied, little is known about whether and how the 26S proteasome is regulated in the DNA damage response (DDR). Here, we show that human Rpn10/PSMD4, one of the three ubiquitin receptors of the 26S proteasome, is rapidly phosphorylated in response to different types of DNA damage. The phosphorylation occurs at Rpn10-Ser266 within a conserved SQ motif recognized by ATM/ATR/DNA-PK. Blockade of S266 phosphorylation attenuates homologous recombination-mediated DNA repair and sensitizes cells to genotoxic insults. In vitro and in cellulo experiments indicate that phosphorylation of S266, located in the flexible linker between the two ubiquitin-interacting motifs (UIMs) of Rpn10, alters the configuration of UIMs, and actually reduces ubiquitin chain (substrate) binding. As a result, essential DDR proteins such as BRCA1 are spared from premature degradation and allowed sufficient time to engage in DNA repair, a scenario supported by proximity labeling and quantitative proteomic studies. These findings reveal an inherent self-limiting mechanism of the proteasome that, by controlling substrate recognition through Rpn10 phosphorylation, fine-tunes protein degradation for optimal responses under stress.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Hongxia Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shixian Lin
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
23
|
Rath SK, Nyamsuren G, Tampe B, Yu DSW, Hulshoff MS, Schlösser D, Maamari S, Zeisberg M, Zeisberg EM. Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response. Clin Epigenetics 2024; 16:119. [PMID: 39192299 DOI: 10.1186/s13148-024-01719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandip Kumar Rath
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - David Sung-Wen Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Melanie S Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Denise Schlösser
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
24
|
Kim SJ, Park SH, Myung K, Lee KY. Lamin A/C facilitates DNA damage response by modulating ATM signaling and homologous recombination pathways. Anim Cells Syst (Seoul) 2024; 28:401-416. [PMID: 39176289 PMCID: PMC11340224 DOI: 10.1080/19768354.2024.2393820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lamin A/C, a core component of the nuclear lamina, forms a mesh-like structure beneath the inner nuclear membrane. While its structural role is well-studied, its involvement in DNA metabolism remains unclear. We conducted sequential protein fractionation to determine the subcellular localization of early DNA damage response (DDR) proteins. Our findings indicate that most DDR proteins, including ATM and the MRE11-RAD50-NBS1 (MRN) complex, are present in the nuclease - and high salt-resistant pellet fraction. Notably, ATM and MRN remain stably associated with these structures throughout the cell cycle, independent of ionizing radiation (IR)-induced DNA damage. Although Lamin A/C interacts with ATM and MRN, its depletion does not disrupt their association with nuclease-resistant structures. However, it impairs the IR-enhanced association of ATM with the nuclear matrix and ATM-mediated DDR signaling, as well as the interaction between ATM and MRN. This disruption impedes the recruitment of MRE11 to damaged DNA and the association of damaged DNA with the nuclear matrix. Additionally, Lamin A/C depletion results in reduced protein levels of CtIP and RAD51, which is mediated by transcriptional regulation. This, in turn, impairs the efficiency of homologous recombination (HR). Our findings indicate that Lamin A/C plays a pivotal role in DNA damage repair (DDR) by orchestrating ATM-mediated signaling, maintaining HR protein levels, and ensuring efficient DNA repair processes.
Collapse
Affiliation(s)
- Seong-jung Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
25
|
Di Giorgio E, Dalla E, Tolotto V, D’Este F, Paluvai H, Ranzino L, Brancolini C. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res 2024; 52:8218-8240. [PMID: 38874468 PMCID: PMC11317144 DOI: 10.1093/nar/gkae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Emiliano Dalla
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Vanessa Tolotto
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Francesca D’Este
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Harikrishnareddy Paluvai
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Liliana Ranzino
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
26
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606388. [PMID: 39149360 PMCID: PMC11326157 DOI: 10.1101/2024.08.05.606388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| |
Collapse
|
27
|
Djerir B, Marois I, Dubois JC, Findlay S, Morin T, Senoussi I, Cappadocia L, Orthwein A, Maréchal A. An E3 ubiquitin ligase localization screen uncovers DTX2 as a novel ADP-ribosylation-dependent regulator of DNA double-strand break repair. J Biol Chem 2024; 300:107545. [PMID: 38992439 PMCID: PMC11345397 DOI: 10.1016/j.jbc.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: nonhomologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DNA damage response regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Among these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DELTEX conserved C-terminal domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 reexpression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.
Collapse
Affiliation(s)
- Billel Djerir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Isabelle Marois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Christophe Dubois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada
| | - Théo Morin
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Issam Senoussi
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laurent Cappadocia
- Faculty of Sciences, Department of Chemistry, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
28
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Bessho T. Up-Regulation of Non-Homologous End-Joining by MUC1. Genes (Basel) 2024; 15:808. [PMID: 38927743 PMCID: PMC11203369 DOI: 10.3390/genes15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.
Collapse
Affiliation(s)
- Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
30
|
Bakr A, Corte GD, Veselinov O, Kelekçi S, Chen MJM, Lin YY, Sigismondo G, Iacovone M, Cross A, Syed R, Jeong Y, Sollier E, Liu CS, Lutsik P, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res 2024; 52:5698-5719. [PMID: 38587186 PMCID: PMC11162808 DOI: 10.1093/nar/gkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Giuditta Della Corte
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Mei-Ju May Chen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Marika Iacovone
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Rabail Syed
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yunhee Jeong
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Chun- Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Bachus S, Akkerman N, Fulham L, Graves D, Helwer R, Rempel J, Pelka P. ARGLU1 enhances promoter-proximal pausing of RNA polymerase II and stimulates DNA damage repair. Nucleic Acids Res 2024; 52:5658-5675. [PMID: 38520408 PMCID: PMC11162773 DOI: 10.1093/nar/gkae208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Arginine and glutamate rich 1 (ARGLU1) is a poorly understood cellular protein with functions in RNA splicing and transcription. Computational prediction suggests that ARGLU1 contains intrinsically disordered regions and lacks any known structural or functional domains. We used adenovirus Early protein 1A (E1A) to probe for critical regulators of important cellular pathways and identified ARGLU1 as a significant player in transcription and the DNA damage response pathway. Transcriptional effects induced by ARGLU1 occur via enhancement of promoter-proximal RNA polymerase II pausing, likely by inhibiting the interaction between JMJD6 and BRD4. When overexpressed, ARGLU1 increases the growth rate of cancer cells, while its knockdown leads to growth arrest. Significantly, overexpression of ARGLU1 increased cancer cell resistance to genotoxic drugs and promoted DNA damage repair. These results identify new roles for ARGLU1 in cancer cell survival and the DNA damage repair pathway, with potential clinical implications for chemotherapy resistance.
Collapse
Affiliation(s)
- Scott Bachus
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Jordan Rempel
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
32
|
Osborne HC, Foster BM, Al-Hazmi H, Meyer S, Larrosa I, Schmidt CK. Small-Molecule Inhibition of CBX4/7 Hypersensitises Homologous Recombination-Impaired Cancer to Radiation by Compromising CtIP-Mediated DNA End Resection. Cancers (Basel) 2024; 16:2155. [PMID: 38893273 PMCID: PMC11172190 DOI: 10.3390/cancers16112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The therapeutic targeting of DNA repair pathways is an emerging concept in cancer treatment. Compounds that target specific DNA repair processes, such as those mending DNA double-strand breaks (DSBs), are therefore of therapeutic interest. UNC3866 is a small molecule that targets CBX4, a chromobox protein, and a SUMO E3 ligase. As a key modulator of DNA end resection-a prerequisite for DSB repair by homologous recombination (HR)-CBX4 promotes the functions of the DNA resection factor CtIP. Here, we show that treatment with UNC3866 markedly sensitises HR-deficient, NHEJ-hyperactive cancer cells to ionising radiation (IR), while it is non-toxic in selected HR-proficient cells. Consistent with UNC3866 targeting CtIP functions, it inhibits end-resection-dependent DNA repair including HR, alternative end joining (alt-EJ), and single-strand annealing (SSA). These findings raise the possibility that the UNC3866-mediated inhibition of end resection processes we define highlights a distinct vulnerability for the selective killing of HR-ineffective cancers.
Collapse
Affiliation(s)
- Hugh C. Osborne
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Hazim Al-Hazmi
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Stefan Meyer
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
- Department of Paediatric and Adolescent Oncology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
- Department of Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK;
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| |
Collapse
|
33
|
Wang Y, Liu X, Zuo X, Wang C, Zhang Z, Zhang H, Zeng T, Chen S, Liu M, Chen H, Song Q, Li Q, Yang C, Le Y, Xing J, Zhang H, An J, Jia W, Kang L, Zhang H, Xie H, Ye J, Wu T, He F, Zhang X, Li Y, Zhou G. NRDE2 deficiency impairs homologous recombination repair and sensitizes hepatocellular carcinoma to PARP inhibitors. CELL GENOMICS 2024; 4:100550. [PMID: 38697125 PMCID: PMC11099347 DOI: 10.1016/j.xgen.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xianbo Zuo
- Department of Dermatology, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haitao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Tao Zeng
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongxia Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Department of Neurosciences, School of Medicine, University of South China, Hengyang City, Hunan Province, P.R. China
| | - Chenning Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Yi Le
- Department of Hepatobiliary Surgery, the 5th Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Weihua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou City, Guangdong Province, P.R. China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou City, Guangdong Province, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City, Shaanxi Province, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Hui Xie
- Department of Interventional Oncology, the Fifth Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jiazhou Ye
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Tianzhun Wu
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China.
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei City, Anhui Province, P.R. China.
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, P.R. China.
| |
Collapse
|
34
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester KJ, Weroha JS, Hu X, Jiang Y, Wang L, Mutter RW, Lou Z. Syk-dependent homologous recombination activation promotes cancer resistance to DNA targeted therapy. Drug Resist Updat 2024; 74:101085. [PMID: 38636338 PMCID: PMC11095636 DOI: 10.1016/j.drup.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jake Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Anna Olson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL 60657, United States
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - John S Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiwen Hu
- Nursing Department, Rochester Community and Technical College, Rochester, MN 55904, United States
| | - Yanxia Jiang
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
35
|
Son MY, Belan O, Spirek M, Cibulka J, Nikulenkov F, Kim YY, Hwang S, Myung K, Montagna C, Kim TM, Krejci L, Hasty P. RAD51 separation of function mutation disables replication fork maintenance but preserves DSB repair. iScience 2024; 27:109524. [PMID: 38577109 PMCID: PMC10993188 DOI: 10.1016/j.isci.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ondrej Belan
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - You Young Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Tae Moon Kim
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Lumir Krejci
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Paul Hasty
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
36
|
Fried W, Tyagi M, Minakhin L, Chandramouly G, Tredinnick T, Ramanjulu M, Auerbacher W, Calbert M, Rusanov T, Hoang T, Borisonnik N, Betsch R, Krais JJ, Wang Y, Vekariya UM, Gordon J, Morton G, Kent T, Skorski T, Johnson N, Childers W, Chen XS, Pomerantz RT. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors. Nat Commun 2024; 15:2862. [PMID: 38580648 PMCID: PMC10997755 DOI: 10.1038/s41467-024-46593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.
Collapse
Affiliation(s)
- William Fried
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Taylor Tredinnick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mercy Ramanjulu
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - William Auerbacher
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marissa Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Umeshkumar M Vekariya
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John Gordon
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - George Morton
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wayne Childers
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| |
Collapse
|
37
|
Tao L, Xia X, Kong S, Wang T, Fan F, Wang W. Natural pentacyclic triterpenoid from Pristimerin sensitizes p53-deficient tumor to PARP inhibitor by ubiquitination of Chk1. Pharmacol Res 2024; 201:107091. [PMID: 38316371 DOI: 10.1016/j.phrs.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Inhibition of checkpoint kinase 1 (Chk1) has shown to overcome resistance to poly (ADP-ribose) polymerase (PARP) inhibitors and expand the clinical utility of PARP inhibitors in a broad range of human cancers. Pristimerin, a naturally occurring pentacyclic triterpenoid, has been the focus of intensive studies for its anticancer potential. However, it is not yet known whether low dose of pristimerin can be combined with PARP inhibitors by targeting Chk1 signaling pathway. In this study, we investigated the efficacy, safety and molecular mechanisms of the synergistic effect produced by the combination olaparib and pristimerin in TP53-deficient and BRCA-proficient cell models. As a result, an increased expression of Chk1 was correlated with TP53 mutation, and pristimerin preferentially sensitized p53-defective cells to olaparib. The combination of olaparib and pristimerin resulted in a more pronounced abrogation of DNA synthesis and induction of DNA double-strand breaks (DSBs). Moreover, pristimerin disrupted the constitutional levels of Chk1 and DSB repair activities. Mechanistically, pristimerin promoted K48-linked polyubiquitination and proteasomal degradation of Chk1 while not affecting its kinase domain and activity. Importantly, combinatorial therapy led to a higher rate of tumor growth inhibition without apparent hematological toxicities. In addition, pristimerin suppressed olaparib-induced upregulation of Chk1 and enhanced olaparib-induced DSB marker γΗ2ΑΧ in vivo. Taken together, inhibition of Chk1 by pristimerin has been observed to induce DNA repair deficiency, which may expand the application of olaparib in BRCA-proficient cancers harboring TP53 mutations. Thus, pristimerin can be combined for PARP inhibitor-based therapy.
Collapse
Affiliation(s)
- Li Tao
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiangyu Xia
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shujing Kong
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tingye Wang
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233003, China
| | - Weimin Wang
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, China.
| |
Collapse
|
38
|
Rajendra E, Grande D, Mason B, Di Marcantonio D, Armstrong L, Hewitt G, Elinati E, Galbiati A, Boulton SJ, Heald RA, Smith GCM, Robinson HMR. Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells. Nucleic Acids Res 2024; 52:1736-1752. [PMID: 38109306 PMCID: PMC10899754 DOI: 10.1093/nar/gkad1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations. Several variants of DSBR reporters are available, however these are often limited by throughput or restricted to specific cellular models. Here, we describe the generation and validation of a suite of extrachromosomal reporter assays that can efficiently measure the major DSBR pathways of homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single strand annealing (SSA). We demonstrate that these assays can be adapted to a high-throughput screening format and that they are sensitive to pharmacological modulation, thus providing mechanistic and quantitative insights into compound potency, selectivity, and on-target specificity. We propose that these reporter assays can serve as tools to dissect the interplay of DSBR pathway networks in cells and will have broad implications for studies of DSBR mechanisms in basic research and drug discovery.
Collapse
Affiliation(s)
- Eeson Rajendra
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Diego Grande
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Bethany Mason
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | | | - Lucy Armstrong
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | | | - Elias Elinati
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | | | - Simon J Boulton
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Robert A Heald
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme C M Smith
- Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | | |
Collapse
|
39
|
de la Peña Avalos B, Paquet N, Tropée R, Coulombe Y, Palacios H, Leung J, Masson JY, Duijf PG, Dray E. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51. Nucleic Acids Res 2024; 52:1173-1187. [PMID: 38084915 PMCID: PMC10853800 DOI: 10.1093/nar/gkad1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.
Collapse
Affiliation(s)
- Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Nicolas Paquet
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Hannah Palacios
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX 78229, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
40
|
Huang ME, Qin Y, Shang Y, Hao Q, Zhan C, Lian C, Luo S, Liu LD, Zhang S, Zhang Y, Wo Y, Li N, Wu S, Gui T, Wang B, Luo Y, Cai Y, Liu X, Xu Z, Dai P, Li S, Zhang L, Dong J, Wang J, Zheng X, Xu Y, Sun Y, Wu W, Yeap LS, Meng FL. C-to-G editing generates double-strand breaks causing deletion, transversion and translocation. Nat Cell Biol 2024; 26:294-304. [PMID: 38263276 DOI: 10.1038/s41556-023-01342-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency 'stochastic' byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts. Imperfect DSB end-joining leads to small deletions via end-resection, templated insertions or aberrant transversions during end fill-in. Chromosomal translocations were detected between the editing target and off-targets of Cas9/deaminase origin. Genetic screenings of DNA repair factors disclosed a central role of abasic site processing in DSB formation. Shielding of abasic sites by the suicide enzyme HMCES reduced CGBE-initiated DSBs, providing an effective way to minimize DSB-triggered events without affecting substitutions. This work demonstrates that CGBEs can initiate deleterious intermediate DSBs and therefore require careful consideration for therapeutic applications, and that HMCES-aided CGBEs hold promise as safer tools.
Collapse
Affiliation(s)
- Min Emma Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yining Qin
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yafang Shang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Qian Hao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzong Zhan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyang Lian
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Luo
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Daisy Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Senxin Zhang
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wo
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Institute of Thoracic Oncology, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuheng Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Tuantuan Gui
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Luo
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Yanni Cai
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Ziye Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Dai
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Simiao Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Liang Zhang
- Hefei National Research Center for Cross Disciplinary Science, Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junchao Dong
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Sun
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Institute of Thoracic Oncology, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China
| | - Leng-Siew Yeap
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolic Diseases, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
| |
Collapse
|
41
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
42
|
Zhang Y, Chen Y, Huang W, Zhou Y, Wang Y, Fu K, Zhuang W. NPAS2 dampens chemo-sensitivity of lung adenocarcinoma cells by enhancing DNA damage repair. Cell Death Dis 2024; 15:101. [PMID: 38291048 PMCID: PMC10827782 DOI: 10.1038/s41419-023-06256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 02/01/2024]
Abstract
Chemotherapeutic agents, including cisplatin, have remained a cornerstone of lung adenocarcinoma (LUAD) treatment and continue to play an essential role in clinical practice, despite remarkable progress in therapeutic strategies. Hence, a thorough comprehension of the molecular mechanisms underlying chemotherapeutic agent resistance is paramount. Our investigation centered on the potential involvement of the NPAS2 gene in LUAD, which is highly expressed in tumors and its high expression has been associated with unfavorable overall survival rates in patients. Intriguingly, we observed that the depletion of NPAS2 in LUAD cells resulted in increased susceptibility to cisplatin treatment. Furthermore, mRNA sequencing analysis revealed that NPAS2 deficiency downregulated genes crucial to DNA repair. Additionally, NPAS2 depletion significantly impairs γH2AX accumulation, a pivotal component of the DNA damage response. Further investigation demonstrates that NPAS2 plays a crucial role in DNA double-strand breakage repair via homology-directed repair (HDR). Our inquiry into the molecular mechanisms underlying NPAS2 regulation of DDR revealed that it may enhance the stability of H2AX mRNA by binding to its mRNA, thereby upregulating the DNA damage repair pathway. In-vivo experiments further confirmed the crucial role of NPAS2 in modulating the effect of cisplatin in LUAD. Taken together, our findings suggest that NPAS2 binds to and enhances the stability of H2AX mRNA, thereby decreasing the sensitivity of tumor cells to chemotherapy by augmenting DNA damage repair.
Collapse
Affiliation(s)
- Youyu Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Cardiothoracic Vascular Surgery, Zhuzhou Central Hospital, 412001, Zhuzhou, Hunan, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yuan Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 410031, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 410008, Changsha, Hunan, China.
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 410031, Changsha, Hunan, China.
| |
Collapse
|
43
|
Tang M, Yin S, Zeng H, Huang A, Huang Y, Hu Z, Shah AR, Zhang S, Li H, Chen G. The P286R mutation of DNA polymerase ε activates cancer-cell-intrinsic immunity and suppresses endometrial tumorigenesis via the cGAS-STING pathway. Cell Death Dis 2024; 15:69. [PMID: 38238314 PMCID: PMC10796917 DOI: 10.1038/s41419-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024]
Abstract
Endometrial carcinoma (EC) is a prevalent gynecological tumor in women, and its treatment and prevention are significant global health concerns. The mutations in DNA polymerase ε (POLE) are recognized as key features of EC and may confer survival benefits in endometrial cancer patients undergoing anti-PD-1/PD-L1 therapy. However, the anti-tumor mechanism of POLE mutations remains largely elusive. This study demonstrates that the hot POLE P286R mutation impedes endometrial tumorigenesis by inducing DNA breakage and activating the cGAS-STING signaling pathway. The POLE mutations were found to inhibit the proliferation and stemness of primary human EC cells. Mechanistically, the POLE mutants enhance DNA damage and suppress its repair through the interaction with DNA repair proteins, leading to genomic instability and the upregulation of cytoplasmic DNA. Additionally, the POLE P286R mutant also increases cGAS level, promotes TBK1 phosphorylation, and stimulates inflammatory gene expression and anti-tumor immune response. Furthermore, the POLE P286R mutation inhibits tumor growth and facilitates the infiltration of cytotoxic T cells in human endometrial cancers. These findings uncover a novel mechanism of POLE mutations in antagonizing tumorigenesis and provide a promising direction for effective cancer therapy.
Collapse
Affiliation(s)
- Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Ao Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, UNMC, Omaha, USA
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- AoBio Medical Co., Shanghai, 200438, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
44
|
Wang J, Chen Y, Li S, Liu W, Zhou XA, Luo Y, Xu Z, Xiong Y, Cheng K, Ruan M, Yu W, Li X, Wang W, Wang J. PP2A inhibition causes synthetic lethality in BRCA2-mutated prostate cancer models via spindle assembly checkpoint reactivation. J Clin Invest 2024; 134:e172137. [PMID: 37934606 PMCID: PMC10760972 DOI: 10.1172/jci172137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Mutations in the BRCA2 tumor suppressor gene have been associated with an increased risk of developing prostate cancer. One of the paradoxes concerning BRCA2 is the fact that its inactivation affects genetic stability and is deleterious for cellular and organismal survival, while BRCA2-mutated cancer cells adapt to this detriment and malignantly proliferate. Therapeutic strategies for tumors arising from BRCA2 mutations may be discovered by understanding these adaptive mechanisms. In this study, we conducted forward genetic synthetic viability screenings in Caenorhabditis elegans brc-2 (Cebrc-2) mutants and found that Ceubxn-2 inactivation rescued the viability of Cebrc-2 mutants. Moreover, loss of NSFL1C, the mammalian ortholog of CeUBXN-2, suppressed the spindle assembly checkpoint (SAC) activation and promoted the survival of BRCA2-deficient cells. Mechanistically, NSFL1C recruited USP9X to inhibit the polyubiquitination of AURKB and reduce the removal of AURKB from the centromeres by VCP, which is essential for SAC activation. SAC inactivation is common in BRCA2-deficient prostate cancer patients, but PP2A inhibitors could reactivate the SAC and achieve BRCA2-deficient prostate tumor synthetic lethality. Our research reveals the survival adaptation mechanism of BRCA2-deficient prostate tumor cells and provides different angles for exploring synthetic lethal inhibitors in addition to targeting DNA damage repair pathways.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wanchang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yefei Luo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhanzhan Xu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Kaiqi Cheng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
45
|
Cao K, Wang R, Li L, Liao Y, Hu X, Li R, Liu X, Xiong XD, Wang Y, Liu X. Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination. Oncogene 2024; 43:35-46. [PMID: 38007537 DOI: 10.1038/s41388-023-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Homologous recombination (HR) is a major DNA double-strand break (DSB) repair pathway of clinical interest because of treatment with poly(ADP-ribose) polymerase inhibitors (PARPi). Cooperation between RAD51 and BRCA2 is pivotal for DNA DSB repair, and its dysfunction induces HR deficiency and sensitizes cancer cells to PARPi. The depletion of the DEAD-box protein DDX11 was found to suppress HR in hepatocellular carcinoma (HCC) cells. The HR ability of HCC cells is not always dependent on the DDX11 level because of natural DDX11 mutations. In Huh7 cells, natural DDX11 mutations were detected, increasing the susceptibility of Huh7 cells to olaparib in vitro and in vivo. The HR deficiency of Huh7 cells was restored when CRISPR/Cas9-mediated knock-in genomic editing was used to revert the DDX11 Q238H mutation to wild type. The DDX11 Q238H mutation impeded the phosphorylation of DDX11 by ATM at serine 237, preventing the recruitment of RAD51 to damaged DNA sites by disrupting the interaction between RAD51 and BRCA2. Clinically, a high level of DDX11 correlated with advanced clinical characteristics and a poor prognosis and served as an independent risk factor for overall and disease-free survival in patients with HCC. We propose that HCC with a high level of wild-type DDX11 tends to be more resistant to PARPi because of enhanced recombination repair, and the key mutation of DDX11 (Q238H) is potentially exploitable.
Collapse
Affiliation(s)
- Kun Cao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Ruonan Wang
- Scientific Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, China
| | - Lianhai Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Yuting Liao
- Department of Radiotherapy, General Hospital of Southern Theater Command of the Chinese People's Liberation Army, Guangzhou, 510016, China
| | - Xiao Hu
- Department of Surgery, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | - Ruixue Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xiuwen Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanjie Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
46
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
47
|
Abdel-Salam GMH, Hellmuth S, Gradhand E, Käseberg S, Winter J, Pabst AS, Eid MM, Thiele H, Nürnberg P, Budde BS, Toliat MR, Brecht IB, Schroeder C, Gschwind A, Ossowski S, Häuser F, Rossmann H, Abdel-Hamid MS, Hegazy I, Mohamed AG, Schneider DT, Bertoli-Avella A, Bauer P, Pearring JN, Pfundt R, Hoischen A, Gilissen C, Strand D, Zechner U, Tashkandi SA, Faqeih EA, Stemmann O, Strand S, Bolz HJ. Biallelic MAD2L1BP (p31comet) mutation is associated with mosaic aneuploidy and juvenile granulosa cell tumors. JCI Insight 2023; 8:e170079. [PMID: 37796616 PMCID: PMC10721328 DOI: 10.1172/jci.insight.170079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.
Collapse
Affiliation(s)
- Ghada M. H. Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Elise Gradhand
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephan Käseberg
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Ann-Sophie Pabst
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Maha M. Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Peter Nürnberg
- Cologne Center for Genomics and
- Center for Molecular Medicine Cologne, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Ines B. Brecht
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ibrahim Hegazy
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed G. Mohamed
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Jillian N. Pearring
- Department of Ophthalmology and Visual Sciences and
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rolph Pfundt
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences and
| | - Dennis Strand
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
| | - Soha A. Tashkandi
- Cytogenetics Laboratory, Pathology and Clinical Laboratory Medicine Administration (PCLMA), King Fahad Medical City, Second Central Healthcare Cluster (C2), Riyadh, Saudi Arabia
| | - Eissa A. Faqeih
- Section of Medical Genetics, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Bayreuth, Germany
| | - Susanne Strand
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Hanno J. Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Lee CY, Cheng WF, Lin PH, Chen YL, Huang SH, Lei KH, Chang KY, Ko MY, Chi P. An activity-based functional test for identifying homologous recombination deficiencies across cancer types in real time. Cell Rep Med 2023; 4:101247. [PMID: 37863059 PMCID: PMC10694588 DOI: 10.1016/j.xcrm.2023.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
Homologous recombination (HR)-mediated DNA repair is a prerequisite for maintaining genome stability. Cancer cells displaying HR deficiency (HRD) are selectively eliminated by poly(ADP-ribose) polymerase inhibitors (PARPis). To date, sequencing of HR-associated genes and analyzing genome instability have been used as clinical predictions for PARPi therapy. However, these genetic tests cannot reflect dynamic changes in the HR status. Here, we have developed a virus- and activity-based functional assay to quantify real-time HR activity directly. Instead of focusing on a few HR-associated genes, our functional assay detects endpoint HR activity and establishes an activity threshold for identifying HRD across cancer types, validated by PARPi sensitivity and BRCA status. Notably, this fluorescence-based assay can be applied to primary ovarian cancer cells from patients to reflect their level of HRD, which is associated with survival benefits. Thus, our work provides a functional test to predict the response of primary cancer cells to PARPis.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Han Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Kai-Hang Lei
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ko-Yu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Min-Yu Ko
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
49
|
Khozooei S, Veerappan S, Bonzheim I, Singer S, Gani C, Toulany M. Fisetin overcomes non-targetability of mutated KRAS induced YB-1 signaling in colorectal cancer cells and improves radiosensitivity by blocking repair of radiation-induced DNA double-strand breaks. Radiother Oncol 2023; 188:109867. [PMID: 37634766 DOI: 10.1016/j.radonc.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND PURPOSE KRAS is frequently mutated, and the Y-box binding protein 1 (YB-1) is overexpressed in colorectal cancer (CRC). Mutant KRAS (KRASmut) stimulates YB-1 through MAPK/RSK and PI3K/AKT, independent of epidermal growth factor receptor (EGFR). The p21-activated kinase (PAK) family is a switch-site upstream of AKT and RSK. The flavonoid compound fisetin inhibits RSK-mediated YB-1 signaling. We sought the most effective molecular targeting approach that interferes with DNA double strand break (DSB) repair and induces radiosensitivity of CRC cells, independent of KRAS mutation status. MATERIALS AND METHODS KRAS activity and KRAS mutation were analyzed by Ras-GTP assay and NGS. Effect of dual targeting of RSK and AKT (DT), the effect of fisetin as well as targeting PAK by FRAX486 and EGFR by erlotinib on YB-1 activity was tested by Western blotting after irradiation in vitro and ex vivo. Additionally, the effect of DT and FRAX486 on DSB repair pathways was tested in cells expressing reporter constructs for the DSB repair pathways by flow cytometry analysis. Residual DSBs and clonogenicity were examined by γH2AX- and clonogenic assays, respectively. RESULTS Erlotinib neither blocked DSB repair nor inhibited YB-1 phosphorylation under KRAS mutation condition in vitro and ex vivo. DT and FRAX486 effectively inhibited YB-1 phosphorylation independent of KRAS mutation status and diminished homologous recombination (HR) and alternative non-homologous end joining (NHEJ) repair. DT and FRAX486 inhibited DSB repair in CaCo2 but not in isogenic KRASG12V cells. Fisetin inhibited YB-1 phosphorylation, blocked DSB repair and increased radiosensitivity, independent of KRAS mutation status. CONCLUSION Combination of fisetin with radiotherapy may improve CRC radiation response, regardless of KRASmut status.
Collapse
Affiliation(s)
- Shayan Khozooei
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Soundaram Veerappan
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
Magalhaes YT, Forti FL. ROCK inhibition reduces the sensitivity of mutant p53 glioblastoma to genotoxic stress through a Rac1-driven ROS production. Int J Biochem Cell Biol 2023; 164:106474. [PMID: 37778694 DOI: 10.1016/j.biocel.2023.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Resistance to radio and chemotherapy in Glioblastoma (GBM) is correlated with its malignancy, invasiveness, and aggressiveness. The Rho GTPase pathway plays important roles in these processes, but its involvement in the GBM response to genotoxic treatments remains unsolved. Inhibition of this signaling pathway has emerged as a promising approach for the treatment of CNS injuries and diseases, proving to be a strong candidate for therapeutic approaches. To this end, Rho-associated kinases (ROCK), classic downstream effectors of small Rho GTPases, were targeted for pharmacological inhibition using Y-27632 in GBM cells, expressing the wild-type or mutated p53 gene, and exposed to genotoxic stress by gamma ionizing radiation (IR) or cisplatin (PT). The use of the ROCK inhibitor (ROCKi) had opposite effects in these cells: in cells expressing wild-type p53, ROCKi reduced survival and DNA repair capacity (reduction of γH2AX foci and accumulation of strand breaks) after stress promoted by IR or PT; in cells expressing the mutant p53 protein, both treatments promoted longer survival and more efficient DNA repair, responses further enhanced by ROCKi. The target DNA repair mechanisms of ROCK inhibition were, respectively, an attenuation of NHEJ and NER pathways in wild-type p53 cells, and a stimulation of HR and NER pathways in mutant p53 cells. These effects were accompanied by the formation of reactive oxygen species (ROS) induced by genotoxic stress only in mutant p53 cells but potentiated by ROCKi and reversed by p53 knockdown. N-acetyl-L-cysteine (NAC) treatment or Rac1 knockdown completely eliminated ROCKi's p53-dependent actions, since ROCK inhibition specifically elevated Rac-GTP levels only in mutant p53 cells. Combining IR or PT and ROCKi treatments broadens our understanding of the sensitivity and resistance of, respectively, GBM expressing wild-type or mutant p53 to genotoxic agents. Our proposal may be a determining factor in improving the efficiency and assertiveness of CNS antitumor therapies based on ROCK inhibitors. SIGNIFICANCE: The use of ROCK inhibitors in association with radio or chemotherapy modulates GBM resistance and sensitivity depending on the p53 activity, suggesting the potential value of this protein as therapeutic target for tumor pre-sensitization strategies.
Collapse
Affiliation(s)
- Yuli Thamires Magalhaes
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|