1
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
2
|
Treatment with MDL 72527 Ameliorated Clinical Symptoms, Retinal Ganglion Cell Loss, Optic Nerve Inflammation, and Improved Visual Acuity in an Experimental Model of Multiple Sclerosis. Cells 2022; 11:cells11244100. [PMID: 36552864 PMCID: PMC9776605 DOI: 10.3390/cells11244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple Sclerosis (MS) is a highly disabling neurological disease characterized by inflammation, neuronal damage, and demyelination. Vision impairment is one of the major clinical features of MS. Previous studies from our lab have shown that MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX), is protective against neurodegeneration and inflammation in the models of diabetic retinopathy and excitotoxicity. In the present study, utilizing the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined the impact of SMOX blockade on retinal neurodegeneration and optic nerve inflammation. The increased expression of SMOX observed in EAE retinas was associated with a significant loss of retinal ganglion cells, degeneration of synaptic contacts, and reduced visual acuity. MDL 72527-treated mice exhibited markedly reduced motor deficits, improved neuronal survival, the preservation of synapses, and improved visual acuity compared to the vehicle-treated group. The EAE-induced increase in macrophage/microglia was markedly reduced by SMOX inhibition. Upregulated acrolein conjugates in the EAE retina were decreased through MDL 72527 treatment. Mechanistically, the EAE-induced ERK-STAT3 signaling was blunted by SMOX inhibition. In conclusion, our studies demonstrate the potential benefits of targeting SMOX to treat MS-mediated neuroinflammation and vision loss.
Collapse
|
3
|
Xiang B, Geng R, Zhang Z, Ji X, Zou J, Chen L, Liu J. Identification of the effect and mechanism of Yiyi Fuzi Baijiang powder against colorectal cancer using network pharmacology and experimental validation. Front Pharmacol 2022; 13:929836. [PMID: 36353478 PMCID: PMC9637639 DOI: 10.3389/fphar.2022.929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/22/2023] Open
Abstract
Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, β-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.
Collapse
Affiliation(s)
- Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaqiong Zou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Structure of human spermine oxidase in complex with a highly selective allosteric inhibitor. Commun Biol 2022; 5:787. [PMID: 35931745 PMCID: PMC9355956 DOI: 10.1038/s42003-022-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors. Rational engineering of human spermine oxidase yields crystallizable structures and the design of an allosteric inhibitor.
Collapse
|
5
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
6
|
Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020; 10:biom10111579. [PMID: 33233661 PMCID: PMC7699716 DOI: 10.3390/biom10111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.
Collapse
|
7
|
Mischiati C, Feriotto G, Tabolacci C, Domenici F, Melino S, Borromeo I, Forni C, De Martino A, Beninati S. Polyamine Oxidase Is Involved in Spermidine Reduction of Transglutaminase Type 2-Catalyzed βH-Crystallins Polymerization in Calcium-Induced Experimental Cataract. Int J Mol Sci 2020; 21:E5427. [PMID: 32751462 PMCID: PMC7432200 DOI: 10.3390/ijms21155427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
In an in vitro Ca2+-induced cataract model, the progression of opacification is paralleled by a rapid decrease of the endogenous levels of spermidine (SPD) and an increase of transglutaminase type 2 (TG2, EC 2.3.2.13)-catalyzed lens crystallins cross-linking by protein-bound N1-N8-bis(γ-glutamyl) SPD. This pattern was reversed adding exogenous SPD to the incubation resulting in a delayed loss of transparency of the rabbit lens. The present report shows evidence on the main incorporation of SPD by the catalytic activity of TG2, toward βH-crystallins and in particular to the βB2- and mostly in βB3-crystallins. The increase of endogenous SPD in the cultured rabbit lens showed the activation of a flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAO EC 1.5.3.11). As it is known that FAD-PAO degrades the N8-terminal reactive portion of N1-mono(γ-glutamyl) SPD, the protein-bound N8-mono(γ-glutamyl) SPD was found the mainly available derivative for the potential formation of βB3-crystallins cross-links by protein-bound N1-N8-bis(γ-glutamyl)SPD. In conclusion, FAD-PAO degradation of the N8-terminal reactive residue of the crystallins bound N1-mono(γ-glutamyl)SPD together with the increased concentration of exogenous SPD, leading to saturation of glutamine residues on the substrate proteins, drastically reduces N1-N8-bis(γ-glutamyl)SPD crosslinks formation, preventing crystallins polymerization and avoiding rabbit lens opacification. The ability of SPD and MDL 72527 to modulate the activities of TG2 and FAD-PAO involved in the mechanism of lens opacification suggests a potential strategy for the prevention of senile cataract.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biomedical Sciences and Surgical Specialties, University of Ferrara, 44121 Ferrara, Italy;
| | - Giordana Feriotto
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Fabio Domenici
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.D.); (S.M.)
| | - Sonia Melino
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.D.); (S.M.)
| | - Ilaria Borromeo
- Department of Physics, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Cinzia Forni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| | - Angelo De Martino
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.F.); (A.D.M.)
| |
Collapse
|
8
|
Firpo MR, Mounce BC. Diverse Functions of Polyamines in Virus Infection. Biomolecules 2020; 10:E628. [PMID: 32325677 PMCID: PMC7226272 DOI: 10.3390/biom10040628] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
As obligate intracellular parasites, viruses rely on host cells for the building blocks of progeny viruses. Metabolites such as amino acids, nucleotides, and lipids are central to viral proteins, genomes, and envelopes, and the availability of these molecules can restrict or promote infection. Polyamines, comprised of putrescine, spermidine, and spermine in mammalian cells, are also critical for virus infection. Polyamines are small, positively charged molecules that function in transcription, translation, and cell cycling. Initial work on the function of polyamines in bacteriophage infection illuminated these molecules as critical to virus infection. In the decades since early virus-polyamine descriptions, work on diverse viruses continues to highlight a role for polyamines in viral processes, including genome packaging and viral enzymatic activity. On the host side, polyamines function in the response to virus infection. Thus, viruses and hosts compete for polyamines, which are a critical resource for both. Pharmacologically targeting polyamines, tipping the balance to favor the host and restrict virus replication, holds significant promise as a broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
9
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
10
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12540-12549. [PMID: 31152136 DOI: 10.1073/pnas.1902010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tip-focused accumulation of reactive oxygen species (ROS) is tightly associated with pollen tube growth and is thus critical for fertilization. However, it is unclear how tip-growing cells establish such specific ROS localization. Polyamines have been proposed to function in tip growth as precursors of the ROS, hydrogen peroxide. The ABC transporter AtABCG28 may regulate ROS status, as it contains multiple cysteine residues, a characteristic of proteins involved in ROS homeostasis. In this study, we found that AtABCG28 was specifically expressed in the mature pollen grains and pollen tubes. AtABCG28 was localized to secretory vesicles inside the pollen tube that moved toward and fused with the plasma membrane of the pollen tube tip. Knocking out AtABCG28 resulted in defective pollen tube growth, failure to localize polyamine and ROS to the growing pollen tube tip, and complete male sterility, whereas ectopic expression of this gene in root hair could recover ROS accumulation at the tip and improved the growth under high-pH conditions, which normally prevent ROS accumulation and tip growth. Together, these data suggest that AtABCG28 is critical for localizing polyamine and ROS at the growing tip. In addition, this function of AtABCG28 is likely to protect the pollen tube from the cytotoxicity of polyamine and contribute to the delivery of polyamine to the growing tip for incorporation into the expanding cell wall.
Collapse
|
12
|
Holshouser S, Dunworth M, Murray-Stewart T, Peterson YK, Burger P, Kirkpatrick J, Chen HH, Casero RA, Woster PM. Dual inhibitors of LSD1 and spermine oxidase. MEDCHEMCOMM 2019; 10:778-790. [PMID: 31191868 DOI: 10.1039/c8md00610e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/06/2019] [Indexed: 01/25/2023]
Abstract
We have previously described the synthesis and evaluation of 3,5-diamino-1,2,4-triazole analogues as inhibitors of the flavin-dependent histone demethylase LSD1. These compounds are potent inhibitors of LSD1 without activity against monoamine oxidases A and B, and promote the elevation of H3K4me2 levels in tumor cells in vitro. We now report that the cytotoxicity of these analogues in pancreatic tumor cells correlates with the overexpression of LSD1 in each tumor type. In addition, we show that a subset of these 3,5-diamino-1,2,4-triazole analogues inhibit a related flavin-dependent oxidase, the polyamine catabolic enzyme spermine oxidase (SMOX) in vitro.
Collapse
Affiliation(s)
- Steven Holshouser
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| | - Matthew Dunworth
- Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins School of Medicine , 1650 Orleans St. Room 551 , Baltimore , MD 21287 , USA
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins School of Medicine , 1650 Orleans St. Room 551 , Baltimore , MD 21287 , USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| | - Pieter Burger
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| | - Joy Kirkpatrick
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| | - Huan-Huan Chen
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins School of Medicine , 1650 Orleans St. Room 551 , Baltimore , MD 21287 , USA
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences , Medical University of South Carolina , 70 President St. , Charleston , SC 29425 , USA .
| |
Collapse
|
13
|
Pichavaram P, Palani CD, Patel C, Xu Z, Shosha E, Fouda AY, Caldwell RB, Narayanan SP. Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration. Front Neurosci 2019; 12:956. [PMID: 30686964 PMCID: PMC6335392 DOI: 10.3389/fnins.2018.00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Dysfunction of retinal neurons is a major cause of vision impairment in blinding diseases that affect children and adults worldwide. Cellular damage resulting from polyamine catabolism has been demonstrated to be a major player in many neurodegenerative conditions. We have previously shown that inhibition of polyamine oxidase (PAO) using MDL 72527 significantly reduced retinal neurodegeneration and cell death signaling pathways in hyperoxia-mediated retinopathy. In the present study, we investigated the impact of PAO inhibition in limiting retinal neurodegeneration in a model of NMDA (N-Methyl-D-aspartate)-induced excitotoxicity. Adult mice (8–10 weeks old) were given intravitreal injections (20 nmoles) of NMDA or NMLA (N-Methyl-L-aspartate, control). Intraperitoneal injection of MDL 72527 (40 mg/kg body weight/day) or vehicle (normal saline) was given 24 h before NMDA or NMLA treatment and continued until the animals were sacrificed (varied from 1 to 7 days). Analyses of retinal ganglion cell (RGC) layer cell survival was performed on retinal flatmounts. Retinal cryostat sections were prepared for immunostaining, TUNEL assay and retinal thickness measurements. Fresh frozen retinal samples were used for Western blotting analysis. A marked decrease in the neuronal survival in the RGC layer was observed in NMDA treated retinas compared to their NMLA treated controls, as studied by NeuN immunostaining of retinal flatmounts. Treatment with MDL 72527 significantly improved survival of NeuN positive cells in the NMDA treated retinas. Excitotoxicity induced neurodegeneration was also demonstrated by reduced levels of synaptophysin and degeneration of inner retinal neurons in NMDA treated retinas compared to controls. TUNEL labeling studies showed increased cell death in the NMDA treated retinas. However, treatment with MDL 72527 markedly reduced these changes. Analysis of signaling pathways during excitotoxic injury revealed the downregulation of pro-survival signaling molecules p-ERK and p-Akt, and the upregulation of a pro-apoptotic molecule BID, which were normalized with PAO inhibition. Our data demonstrate that inhibition of polyamine oxidase blocks NMDA-induced retinal neurodegeneration and promotes cell survival, thus offering a new therapeutic target for retinal neurodegenerative disease conditions.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Chithra Devi Palani
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Chintan Patel
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Zhimin Xu
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Esraa Shosha
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Abdelrahman Y Fouda
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| | - Subhadra Priya Narayanan
- Vision Discovery Institute, Augusta University, Augusta, GA, United States.,College of Allied Health Sciences, Augusta University, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States.,VA Medical Center, Augusta, GA, United States
| |
Collapse
|
14
|
Patel C, Xu Z, Shosha E, Xing J, Lucas R, Caldwell RW, Caldwell RB, Narayanan SP. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1628-39. [PMID: 27239699 PMCID: PMC5091072 DOI: 10.1016/j.bbadis.2016.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
Abstract
Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. New-born C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia.
Collapse
Affiliation(s)
- C Patel
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Occupational Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Z Xu
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| | - E Shosha
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| | - J Xing
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| | - R Lucas
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology & Toxicology, Augusta University, Augusta, GA 30912, USA.
| | - R W Caldwell
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA 30912, USA.
| | - R B Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| | - S P Narayanan
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Occupational Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
15
|
Hayes CS, DeFeo-Mattox K, Woster PM, Gilmour SK. Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites. Amino Acids 2013; 46:543-52. [PMID: 23884694 DOI: 10.1007/s00726-013-1559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022]
Abstract
Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.
Collapse
Affiliation(s)
- Candace S Hayes
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | | | | |
Collapse
|
16
|
Goodwin AC, Shields CED, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, Casero RA. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 2011; 108:15354-9. [PMID: 21876161 PMCID: PMC3174648 DOI: 10.1073/pnas.1010203108] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is estimated that the etiology of 20-30% of epithelial cancers is directly associated with inflammation, although the direct molecular events linking inflammation and carcinogenesis are poorly defined. In the context of gastrointestinal disease, the bacterium enterotoxigenic Bacteroides fragilis (ETBF) is a significant source of chronic inflammation and has been implicated as a risk factor for colorectal cancer. Spermine oxidase (SMO) is a polyamine catabolic enzyme that is highly inducible by inflammatory stimuli resulting in increased reactive oxygen species (ROS) and DNA damage. We now demonstrate that purified B. fragilis toxin (BFT) up-regulates SMO in HT29/c1 and T84 colonic epithelial cells, resulting in SMO-dependent generation of ROS and induction of γ-H2A.x, a marker of DNA damage. Further, ETBF-induced colitis in C57BL/6 mice is associated with increased SMO expression and treatment of mice with an inhibitor of polyamine catabolism, N(1),N(4)-bis(2,3-butandienyl)-1,4-butanediamine (MDL 72527), significantly reduces ETBF-induced chronic inflammation and proliferation. Most importantly, in the multiple intestinal neoplasia (Min) mouse model, treatment with MDL 72527 reduces ETBF-induced colon tumorigenesis by 69% (P < 0.001). The results of these studies indicate that SMO is a source of bacteria-induced ROS directly associated with tumorigenesis and could serve as a unique target for chemoprevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shervin Rabizadeh
- Pediatrics and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231; and
| | - Patrick M. Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical Univeristy of South Carolina, Charleston, SC 29425
| | | | | |
Collapse
|
17
|
Hayes CS, Defeo K, Dang H, Trempus CS, Morris RJ, Gilmour SK. A prolonged and exaggerated wound response with elevated ODC activity mimics early tumor development. Carcinogenesis 2011; 32:1340-8. [PMID: 21730362 DOI: 10.1093/carcin/bgr129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Induction of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, in ODC transgenic skin stimulates epidermal proliferation but not hyperplasia, activates underlying stromal cells and promotes skin tumorigenesis following a single subthreshold dose of a carcinogen. Because chronic wounds are a well-recognized risk factor for skin cancer, we investigated the response to a tissue remodeling event in normal skin that is abraded to remove only the epidermal layer in K6/ODC transgenic (follicular ODC expression) and in inducible ODCER transgenic mice (suprabasal ODC expression). When regenerative epidermal hyperplasia was resolved in normal littermates following abrasion, ODC transgenic mice exhibited progressive epidermal hyperplasia with formation of benign tumor growths and maintained an increased epidermal proliferation index and activation of translation-associated proteins at abrasion sites. The epidermal hyperplasia and tumor-like growth was accompanied by activation of underlying stromal cells and prolonged infiltration of inflammatory cells. Treatment with the anti-inflammatory agent dexamethasone did not reduce the high proliferative index in the regenerated epidermis but dramatically reduced the epidermal hyperplasia and prevented the wound-induced tumor growths in abraded ODCER skin. Treatment with α-difluoromethylornithine, a specific inhibitor of ODC activity, normalized the wound response in transgenic mice and decreased wound-induced inflammation if administered from the time of abrasion but not if initiated 4 days following abrasion. These results suggest a role for polyamines in prolonging wound-associated inflammation in addition to stimulating proliferation both of which are sufficient to sustain epidermal hyperplasia and benign tumor growth even in the absence of genetic damage.
Collapse
Affiliation(s)
- Candace S Hayes
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | | | | | | | | | | |
Collapse
|
18
|
Takao K, Sugita Y, Shirahata A. Assay of N1-Acetylpolyamine Oxidase Activity with N1,N11-Didansylnorspermine as the Substrate by Ion-Pair Reversed Phase High Performance Liquid Chromatography. Biol Pharm Bull 2010; 33:1089-94. [DOI: 10.1248/bpb.33.1089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Koichi Takao
- Laboratory of Cellular Physiology, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Yoshiaki Sugita
- Laboratory of Cellular Physiology, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| | - Akira Shirahata
- Laboratory of Cellular Physiology, Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
19
|
Abstract
In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.
| | | |
Collapse
|
20
|
Bakke M, Shimoji K, Kajiyama N. N1,N12-diacetylspermine oxidase from Debaryomyces hansenii T-42: purification, characterization, molecular cloning and gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:1395-401. [PMID: 17905672 DOI: 10.1016/j.bbapap.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 11/16/2022]
Abstract
An FAD-dependent N(1),N(12)-diacetylspermine oxidase (DASpmOX), which seems suitable for enzymatic determination of the tumor marker N(1),N(12)-diacetylspermine (DASpm), was isolated from Debaryomyces hansenii T-42. DASpmOX exhibited the most excellent specificity toward DASpm among all polyamine oxidases found to date, and the specificity for DASpm could be raised by adjusting the pH of the buffer and adding TritonX-100. In potassium phosphate (pH 7.0) with 0.3% TritonX-100, this enzyme did not have any detectable activity toward free polyamines, and the reaction rate of N(1),N(8)-diacetylspermidine, N(1)-acetylspermine, N(1)-acetylspermidine, and N(8)-acetylspermidine was only 19%, 7.8%, 7.8%, and 1.0% of that of DASpm, respectively. The gene encoding DASpmOX was cloned and expressed in Escherichia coli. The apparent k(cat) and K(m) values of recombinant enzyme for DASpm were found to be 158 s(-1) and 3.1 x 10(-4) M under the conditions described above, respectively.
Collapse
Affiliation(s)
- Mikio Bakke
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda City, Chiba 278-0037, Japan.
| | | | | |
Collapse
|
21
|
Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M. Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 2007; 292:C1204-15. [PMID: 17065202 DOI: 10.1152/ajpcell.00451.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia-reperfusion injury (IRI). Increased expression of SSAT in vitro leads to alterations in cellular polyamine content, depletion of cofactors and precursors of polyamine synthesis, and reduced cell proliferation. In our model system, a >28-fold increase in SSAT levels in HEK-293 cells leads to depletion of polyamines and elevation in the enzymatic activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, suggestive of a compensatory reaction to increased polyamine catabolism. Increased expression of SSAT also led to DNA damage and G2 arrest. The increased DNA damage was primarily due to the depletion of polyamines. Other factors such as increased production of H2O2 due to polyamine oxidase activity may play a secondary role in the induction of DNA lesions. In response to DNA damage the ATM/ATR → Chk1/2 DNA repair and cell cycle checkpoint pathways were activated, mediating the G2 arrest in SSAT-expressing cells. In addition, the activation of ERK1 and ERK2, which play integral roles in the G2/M transition, is impaired in cells expressing SSAT. These results indicate that the disruption of polyamine homeostasis due to enhanced SSAT activity leads to DNA damage and reduced cell proliferation via activation of DNA repair and cell cycle checkpoint and disruption of Raf → MEK → ERK pathways. We propose that in kidneys subjected to IRI, one mechanism through which increased expression of SSAT may cause cellular injury and organ damage is through induction of DNA damage and the disruption of cell cycle.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Agostinelli E, Palmigiani P, Vedova LD, Tempera G, Belli F, Seiler N. Interaction of bovine serum amine oxidase with the polyamine oxidase inactivator MDL 72527. Biochem Biophys Res Commun 2006; 340:840-4. [PMID: 16380084 DOI: 10.1016/j.bbrc.2005.12.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/03/2005] [Indexed: 11/26/2022]
Abstract
MDL 72527 was considered a selective inhibitor of FAD-dependent polyamine oxidases. In the present communication, we demonstrate that MDL 72527 inactivates bovine serum amine oxidase, a copper-containing, TPQ-enzyme, time-dependently at 25 degrees C. In striking contrast, the enzyme remained active after incubation with excessive MDL 72527 at 37 degrees C, even after 70 h of incubation. Inactivation of BSAO with MDL 72527 at 25 degrees C did not involve the cofactor, as was shown by spectroscopy and by reaction with phenylhydrazine. Docking of MDL 72527 is difficult, owing to its size and two lipophilic moieties, and it has been shown that minor changes in reaction rate of substrates cause major changes in K(m) and k(cat)/K(m). We hypothesise that subtle conformational changes between 25 and 37 degrees C impair MDL 72527 from productive binding and prevent the nucleophilic group from reacting with the double bond system.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza and CNR, Biology Institute, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
HPLC of Biogenic Amines as 6-Aminoquinolyl-N-hydroxysuccinimidyl Derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0301-4770(05)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
24
|
Bellelli A, Cavallo S, Nicolini L, Cervelli M, Bianchi M, Mariottini P, Zelli M, Federico R. Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N,N1-bis(2,3-butadienyl)-1,4-butanediamine. Biochem Biophys Res Commun 2004; 322:1-8. [PMID: 15313165 DOI: 10.1016/j.bbrc.2004.07.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 11/18/2022]
Abstract
Spermine oxidase (SMO) is a recently described flavoenzyme belonging to the class of polyamine oxidases (PAOs) and participating in the polyamine metabolism in animal cells. In this paper we describe the expression, purification, and characterization of the catalytic properties of a recombinant mouse SMO (mSMO). The purified enzyme has absorbance peaks at 457nm (epsilon=11mM(-1)cm(-1)) and 378nm, shows a molecular mass of approximately 63kDa, and has K(m) and k(cat) values of 170microM and 4.8s(-1), using spermine as substrate; it is unable to oxidize other free or acetylated polyamines. The mechanism-based PAO inhibitor N,N(1)-bis(2,3-butadienyl)-1,4-butanediamine (MDL72,527) acts as a competitive inhibitor of mSMO, with an apparent dissociation constant K(i)=63microM. If incubated for longer times, MDL72,527 yields irreversible inhibition of the enzyme with a half-life of 15min at 100microM MDL72,527. The mMSO catalytic mechanism, investigated by stopped flow, is consistent with a simple four-step kinetic scheme.
Collapse
Affiliation(s)
- Andrea Bellelli
- Dipartimento di Scienze Biochimiche Alessandro Rossi Fanelli, Università di Roma La Sapienza and Istituto di Biologia e Patologia Molecolari del CNR, I-00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|