1
|
Sharan K, Brandt C, Yusuf MA, Singh P, Halder N, Edwards ME, Mangu SVVSR, Das A, Mishra A, Kumar SS, Sharma A, Gupta A, Liu XS, Guo EX, Monani UR, Ponnalagu D, Ivanov II, Lal G, Clare S, Dougan G, Yadav VK. Rapid and relaying deleterious effects of a gastrointestinal pathogen, Citrobacter rodentium, on bone, an extra-intestinal organ. iScience 2025; 28:111802. [PMID: 39967874 PMCID: PMC11834125 DOI: 10.1016/j.isci.2025.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/04/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Enteropathogenic infections cause pathophysiological changes in the host but their effects beyond the gastrointestinal tract are undefined. Here, using Citrobacter rodentium infection in mouse, which mimics human diarrheal enteropathogenic Escherichia coli, we show that gastrointestinal infection negatively affects bone remodeling, leading to compromised bone architecture. Transmission of infection through fecal-oral route from Citrobacter rodentium-infected to non-infected mice caused bone loss in non-infected cage mates. Mice with B cell deficiency (Igh6-/- mice) failed to clear C. rodentium infection and exhibited more severe and long-term bone loss compared to WT mice. Unbiased cytokine profiling showed an increase in circulating tumor necrosis factor α (TNFα) levels following Citrobacter rodentium infection, and immunoneutralization of TNFα prevented infection-induced bone loss completely in WT and immunocompromised mice. These findings reveal rapid, relaying, and modifiable effects of enteropathogenic infections on an extraintestinal organ-bone, and provide insights into the mechanism(s) through which these infections affect extraintestinal organ homeostasis.
Collapse
Affiliation(s)
- Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Cordelia Brandt
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Parminder Singh
- National Institute of Immunology, New Delhi, New Delhi, India
| | - Namrita Halder
- National Centre for Cell Science, Pune, Maharastra, India
| | - Madeline E. Edwards
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - SVVS Ravi Mangu
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Abhilipsa Das
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Amrita Mishra
- National Centre for Cell Science, Pune, Maharastra, India
| | - Shashi S. Kumar
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Amita Sharma
- Pediatric Kidney Foundation, New Delhi, New Delhi, India
| | - Alka Gupta
- Reproductive Biology Laboratory, National Institute of Immunology, New Delhi, New Delhi, India
| | - Xiaowei S. Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward X. Guo
- Bone Biomechanics Laboratory, Columbia University, New York, NY, USA
| | - Umrao R. Monani
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Girdhari Lal
- National Centre for Cell Science, Pune, Maharastra, India
| | - Simon Clare
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Gordon Dougan
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Vijay K. Yadav
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- National Institute of Immunology, New Delhi, New Delhi, India
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Healthy Longevity Program, Department of Pathology, Immunology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Kalev-Altman R, Becker G, Levy T, Penn S, Shpigel NY, Monsonego-Ornan E, Sela-Donenfeld D. Mmp2 Deficiency Leads to Defective Parturition and High Dystocia Rates in Mice. Int J Mol Sci 2023; 24:16822. [PMID: 38069145 PMCID: PMC10706207 DOI: 10.3390/ijms242316822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Parturition is the final and essential step for mammalian reproduction. While the uterus is quiescent during pregnancy, fundamental changes arise in the myometrial contractility, inducing fetal expulsion. Extracellular matrix (ECM) remodeling is fundamental for these events. The gelatinases subgroup of matrix metalloproteinases (MMPs), MMP2 and MMP9, participate in uterine ECM remodeling throughout pregnancy and parturition. However, their loss-of-function effect is unknown. Here, we determined the result of eliminating Mmp2 and/or Mmp9 on parturition in vivo, using single- and double-knockout (dKO) mice. The dystocia rates were measured in each genotype, and uterine tissue was collected from nulliparous synchronized females at the ages of 2, 4, 9 and 12 months. Very high percentages of dystocia (40-55%) were found in the Mmp2-/- and dKO females, contrary to the Mmp9-/- and wild-type females. The histological analysis of the uterus and cervix revealed that Mmp2-/- tissues undergo marked structural alterations, including highly enlarged myometrial, endometrial and luminal cavity. Increased collagen deposition was also demonstrated, suggesting a mechanism of extensive fibrosis in the Mmp2-/- myometrium, which may result in dystocia. Overall, this study describes a new role for MMP2 in myometrium remodeling during mammalian parturition process, highlighting a novel cause for dystocia due to a loss in MMP2 activity in the uterine tissue.
Collapse
Affiliation(s)
- Rotem Kalev-Altman
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Gal Becker
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Tamar Levy
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| | - Svetlana Penn
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Nahum Y. Shpigel
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| |
Collapse
|
3
|
Watanabe H, Maishi N, Hoshi-Numahata M, Nishiura M, Nakanishi-Kimura A, Hida K, Iimura T. Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction. Int J Mol Sci 2023; 24:10912. [PMID: 37446097 DOI: 10.3390/ijms241310912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.
Collapse
Affiliation(s)
- Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Nako Maishi
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| |
Collapse
|
4
|
Arostegui M, Scott RW, Underhill TM. Hic1 identifies a specialized mesenchymal progenitor population in the embryonic limb responsible for bone superstructure formation. Cell Rep 2023; 42:112325. [PMID: 37002923 DOI: 10.1016/j.celrep.2023.112325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023] Open
Abstract
The musculoskeletal system relies on the integration of multiple components with diverse physical properties, such as striated muscle, tendon, and bone, that enable locomotion and structural stability. This relies on the emergence of specialized, but poorly characterized, interfaces between these various elements during embryonic development. Within the appendicular skeleton, we show that a subset of mesenchymal progenitors (MPs), identified by Hic1, do not contribute to the primary cartilaginous anlagen but represent the MP population, whose progeny directly contribute to the interfaces that connect bone to tendon (entheses), tendon to muscle (myotendinous junctions), and the associated superstructures. Furthermore, deletion of Hic1 leads to skeletal defects reflective of deficient muscle-bone coupling and, consequently, perturbation of ambulation. Collectively, these findings show that Hic1 identifies a unique MP population that contributes to a secondary wave of bone sculpting critical to skeletal morphogenesis.
Collapse
Affiliation(s)
- Martin Arostegui
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
5
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
6
|
Asano Y, Matsumoto Y, Wada J, Rottapel R. E3-ubiquitin ligases and recent progress in osteoimmunology. Front Immunol 2023; 14:1120710. [PMID: 36911671 PMCID: PMC9996189 DOI: 10.3389/fimmu.2023.1120710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Rheumatology, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Abstract
Distraction osteogenesis (DO) is a bone regeneration technique used to treat maxillofacial disorders, fracture nonunion, and large bone defects. It is well known for its amazing regenerative potential, but an extended consolidation period limits its clinical use. The interaction between the nervous system and bone regeneration has attracted great attention in recent years. Sema3A is a key axonal chemorepellent which has been proved to have bone-protective effects. In this article, we try to improve DO by local administration of Sema3A and explore the possible mechanisms. Forty wildtype, male, adult mice were divided into two groups after tibia osteotomy surgery. Sema3A or Saline was daily injected transcutaneous into the center of the distraction zone during the consolidation period. Micro-CT images were taken at 4, 6,8 and 10 weeks post-surgery; vascular density and biomechanical testing were performed at 10 weeks post-surgery. We also set up in vitro vessel growth assay to evaluate the effect of Sema3A on angiogenesis. Compared with the Saline group, Sema3A treatment significantly accelerated bone regeneration, improved angiogenesis and callus' biomechanical strength. At 10 weeks post-surgery, compared with the Saline group, the BV/TV, BMD, TMD increased by about 23%, 22%, 18% respectively, vascular density increased by about 49% in the Sema3A group. Histological images and western-blot showed decreased expression of VEGF-A and increased expression of Ang-1 at 4 weeks post-surgery in the Sema3A group. In vitro, Sema3A suppressed VEGF-induced angiogenesis but had little effect on Ang-induced angiogenesis. Conclusion: Sema3A could accelerate bone regeneration and improve angiogenesis during DO.
Collapse
Affiliation(s)
- Nian Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunwei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Paradise CR, Galvan ML, Pichurin O, Jerez S, Kubrova E, Dehghani SS, Carrasco ME, Thaler R, Larson AN, van Wijnen AJ, Dudakovic A. Brd4 is required for chondrocyte differentiation and endochondral ossification. Bone 2022; 154:116234. [PMID: 34700039 PMCID: PMC9014208 DOI: 10.1016/j.bone.2021.116234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Abstract
Development of cartilage and bone, the core components of the mouse skeletal system, depends on coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | | |
Collapse
|
10
|
Ruscitto A, Morel MM, Shawber CJ, Reeve G, Lecholop MK, Bonthius D, Yao H, Embree MC. Evidence of vasculature and chondrocyte to osteoblast transdifferentiation in craniofacial synovial joints: Implications for osteoarthritis diagnosis and therapy. FASEB J 2020; 34:4445-4461. [PMID: 32030828 DOI: 10.1096/fj.201902287r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and α-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation.
Collapse
Affiliation(s)
- Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mallory M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Carrie J Shawber
- Department of OB/GYN, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn Reeve
- Division of Oral and Maxillofacial Surgery, New York Presbyterian Weill Cornell Medical Center, New York, NY, USA
| | - Michael K Lecholop
- Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Bonthius
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA
| | - Hai Yao
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA.,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Abstract
The adaptor protein 3BP2 (SH3-domain binding protein 2), which is encoded by the SH3BP2 locus, nucleates a signaling complex comprising ABL, SRC, VAV, and SYK, and facilitates an open active configuration of these proteins, leading to their kinase activation. Gain-of-function missense mutations in the SH3BP2 gene cause cherubism, an autosomal dominant disorder associated with severe craniofacial developmental defects in children. Previous studies have demonstrated that 3BP2 and its degradation pathway regulate bone metabolism, energy metabolism, and inflammation and that dysregulation of the 3BP2 degradation pathway is associated with human disorders. Herein, we discussed lessons from cherubism indicating that 3BP2 studies could elucidate the pathogenesis of bone loss caused by inflammation and identify suitable therapeutic targets.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Paradise CR, Galvan ML, Kubrova E, Bowden S, Liu E, Carstens MF, Thaler R, Stein GS, van Wijnen AJ, Dudakovic A. The epigenetic reader Brd4 is required for osteoblast differentiation. J Cell Physiol 2019; 235:5293-5304. [PMID: 31868237 DOI: 10.1002/jcp.29415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Transcription networks and epigenetic mechanisms including DNA methylation, histone modifications, and noncoding RNAs control lineage commitment of multipotent mesenchymal progenitor cells. Proteins that read, write, and erase histone tail modifications curate and interpret the highly intricate histone code. Epigenetic reader proteins that recognize and bind histone marks provide a crucial link between histone modifications and their downstream biological effects. Here, we investigate the role of bromodomain-containing (BRD) proteins, which recognize acetylated histones, during osteogenic differentiation. Using RNA-sequencing (RNA-seq) analysis, we screened for BRD proteins (n = 40) that are robustly expressed in MC3T3 osteoblasts. We focused functional follow-up studies on Brd2 and Brd4 which are highly expressed in MC3T3 preosteoblasts and represent "bromodomain and extra terminal domain" (BET) proteins that are sensitive to pharmacological agents (BET inhibitors). We show that small interfering RNA depletion of Brd4 has stronger inhibitory effects on osteoblast differentiation than Brd2 loss as measured by osteoblast-related gene expression, extracellular matrix deposition, and alkaline phosphatase activity. Similar effects on osteoblast differentiation are seen with the BET inhibitor +JQ1, and this effect is reversible upon its removal indicating that this small molecule has no lasting effects on the differentiation capacity of MC3T3 cells. Mechanistically, we find that Brd4 binds at known Runx2 binding sites in promoters of bone-related genes. Collectively, these findings suggest that Brd4 is recruited to osteoblast-specific genes and may cooperate with bone-related transcription factors to promote osteoblast lineage commitment and maturation.
Collapse
Affiliation(s)
- Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Sierra Bowden
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Esther Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mason F Carstens
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Olvera D, Stolzenfeld R, Fisher E, Nolan B, Caird MS, Kozloff KM. Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2019; 34:2061-2074. [PMID: 31310351 PMCID: PMC6854294 DOI: 10.1002/jbmr.3831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/25/2023]
Abstract
During pregnancy and lactation, the maternal skeleton undergoes significant bone loss through increased resorption to provide the necessary calcium supply to the developing fetus and suckling neonate. This period of skeletal vulnerability has not been clearly associated with increased maternal fracture risk, but these physiological conditions can exacerbate an underlying metabolic bone condition like osteogenesis imperfecta. Although bisphosphonates (BPs) are commonly used in postmenopausal women, there are cases where premenopausal women taking BPs become pregnant. Given BPs' long half-life, there is a need to establish how BPs affect the maternal skeleton during periods of demanding metabolic bone changes that are critical for the skeletal development of their offspring. In the present study, pamidronate- (PAM-) amplified pregnancy-induced bone mass gains and lactation-induced bone loss were prevented. This preservation of bone mass was less robust when PAM was administered at late stages of lactation compared with early pregnancy and first day of lactation. Pregnancy-induced osteocyte osteolysis was also observed and was unaffected with PAM treatment. No negative skeletal effects were observed in offspring from PAM-treated dams despite lactation-induced bone loss prevention. These findings provide important insight into (1) a treatment window for when PAM is most effective in preserving maternal bone mass, and (2) the maternal changes in bone metabolism that maintain calcium homeostasis crucial for fetal and neonatal bone development. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana Olvera
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Stolzenfeld
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily Fisher
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
So EY, Sun C, Wu KQ, Driesman A, Leggett S, Isaac M, Spangler T, Dubielecka-Szczerba PM, Reginato AM, Liang OD. Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development. J Cell Physiol 2019; 235:1425-1437. [PMID: 31287165 PMCID: PMC6879780 DOI: 10.1002/jcp.29063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
SH2‐containing inositol‐5′‐phosphatase‐1 (SHIP‐1) controls the phosphatidylinositol‐3′‐kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP‐1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP‐1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c‐kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP‐1 knockout mice than in wild‐type mice. In corroboration with the in vivo phenotype, SHIP‐1 deficient PDGFRα + Sca‐1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP‐1 deficiency inhibited hypoxia‐induced cellular activation of Akt and extracellular‐signal‐regulated kinase (Erk) and suppressed hypoxia‐induced cell proliferation. These results suggest that SHIP‐1 is required for hypoxia‐induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP‐1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Changqi Sun
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Adam Driesman
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Susan Leggett
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mauricio Isaac
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Travis Spangler
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Patrycja M Dubielecka-Szczerba
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
17
|
Fgfr1 conditional-knockout in neural crest cells induces heterotopic chondrogenesis and osteogenesis in mouse frontal bones. Med Mol Morphol 2018; 52:156-163. [PMID: 30499042 DOI: 10.1007/s00795-018-0213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
Most facial bones, including frontal bones, are derived from neural crest cells through intramembranous ossification. Fibroblast growth factor receptor 1 (Fgfr1) plays a pivotal role in craniofacial bone development, and loss of Fgfr1 leads to cleft palate and facial cleft defects in newborn mice. However, the potential role of the Fgfr1 gene in neural crest cell-mediated craniofacial development remains unclear. To investigate the role of Fgfr1 in neural crest cells, we analyzed Wnt1-Cre;Fgfr1flox/flox mice. Our results show that specific knockout of Fgfr1 in neural crest cells induced heterotopic chondrogenesis and osteogenesis at the interface of the anterior portions of frontal bones. We observed that heterotopic bone formation continued through postnatal day 28, whereas heterotopic chondrogenesis lasted only through the embryonic period. In summary, our results indicate that loss of Fgfr1 in neural crest cells leads to heterotopic chondrogenesis and osteogenesis.
Collapse
|
18
|
Glucose metabolism induced by Bmp signaling is essential for murine skeletal development. Nat Commun 2018; 9:4831. [PMID: 30446646 PMCID: PMC6240091 DOI: 10.1038/s41467-018-07316-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023] Open
Abstract
Much of the mammalian skeleton originates from a cartilage template eventually replaced by bone via endochondral ossification. Despite much knowledge about growth factors and nuclear proteins in skeletal development, little is understood about the role of metabolic regulation. Here we report that genetic deletion of the glucose transporter Glut1 (Slc2a1), either before or after the onset of chondrogenesis in the limb, severely impairs chondrocyte proliferation and hypertrophy, resulting in dramatic shortening of the limbs. The cartilage defects are reminiscent to those caused by deficiency in Bmp signaling. Importantly, deletion of Bmpr1a in chondrocytes markedly reduces Glut1 levels in vivo, whereas recombinant BMP2 increases Glut1 mRNA and protein levels, boosting glucose metabolism in primary chondrocytes. Biochemical studies identify a Bmp-mTORC1-Hif1a signaling cascade resulting in upregulation of Glut1 in chondrocytes. The results therefore uncover a hitherto unknown connection between Bmp signaling and glucose metabolism in the regulation of cartilage development. It is unclear how metabolic regulation affects development of the skeleton. Here, the authors show that deletion of the glucose transporter Glut1 (Slc2a1) both prior to and following chondrogenesis in the mouse limb impairs chondrocyte proliferation and shortening of the limbs, modulated by BMP signaling.
Collapse
|
19
|
Ma RC, Jacobs CT, Sharma P, Kocha KM, Huang P. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet 2018; 14:e1007775. [PMID: 30388110 PMCID: PMC6235400 DOI: 10.1371/journal.pgen.1007775] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Development of a functional musculoskeletal system requires coordinated generation of muscles, bones, and tendons. However, how axial tendon cells (tenocytes) are generated during embryo development is still poorly understood. Here, we show that axial tenocytes arise from the sclerotome in zebrafish. In contrast to mouse and chick, the zebrafish sclerotome consists of two separate domains: a ventral domain and a previously undescribed dorsal domain. While dispensable for sclerotome induction, Hedgehog (Hh) signaling is required for the migration and maintenance of sclerotome derived cells. Axial tenocytes are located along the myotendinous junction (MTJ), extending long cellular processes into the intersomitic space. Using time-lapse imaging, we show that both sclerotome domains contribute to tenocytes in a dynamic and stereotypic manner. Tenocytes along a given MTJ always arise from the sclerotome of the adjacent anterior somite. Inhibition of Hh signaling results in loss of tenocytes and enhanced sensitivity to muscle detachment. Together, our work shows that axial tenocytes in zebrafish originate from the sclerotome and are essential for maintaining muscle integrity. The coordinated generation of bones, muscles and tendons at the correct time and location is critical for the development of a functional musculoskeletal system. Although it is well known that tendon is the connective tissue that attaches muscles to bones, it is still poorly understood how tendon cells, or tenocytes, are generated during embryo development. Using the zebrafish model, we identify trunk tenocytes located along the boundary of muscle segments. Using cell tracing in live animals, we find that tenocytes originate from the sclerotome, an embryonic structure that is previously known to generate the trunk skeleton. In contrast to higher vertebrates, the zebrafish sclerotome consists of two separate domains, a ventral domain and a novel dorsal domain. Both domains give rise to trunk tenocytes in a dynamic and stereotypic manner. Hedgehog (Hh) signaling, an important cell signaling pathway, is not required for sclerotome induction but essential for the generation of sclerotome derived cells. Inhibition of Hh signaling leads to loss of tenocytes and increased sensitivity to muscle detachment. Thus, our work shows that tenocytes develop from the sclerotome and play an important role in maintaining muscle integrity.
Collapse
Affiliation(s)
- Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Craig T. Jacobs
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Priyanka Sharma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
20
|
Liu C, Cao Z, Zhang W, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Tan R, Dong S, Xu J. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL‐induced NFAT activation and calcium signaling. J Cell Physiol 2018; 233:8971-8983. [DOI: 10.1002/jcp.26841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chuan Liu
- Department of Anatomy Third Military Medical University Chongqing China
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- Department of Orthopedics The Army General Hospital Beijing China
| | - Zhen Cao
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Wen Zhang
- Department of Surgery Chinese People’s Liberation Army 66325 Hospital Beijing China
| | - Jennifer Tickner
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules, Nanjing University Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Shiwu Dong
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
| | - Jiake Xu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
21
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
22
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
23
|
Ruppeka-Rupeika E, Hogervorst J, Wouters F, Schoenmaker T, Forouzanfar T, de Vries TJ. Osteogenic and osteoclastogenic potential of jaw bone-derived cells-A case study. J Cell Biochem 2018; 119:5391-5401. [PMID: 29363782 DOI: 10.1002/jcb.26690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023]
Abstract
Though the stem cell properties of tooth-derived periodontal ligament and gingival cells have been widely documented, surprisingly little is known about both the osteogenic and osteoclastogenic differentiation capacities of the more clinically relevant jaw bone-derived cells. These cells could be considered being recruited during bone healing such as after tooth extraction, after placing an implant, or after surgical or traumatic injury. Here, we compared the osteoblast and osteoclastogenesis features of four consecutive bone outgrowths with periodontal ligament and gingiva cells. For osteogenesis assay, cells were cultured in osteogenic medium, whereas in osteoclastogenesis assays, cells were cultured in the presence of human peripheral blood mononuclear cells (PBMCs) as a source of osteoclast precursors. After osteogenic stimulus, all six cell types responded by an increased expression of osteoblast markers RUNX2 and DMP1. Periodontal ligament cells expressed significantly higher levels of RUNX2 compared to all bone outgrowths. Alkaline phosphatase enzyme levels in periodontal ligament cells reached earlier and higher peak expression. Mineral deposits were highest in periodontal ligament, gingiva and the first bone outgrowth. Osteoclastogenesis revealed a stepwise increase of secreted pro-osteoclastogenesis proteins M-CSF, IL-1β, and TNF-α in the last three consecutive bone cultures. OPG mRNA showed the opposite: high expression in periodontal and gingiva cells and the first outgrowth. Osteoclast numbers were similar between the six cultures, both on bone and on plastic. This first study reveals that jaw bone outgrowths contain bone remodelling features that are slightly different from tooth-associated cells.
Collapse
Affiliation(s)
- Elizabete Ruppeka-Rupeika
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam University College, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Fenne Wouters
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Yamashita M, Inoue K, Saeki N, Ideta-Otsuka M, Yanagihara Y, Sawada Y, Sakakibara I, Lee J, Ichikawa K, Kamei Y, Iimura T, Igarashi K, Takada Y, Imai Y. Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression. Development 2018; 145:dev.157412. [PMID: 29180567 DOI: 10.1242/dev.157412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice (Uhrf1ΔLimb/ΔLimb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1ΔLimb/ΔLimb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1, which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation.
Collapse
Affiliation(s)
- Michiko Yamashita
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Kazuki Inoue
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuichiro Sawada
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Iori Sakakibara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Jiwon Lee
- Division of Bio-Imaging, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Koichi Ichikawa
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan .,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan.,Department of Integrative Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
25
|
Sharan K, Lewis K, Furukawa T, Yadav VK. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res 2017; 63:e12423. [PMID: 28512916 PMCID: PMC5575491 DOI: 10.1111/jpi.12423] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis.
Collapse
MESH Headings
- Animals
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Calcification, Physiologic/drug effects
- Female
- Humans
- Melatonin/metabolism
- Melatonin/pharmacology
- Mice
- Mice, Knockout
- Organ Size/drug effects
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Osteoporosis, Postmenopausal/drug therapy
- Osteoporosis, Postmenopausal/genetics
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Pineal Gland/metabolism
- Pineal Gland/pathology
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
- Present address:
Department of Molecular NutritionCSIR‐Central Food Technological Research InstituteMysoreIndia
| | - Kirsty Lewis
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
| | | | - Vijay K. Yadav
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
- Metabolic Research LaboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
26
|
Pan M, Weng Y, Sun Y. Overexpression of Dentin matrix protein 1 in Nestin+ cells causes bone loss in mouse long bone. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Matsumoto Y, La Rose J, Lim M, Adissu HA, Law N, Mao X, Cong F, Mera P, Karsenty G, Goltzman D, Changoor A, Zhang L, Stajkowski M, Grynpas MD, Bergmann C, Rottapel R. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest 2017; 127:2612-2625. [PMID: 28581440 DOI: 10.1172/jci92233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced β-catenin activation and reduced Fgf18 expression in osteoblasts. We show that FGF18 induces transcriptional coactivator with PDZ-binding motif (TAZ) expression, which is required for osteoblast proliferation and differentiation through transcriptional enhancer associate domain (TEAD) and runt-related transcription factor 2 (RUNX2) transcription factors, respectively. Finally, we demonstrate that adipogenesis is enhanced in Rnf146-/- mouse embryonic fibroblasts. Moreover, mice with loss of RNF146 within the osteoblast lineage had increased fat stores and were glucose intolerant with severe osteopenia because of defective osteoblastogenesis and subsequent impaired osteocalcin production. These findings indicate that RNF146 is required to coordinate β-catenin signaling within the osteoblast lineage during embryonic and postnatal bone development.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose La Rose
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Lim
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Napoleon Law
- Department of STTARR Innovation Center, Toronto, Ontario, Canada
| | - Xiaohong Mao
- Developmental and Molecular Pathways, Novartis Institute of Biomedical Research, Cambridge, Massachusetts, USA
| | - Feng Cong
- Developmental and Molecular Pathways, Novartis Institute of Biomedical Research, Cambridge, Massachusetts, USA
| | - Paula Mera
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Adele Changoor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lucia Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Megan Stajkowski
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine.,Department of Medical Biophysics, and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Rheumatology, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Lee JW, Iimura T. Shedding quantitative fluorescence light on novel regulatory mechanisms in skeletal biomedicine and biodentistry. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:2-10. [PMID: 28408963 PMCID: PMC5390335 DOI: 10.1016/j.jdsr.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 10/26/2022] Open
Abstract
Digitalized fluorescence images contain numerical information such as color (wavelength), fluorescence intensity and spatial position. However, quantitative analyses of acquired data and their validation remained to be established. Our research group has applied quantitative fluorescence imaging on tissue sections and uncovered novel findings in skeletal biomedicine and biodentistry. This review paper includes a brief background of quantitative fluorescence imaging and discusses practical applications by introducing our previous research. Finally, the future perspectives of quantitative fluorescence imaging are discussed.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime 791-0295, Japan.,Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Ehime 791-0295, Japan.,Artificial Joint Integrated Center and Translational Research Center, Ehime University Hospital, Ehime 791-0295, Japan
| |
Collapse
|
29
|
Matsumoto Y, La Rose J, Kent OA, Wagner MJ, Narimatsu M, Levy AD, Omar MH, Tong J, Krieger JR, Riggs E, Storozhuk Y, Pasquale J, Ventura M, Yeganeh B, Post M, Moran MF, Grynpas MD, Wrana JL, Superti-Furga G, Koleske AJ, Pendergast AM, Rottapel R. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest 2016; 126:4482-4496. [PMID: 27797343 PMCID: PMC5127668 DOI: 10.1172/jci87802] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Cellular identity in metazoan organisms is frequently established through lineage-specifying transcription factors, which control their own expression through transcriptional positive feedback, while antagonizing the developmental networks of competing lineages. Here, we have uncovered a distinct positive feedback loop that arises from the reciprocal stabilization of the tyrosine kinase ABL and the transcriptional coactivator TAZ. Moreover, we determined that this loop is required for osteoblast differentiation and embryonic skeletal formation. ABL potentiated the assembly and activation of the RUNX2-TAZ master transcription factor complex that is required for osteoblastogenesis, while antagonizing PPARγ-mediated adipogenesis. ABL also enhanced TAZ nuclear localization and the formation of the TAZ-TEAD complex that is required for osteoblast expansion. Last, we have provided genetic data showing that regulation of the ABL-TAZ amplification loop lies downstream of the adaptor protein 3BP2, which is mutated in the craniofacial dysmorphia syndrome cherubism. Our study demonstrates an interplay between ABL and TAZ that controls the mesenchymal maturation program toward the osteoblast lineage and is mechanistically distinct from the established model of lineage-specific maturation.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose La Rose
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Oliver A. Kent
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Melany J. Wagner
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Aaron D. Levy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mitchell H. Omar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jiefei Tong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R. Krieger
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emily Riggs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yaryna Storozhuk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Julia Pasquale
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Manuela Ventura
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael F. Moran
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marc D. Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L. Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine
- Department of Medical Biophysics, and
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Guo S, Ni Y, Ben J, Xia Y, Zhou T, Wang D, Ni J, Bai H, Wang L, Ma J, Chen Q. Class A Scavenger Receptor Exacerbates Osteoclastogenesis by an Interleukin-6-Mediated Mechanism through ERK and JNK Signaling Pathways. Int J Biol Sci 2016; 12:1155-1167. [PMID: 27766031 PMCID: PMC5069438 DOI: 10.7150/ijbs.14654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, which are important for bone health. Class A scavenger receptor (SR-A) is a multifunctional molecule that functions during differentiation of monocyte into macrophages and osteoclasts. To further characterize the role of SR-A in osteoclasts, we used the murine tooth movement model (TM) and the murine anterior cruciate ligament transection model of osteoarthritis (ACLT OA). In these two models the bones involved are of different origin and have different properties. Bone resorption was decreased in SR-A-/- mice compared to SR-A+/+ mice. Further evaluation showed that the number of multinucleated osteoclasts in SR-A-/- mice, compared to SR-A+/+ mice, was significantly decreased both in vivo and in vitro. The levels of interleukin-6 (IL-6) produced by osteoclasts were reduced in SR-A-/- mice compared to SR-A+/+ mice. In the in vitro marrow-derived osteoclast formation assay and in both mouse models, osteoclastogenesis was restored to normal in SR-A-/- mice by administration of recombinant murine IL-6. Moreover, neutralization of IL-6 reduced the number of osteoclasts formed in SR-A+/+ mice of TM model. Both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK), but not p38, signaling pathways were downregulated in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated SR-A-/- osteoclasts. Importantly, when treated with either ERK or JNK inhibitor, the numbers of osteoclasts generated from RANKL-induced bone marrow derived-macrophages of SR-A+/+ mice, and their IL-6 production, were significantly decreased. This suggests that SR-A activates the ERK and JNK signaling pathways, and promotes production of IL-6 by osteoclasts to further stimulate osteoclast formation.
Collapse
Affiliation(s)
- Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Tingting Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Muthusamy K, Mohan S, Nagamani S, Kesavan C. Identification of novel small molecules that bind to the loop2 region of sclerostin - an in silico computational analysis. Physiol Res 2016; 65:871-878. [PMID: 27429110 DOI: 10.33549/physiolres.933267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to identify small molecular weight compounds that bind to sclerostin using in-silico methods because of the established importance of sclerostin-based therapies for the treatment of disease characterized by low bone mass. The zinc database (Zdb) revealed that nine potential molecules bind to the loop2 region (functional site) of sclerostin with ADME/T properties that are within an acceptable range defined for human use. Compounds 30160056 and 56871042 showed the highest docking score. Density functional theory (by HOMO, LUMO and MESP analysis) and MM/GBSA analysis showed that four compounds 30160056, 56871042, 72112226 and 43920281 exhibit high stability among the nine small molecules identified. Induced Docking Fit and Pymol software analyses revealed that the identified compounds differ in the interaction with amino acids in the loop2 region of sclerostin. Six compound exhibited interaction with Ile95 and 2 compounds with Asn93, an amino acid in the loop2 region known to be involved in sclerostin's inhibitory effect, suggesting that the identified compounds have the potential to bind and neutralize sclerostin function. Furthermore, compound 43920281 showed a low risk of toxicity and drug-like characteristic features compared to all nine identified compounds. In conclusion, in silico analysis identified a novel compound 43920281 as a potent anti-sclerostin therapeutic for drug development for the treatment of osteoporosis.
Collapse
Affiliation(s)
- K Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi, India; Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Research Service, Loma Linda, CA, USA.
| | | | | | | |
Collapse
|
32
|
Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat Commun 2016; 7:12047. [PMID: 27329220 PMCID: PMC4917962 DOI: 10.1038/ncomms12047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-β signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways. Eed is a polycomb repressive complex 2 component involved in stem cell lineage determination, but little is known about its role in lineage committed cells. Here the authors show that chondrocyte-specific Eed KO mice have skeletal growth defects related to induction of Wnt and TGF-β signalling.
Collapse
|
33
|
Loganathan R, Rongish BJ, Smith CM, Filla MB, Czirok A, Bénazéraf B, Little CD. Extracellular matrix motion and early morphogenesis. Development 2016; 143:2056-65. [PMID: 27302396 PMCID: PMC4920166 DOI: 10.1242/dev.127886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher M Smith
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael B Filla
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA Department of Biological Physics, Eotvos University, Budapest 1117, Hungary
| | - Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Botelho JF, Smith-Paredes D, Soto-Acuña S, O'Connor J, Palma V, Vargas AO. Molecular development of fibular reduction in birds and its evolution from dinosaurs. Evolution 2016; 70:543-54. [PMID: 26888088 PMCID: PMC5069580 DOI: 10.1111/evo.12882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
Abstract
Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity.
Collapse
Affiliation(s)
- João Francisco Botelho
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| | - Daniel Smith-Paredes
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Sergio Soto-Acuña
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.,Área de Paleontología, Museo Nacional de Historia Natural, Santiago, Chile
| | - Jingmai O'Connor
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Science, Beijing, China
| | - Verónica Palma
- FONDAP Center for Genomic Regulation, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile
| | - Alexander O Vargas
- Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
36
|
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther 2015; 6:143. [PMID: 26282627 PMCID: PMC4539918 DOI: 10.1186/s13287-015-0144-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Johann-Wolfgang-Goethe University Hospital, Sandhofstrasse 1, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Tosi LL, Warman ML. Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 2015; 76:67-75. [PMID: 25819040 DOI: 10.1016/j.bone.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 12/14/2022]
Abstract
Rare bone diseases account for 5% of all birth defects and can cause significant morbidity throughout patients' lives. Significant progress is being made to elucidate the pathophysiological mechanisms underlying these diseases. This paper summarizes presentation highlights of a workshop on Rare Skeletal Diseases convened to explore how the study of rare diseases has influenced the field's understanding of bone anabolism and catabolism and directed the search for new therapies benefiting patients with rare conditions as well as patients with common skeletal disorders.
Collapse
Affiliation(s)
- Laura L Tosi
- Division of Orthopaedics and Sports Medicine, Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, 320 Longwood Avenue, Room EN260.1, Boston, MA 02115, USA.
| |
Collapse
|
39
|
González-Martín MC, Mallo M, Ros MA. Long bone development requires a threshold of Hox function. Dev Biol 2014; 392:454-65. [PMID: 24930703 DOI: 10.1016/j.ydbio.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.
Collapse
Affiliation(s)
- Ma Carmen González-Martín
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain; Dpto. de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|