1
|
Padhy I, Sharma T, Banerjee B, Mohapatra S, Sahoo CR, Padhy RN. Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development. Daru 2024; 32:907-924. [PMID: 39276204 PMCID: PMC11554982 DOI: 10.1007/s40199-024-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Obesity has emerged as a major health challenge globally in the last two decades. Dysregulated fatty acid metabolism and de novo lipogenesis are prime causes for obesity development which ultimately trigger other co-morbid pathological conditions thereby risking life longevity. Fatty acid metabolism and de novo lipogenesis involve several biochemical steps both in cytosol and mitochondria. Reportedly, the high catalytically active mitochondrial carbonic anhydrases (CAVA/CAVB) regulate the intercellular depot of bicarbonate ions and catalyze the rapid carboxylation of pyruvate and acetyl-co-A to acetyl-co-A and malonate respectively, which are the precursors of fatty acid synthesis and lipogenesis. Several in vitro and in vivo investigations indicate inhibition of mitochondrial carbonic anhydrase isoforms interfere in the functioning of pyruvate, fatty acid and succinate pathways. Targeting of mitochondrial carbonic anhydrase isoforms (CAVA/CAVB) could thereby modulate gluconeogenetic as well as lipogenetic pathways and pave way for designing of novel leads in the development pipeline of anti-obesity medications. METHODS The present review unveils a diverse chemical space including synthetic sulphonamides, sulphamates, sulfamides and many natural bioactive molecules which selectively inhibit the mitochondrial isoform CAVA/CAVB with an emphasis on major state-of-art drug design strategies. RESULTS More than 60% similarity in the structural framework of the carbonic anhydrase isoforms has converged the drug design methods towards the development of isoform selective chemotypes. While the benzene sulphonamide derivatives selectively inhibit CAVA/CAVB in low nanomolar ranges depending on the substitutions on the phenyl ring, the sulpamates and sulpamides potently inhibit CAVB. The virtual screening and drug repurposing methods have also explored many non-sulphonamide chemical scaffolds which can potently inhibit CAVA. CONCLUSION The review could pave way for the development of novel and effective anti-obesity drugs which can modulate the energy metabolism.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
- School of Pharmaceutical Sciences and Research, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai, Maharashtra, 410221, India.
| | - Biswajit Banerjee
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Chita R Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, India
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
2
|
Xiao-Qun Z, Xian-Li M, Ariffin NS. The potential of carbonic anhydrase enzymes as a novel target for anti-cancer treatment. Eur J Pharmacol 2024; 976:176677. [PMID: 38825301 DOI: 10.1016/j.ejphar.2024.176677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Carbonic anhydrase (CA) is a zinc-dependent metal enzyme that maintains the pH and carbon dioxide (CO2) homeostasis in cells by catalyzing the reversible hydration and dehydration of CO2 and bicarbonate (HCO3-). In mammals, there are 16 isozymes of CA existed, namely CAI to CAXIV, but only 15 isozymes are found in humans except CAXV. Human CAs have highly conserved catalytic domains, all of which are distributed in different tissues and play important physiological roles. Changes in their functions may disrupt the typical distribution of CAs throughout human body and therefore CAs can be used as diagnostic biomarkers for many diseases. Furthermore, the expression of CAs is correlated to the progression of numerous tumors, therapeutic sensitivity and patient prognosis. In this review, we discuss thoroughly the structure of CAs, their functional activities in human physiology, dysregulations and diseases related to CAs, and different types of CA inhibitors that can reverse their dysregulation.
Collapse
Affiliation(s)
- Zhou Xiao-Qun
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300, Bandar Puncak Alam, Selangor, Malaysia; Guilin Medical University, GuiLin, China
| | | | - Nur Syamimi Ariffin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300, Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
3
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
4
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Tomar JS, Shen J. Characterization of Carbonic Anhydrase In Vivo Using Magnetic Resonance Spectroscopy. Int J Mol Sci 2020; 21:E2442. [PMID: 32244610 PMCID: PMC7178054 DOI: 10.3390/ijms21072442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible interconversion of CO2/HCO3-. Equilibrium of these species is maintained by the action of carbonic anhydrase. Recent advances in magnetic resonance spectroscopy have allowed, for the first time, in vivo characterization of carbonic anhydrase in the human brain. In this article, we review the theories and techniques of in vivo 13C magnetization (saturation) transfer magnetic resonance spectroscopy as they are applied to measuring the rate of exchange between CO2 and HCO3- catalyzed by carbonic anhydrase. Inhibitors of carbonic anhydrase have a wide range of therapeutic applications. Role of carbonic anhydrases and their inhibitors in many diseases are also reviewed to illustrate future applications of in vivo carbonic anhydrase assessment by magnetic resonance spectroscopy.
Collapse
Affiliation(s)
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Occhipinti R, Boron WF. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int J Mol Sci 2019; 20:E3841. [PMID: 31390837 PMCID: PMC6695913 DOI: 10.3390/ijms20153841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Sumi KR, Kim SC, Howlader J, Lee WK, Choi KS, Kim HT, Park JI, Nou IS, Kho KH. Molecular Cloning and Characterization of Carbonic Anhydrase XII from Pufferfish (Takifugu rubripes). Int J Mol Sci 2018. [PMID: 29534037 PMCID: PMC5877703 DOI: 10.3390/ijms19030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this study, an 1888-bp carbonic anhydrase XII (CA XII) sequence was cloned from the brain of the pufferfish, Takifugu rubripes. The cloned sequence contained a coding region of 1470-bp, which was predicted to translate into a protein of 490 amino acid residues. The predicted protein showed between 68–56% identity with the large yellow croaker (Larimichthys crocea), tilapia (Oreochromis niloticus), and Asian arowana (Scleropages formosus) CA XII proteins. It also exhibited 36% and 53% identity with human CA II and CA XII, respectively. The cloned sequence contained a 22 amino acid NH2-terminal signal sequence and three Asn-Xaa-Ser/Thr sequons, among which one was potentially glycosylated. Four cysteine residues were also identified (Cys-21, Cys-201, Cys-355, and Cys-358), two of which (Cys-21 and Cys-201) could potentially form a disulfide bond. A 22-amino acid COOH-terminal cytoplasmic tail containing a potential site for phosphorylation by protein kinase A was also found. The cloned sequence might be a transmembrane protein, as predicted from in silico and phylogenetic analyses. The active site analysis of the predicted protein showed that its active site residues were highly conserved with tilapia CA XII protein. Homology modeling of the pufferfish CA XII was done using the crystal structure of the extracellular domain of human carbonic anhydrase XII at 1.55 Å resolution as a template. Semi-quantitative reverse transcription (RT)-PCR, quantitative PCR (q-PCR), and in situ hybridization confirmed that pufferfish CA XII is highly expressed in the brain.
Collapse
Affiliation(s)
- Kanij Rukshana Sumi
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50, Daehak-ro, Yeosu, Jeonnam 59626, Korea.
| | - Soo Cheol Kim
- Department of Biomedical and Electronic Engineering, College of Engineering, Chonnam National University, Yeosu, Jeonnam 59626, Korea.
| | - Jewel Howlader
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea.
| | - Won Kyo Lee
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50, Daehak-ro, Yeosu, Jeonnam 59626, Korea.
| | - Kap Seong Choi
- Department of Food Science, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea.
| | - Hoy-Taek Kim
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea.
| | - Jong-In Park
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea.
| | - Ill-Sup Nou
- Department of Horticulture, College of Life Science and Natural Resources, Sunchon National University, 255, Jungang-ro, Suncheon-Si, Jeollanam-do 57922, Korea.
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50, Daehak-ro, Yeosu, Jeonnam 59626, Korea.
| |
Collapse
|
8
|
Caglar S, Aydemir IE, Cankaya M, Kuzucu M, Temel E, Buyukgungor O. Four diclofenac complexes with cobalt(II) and nickel(II) ions: synthesis, spectroscopic properties, thermal decompositions, crystal structures, and carbonic anhydrase activities. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.903327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sema Caglar
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Ismihan E. Aydemir
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Murat Cankaya
- Faculty of Arts and Sciences, Department of Biology, Erzincan University, Erzincan, Turkey
| | - Mehmet Kuzucu
- Faculty of Arts and Sciences, Department of Biology, Erzincan University, Erzincan, Turkey
| | - Ersin Temel
- Faculty of Arts and Sciences, Department of Physics, Ondokuz Mayis University, Samsun, Turkey
| | - Orhan Buyukgungor
- Faculty of Arts and Sciences, Department of Physics, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
9
|
Waheed A, Sly WS. Membrane associated carbonic anhydrase IV (CA IV): a personal and historical perspective. Subcell Biochem 2014; 75:157-79. [PMID: 24146379 DOI: 10.1007/978-94-007-7359-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carbonic anhydrase IV is one of 12 active human isozymes and one of four expressed on the extracellular surfaces of certain endothelial and epithelial cells. It is unique in being attached to the plasma membrane by a glycosyl-phosphatiydyl-inositol (GPI) anchor rather than by a membrane-spanning domain. It is also uniquely resistant to high concentrations of sodium dodecyl sulfate (SDS), which allows purification from tissues by inhibitor affinity chromatography without contamination by other isozymes. This unique resistance to SDS and recovery following denaturation is explained by the two disulfide bonds. The 35-kDa human CA IV is a "high activity" isozyme in CO2 hydration activity, like CA II, and has higher activity than other isozymes in catalyzing the dehydration of HCO3 (-). Human CA IV is also unique in that it contains no oligosaccharide chains, where all other mammalian CA IVs are glycoproteins with one to several oligosaccharide side chains.Although CA IV has been shown to be active in mediating CO2 and HCO3 (-) transport in many important tissues like kidney and lung, and in isolated cells from brain and muscle, the gene for CA IV appears not to be essential. The CA IV knockout mouse produced by targeted mutagenesis, though slightly smaller and produced in lower than expected numbers, is viable and has no obvious mutant phenotype. Conversely, several dominant negative mutations in humans are associated with one form of reitinitis pigmentosa (RP-17), which we attribute to unfolded protein accumulation in the choreocapillaris, leading to apoptosis of cells in the overlying retina.
Collapse
Affiliation(s)
- Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, St. Louis, MO, USA,
| | | |
Collapse
|
10
|
Hsieh M, Chang WH, Hsu CF, Nishimori I, Kuo CL, Minakuchi T. Altered expression of carbonic anhydrase-related protein XI in neuronal cells expressing mutant ataxin-3. THE CEREBELLUM 2013. [PMID: 23184527 DOI: 10.1007/s12311-012-0430-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a late-onset neurodegenerative disorder caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. Microarray analysis revealed a dramatic differential expression of carbonic anhydrase-related protein XI (CA-RPXI/CA11) in the presence or absence of mutant ataxin-3. Therefore, we examined the expression and distribution of all three CA-RPs (CA8, 10, and 11) in human neuronal cells that stably express mutant ataxin-3. Compared with the cells containing normal ataxin-3, protein expression of CA8 and CA11 is significantly increased in human neuroblastoma cells harboring mutant ataxin-3. Semi-quantitative RT-PCR demonstrated that all three CA-RPs exhibited significantly higher transcript levels in neuronal cells expressing mutant ataxin-3. Interestingly, CA11 is distributed not only in the cytoplasm but also within the nuclei of the stably transfected mutant cells when compared with the sole cytoplasmic distribution in cells containing normal ataxin-3. In addition, results from transient transfection assays in SK-N-SH and Neuro2a (N2a) cells also confirmed the nuclear localization of CA11 in the presence of truncated ataxin-3. Most importantly, immunohistochemical staining of the MJD transgenic mouse and post-mortem MJD human brain also revealed that CA11 is highly expressed in both cytoplasm and nuclei of the brain cells. Recruitment of CA11 into nuclear inclusions containing mutant ataxin-3 revealed a possible correlation between CA11 and disease progression. Although the exact function of CA-RPs is still undefined in the central nervous system, our findings suggest that CA-RPs, especially CA11, may play specific roles in the pathogenesis of Machado-Joseph disease.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, No.1727 Sec.4 Taiwan Boulevard, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
11
|
Carbonic anhydrase-related protein XI: structure of the gene in the greater false vampire bat (Megaderma lyra) compared with human and domestic pig. Biochem Genet 2013; 51:474-81. [PMID: 23417223 DOI: 10.1007/s10528-013-9578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Carbonic anhydrase-related protein XI (CA-RP XI) is a member of the α-carbonic anhydrase family (encoded by the gene CA-11), which has lost features of the active site required for enzymatic activity. Using PCR, we amplified CA-11 from genomic DNA of the bat Megaderma lyra. To elucidate the gene structure, we sequenced PCR products and compared their sequences with genomic and mRNA sequences known from human and domestic pig. We identified and sequenced eight introns in the bat CA-11. Five introns (introns 3-7) are located in identical or similar positions in other members of the vertebrate α-carbonic anhydrase gene family. Two 5' introns and one 3' intron are located in the regions of little or no sequence similarity with other members of the gene family. The low sequence similarity and additional introns suggest a separate evolutionary origin for the 5' and 3' portions of the CA-RP XI gene.
Collapse
|
12
|
Lionetto MG, Caricato R, Giordano ME, Erroi E, Schettino T. Carbonic anhydrase as pollution biomarker: an ancient enzyme with a new use. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:3965-77. [PMID: 23202827 PMCID: PMC3524608 DOI: 10.3390/ijerph9113965] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/12/2012] [Accepted: 10/26/2012] [Indexed: 02/02/2023]
Abstract
The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers) in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO(2) and HCO(3)(-). In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via prov.le Lecce-Monteroni, Lecce 73100, Italy.
| | | | | | | | | |
Collapse
|
13
|
Santovito G, Marino SM, Sattin G, Cappellini R, Bubacco L, Beltramini M. Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biol 2012. [DOI: 10.1007/s00300-012-1200-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Aspatwar A, Tolvanen ME, Parkkila S. Phylogeny and expression of carbonic anhydrase-related proteins. BMC Mol Biol 2010; 11:25. [PMID: 20356370 PMCID: PMC2873310 DOI: 10.1186/1471-2199-11-25] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/31/2010] [Indexed: 12/20/2022] Open
Abstract
Background Carbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR. Results We collected 84 sequences, of which 22 came from novel or improved gene models which we created from genome data. The distribution of CARP VIII covers vertebrates and deuterostomes, and CARP X appears to be universal in the animal kingdom. CA10-like genes have had a separate history of duplications in the tetrapod and fish lineages. Our phylogenetic analysis showed that duplication of CA10 into CA11 has occurred only in tetrapods (found in mammals, frogs, and lizards), whereas an independent duplication of CA10 was found in fishes. We suggest the name CA10b for the second fish isoform. Immunohistochemical analysis showed a high expression level of CARP VIII in the mouse cerebellum, cerebrum, and also moderate expression in the lung, liver, salivary gland, and stomach. These results also demonstrated low expression in the colon, kidney, and Langerhans islets. CARP X was moderately expressed in the cerebral capillaries and the lung and very weakly in the stomach and heart. Positive signals for CARP XI were observed in the cerebellum, cerebrum, liver, stomach, small intestine, colon, kidney, and testis. In addition, the results of real-time quantitative PCR confirmed a wide distribution for the Car8 and Car11 mRNAs, whereas the expression of the Car10 mRNA was restricted to the frontal cortex, parietal cortex, cerebellum, midbrain, and eye. Conclusions CARP sequences have been strongly conserved between different species, and all three CARPs show high expression in the mouse brain and CARP VIII is also expressed in several other tissues. These findings suggest an important functional role for these proteins in mammals.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Bioinformatics Group, Institute of Medical Technology, 33014 University of Tampere, Tampere, Finland.
| | | | | |
Collapse
|
15
|
Gilmour KM, Thomas K, Esbaugh AJ, Perry SF. Carbonic anhydrase expression and CO2 excretion during early development in zebrafish Danio rerio. ACTA ACUST UNITED AC 2010; 212:3837-45. [PMID: 19915126 DOI: 10.1242/jeb.034116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carbonic anhydrase (CA) is critical for CO2 excretion in adult fish, but little is known of the expression or function of CA during early development. The present study examined the hypothesis that, as rates of CO2 production increased during early development in zebrafish (Danio rerio), CA would become necessary for effective CO2 excretion, and that the pattern of CA expression during early development would reflect this transition. Real-time RT-PCR was used to examine the mRNA expression of the two main intracellular CA isoforms over a time course of early development ranging from 0 to 120 h post fertilization (h.p.f.). The mRNA expression of zCAb was generally higher than that of zCAc, particularly during the earliest stages of development. Rates of CO2 excretion increased approximately 15-fold from 24 to 48 h.p.f. whereas rates of O2 uptake increased only 6.7-fold over the same period, indicating a relative stimulation of CO2 excretion over O2 uptake. Treatment of 48 h.p.f. larvae with the CA inhibitor acetazolamide resulted in CO2 excretion rates that were 52% of the value in control larvae, a significant difference that occurred in the absence of any effect on O2 uptake. Antisense morpholino oligonucleotides were used to selectively knock down one or both of the main intracellular CA isoforms. Subsequent measurement of gas transfer rates at 48 h.p.f. indicated that CA knockdown caused a significant relative inhibition of CO2 excretion over O2 uptake, regardless of which cytosolic CA isoform was targeted for knockdown. These results suggest that between 24 h.p.f. and 48 h.p.f., developing zebrafish begin to rely on CA to meet requirements for increased CO2 excretion.
Collapse
Affiliation(s)
- K M Gilmour
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
16
|
Linser PJ, Smith KE, Seron TJ, Neira Oviedo M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. ACTA ACUST UNITED AC 2009; 212:1662-71. [PMID: 19448076 DOI: 10.1242/jeb.028084] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mosquito larvae use a digestive strategy that is relatively rare in nature. The anterior half of the larval mosquito midgut has a luminal pH that ranges between 10.5 and 11.5. Most other organisms, both large and small, initiate digestion in an acid medium. The relative uniqueness of the highly alkaline digestive strategy has been a long-standing research focus in larval lepidopterans. More recently, the disease vector potential of mosquitoes has fueled specific interest in larval mosquito biology and the alkaline digestive environment in the midgut. The probable principle anion influencing the highly alkaline gut lumen is bicarbonate/carbonate. Bicarbonate/carbonate is regulated at least in part by the activity of carbonic anhydrases. Hence, we have focused attention on the carbonic anhydrases of the mosquito larva. Anopheles gambiae, the major malaria mosquito of Africa, is an organism with a published genome which has facilitated molecular analyses of the 12 carbonic anhydrase genes annotated for this mosquito. Microarray expression analyses, tissue-specific quantitative RT-PCR, and antibody localization have been used to generate a picture of carbonic anhydrase distribution in the larval mosquito. Cytoplasmic, GPI-linked extracellular membrane-bound and soluble extracellular carbonic anhydrases have been located in the midgut and hindgut. The distribution of the enzymes is consistent with an anion regulatory system in which carbonic anhydrases provide a continuous source of bicarbonate/carbonate from the intracellular compartments of certain epithelial cells to the ectoperitrophic space between the epithelial cells and the acellular membrane separating the food bolus from the gut cells and finally into the gut lumen. Carbonic anhydrase in specialized cells of the hindgut (rectum) probably plays a final role in excretion of bicarbonate/carbonate into the aquatic environment of the larva. Detection and characterization of classic anion exchangers of the SLC4A family in the midgut has been problematic. The distribution of carbonic anhydrases in the system may obviate the requirement for such transporters, making the system more dependent on simple carbon dioxide diffusion and ionization via the activity of the enzyme.
Collapse
Affiliation(s)
- Paul J Linser
- The University of Florida Whitney Laboratory, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
17
|
Picaud SS, Muniz JRC, Kramm A, Pilka ES, Kochan G, Oppermann U, Yue WW. Crystal structure of human carbonic anhydrase-related protein VIII reveals the basis for catalytic silencing. Proteins 2009; 76:507-11. [DOI: 10.1002/prot.22411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Abstract
SUMMARY
Carbonic anhydrase (CA) is the zinc metalloenzyme that catalyses the reversible reactions of CO2 with water. CA plays a crucial role in systemic acid–base regulation in fish by providing acid–base equivalents for exchange with the environment. Unlike air-breathing vertebrates, which frequently utilize alterations of breathing (respiratory compensation) to regulate acid–base status, acid–base balance in fish relies almost entirely upon the direct exchange of acid–base equivalents with the environment (metabolic compensation). The gill is the critical site of metabolic compensation, with the kidney playing a supporting role. At the gill, cytosolic CA catalyses the hydration of CO2 to H+ and HCO3– for export to the water. In the kidney, cytosolic and membrane-bound CA isoforms have been implicated in HCO3– reabsorption and urine acidification. In this review, the CA isoforms that have been identified to date in fish will be discussed together with their tissue localizations and roles in systemic acid–base regulation.
Collapse
Affiliation(s)
- K. M. Gilmour
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| | - S. F. Perry
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Jan TA, Lu L, Li CX, Williams RW, Waters RS. Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice. BMC Neurosci 2008; 9:3. [PMID: 18179704 PMCID: PMC2254631 DOI: 10.1186/1471-2202-9-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 01/07/2008] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Quantitative trait locus (QTL) mapping is an important tool for identifying potential candidate genes linked to complex traits. QTL mapping has been used to identify genes associated with cytoarchitecture, cell number, brain size, and brain volume. Previously, QTL mapping was utilized to examine variation of barrel field size in the somatosensory cortex in a limited number of recombinant inbred (RI) strains of mice. In order to further elucidate the underlying natural variation in mouse primary somatosensory cortex, we measured the size of the posterior medial barrel subfield (PMBSF), associated with the representation of the large mystacial vibrissae, in an expanded sample set that included 42 BXD RI strains, two parental strains (C57BL/6J and DBA/2J), and one F1 strain (B6D2F1). Cytochrome oxidase labeling was used to visualize barrels within the PMBSF. RESULTS We observed a 33% difference between the largest and smallest BXD RI strains with continuous variation in-between. Using QTL linkage analysis from WebQTL, we generated linkage maps of raw total PMBSF and brain weight adjusted total PMBSF areas. After removing the effects of brain weight, we detected a suggestive QTL (likelihood ratio statistic [LRS]: 14.20) on the proximal arm of chromosome 4. Candidate genes under the suggestive QTL peak for PMBSF area were selected based on the number of single nucleotide polymorphisms (SNPs) present and the biological relevance of each gene. Among the candidate genes are Car8 and Rab2. More importantly, mRNA expression profiles obtained using GeneNetwork indicated a strong correlation between total PMBSF area and two genes (Adcy1 and Gap43) known to be important in mouse cortex development. GAP43 has been shown to be critical during neurodevelopment of the somatosensory cortex, while knockout Adcy1 mice have disrupted barrel field patterns. CONCLUSION We detected a novel suggestive QTL on chromosome 4 that is linked to PMBSF size. The present study is an important step towards identifying genes underlying the size and possible development of cortical structures.
Collapse
Affiliation(s)
- Taha A Jan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
20
|
Smith KE, VanEkeris LA, Linser PJ. Cloning and characterization of AgCA9, a novel α-carbonic anhydrase from Anopheles gambiae Giles sensu stricto (Diptera:Culicidae) larvae. J Exp Biol 2007; 210:3919-30. [DOI: 10.1242/jeb.008342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Mosquito larvae generate a luminal pH as high as 10.5 in the anterior region of their midgut. The mechanisms responsible for the generation and maintenance of this alkaline pH are largely unknown, but there is evidence suggesting a role for the enzyme carbonic anhydrase (CA). CA has been cloned from the alimentary canal epithelium of Anopheles gambiae larvae and can generate bicarbonate, which is implicated as a buffer for the larval lumen. The question remains as to how the bicarbonate is transported from the cells into the lumen. We hypothesize the presence of a CA within the lumen itself to generate bicarbonate from CO2 produced by the metabolically active alimentary canal cells. Here, we report the cloning and characterization of a novel cytoplasmic-type α-CA from the larval An. gambiae alimentary canal. Antibody immunolocalization reveals a unique protein distribution pattern that includes the ectoperitrophic fluid,`transitional region' of the alimentary canal, Malpighian tubules and a subset of cells in the dorsal anterior region of the rectum. Localization of this CA within the lumen of the alimentary canal may be a key to larval pH regulation,while detection within the rectum reveals a novel subset of cells in An. gambiae not described to date. Phylogenetic analysis of members of theα-CA family from the Homo sapiens, Drosophila melanogaster, Aedes aegypti and An. gambiae genomes shows a clustering of the novel CA with Homo sapiens CAs but not with other insect CAs. Finally, a universal system for naming newly cloned An. gambiae CAs is suggested.
Collapse
Affiliation(s)
- Kristin E. Smith
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| | - Leslie A. VanEkeris
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| | - Paul J. Linser
- The Whitney Laboratory for Marine Biology, University of Florida,9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| |
Collapse
|
21
|
Marino S, Hayakawa K, Hatada K, Benfatto M, Rizzello A, Maffia M, Bubacco L. Structural features that govern enzymatic activity in carbonic anhydrase from a low-temperature adapted fish, Chionodraco hamatus. Biophys J 2007; 93:2781-90. [PMID: 17573429 PMCID: PMC1989726 DOI: 10.1529/biophysj.107.107540] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022] Open
Abstract
The carbonic anhydrase (CA) family of zinc metalloenzymes includes many known isozymes that have different subcellular distributions. The study described here focuses on identification of the structural features that define low-temperature adaptation in a Chionodraco hamatus protein, both for the reaction center, at an atomic level, and for the tertiary structure of the protein. To this aim, an x-ray absorption near-edge spectroscopy/Minuit x-ray absorption near-edge spectroscopy analysis of the reaction center was undertaken for both a structurally characterized human CAII and CA of C. hamatus. Higher structural levels were analyzed by sequence comparison and homology modeling. To establish whether the structural insights acquired in fish CAs are general, theoretical models were generated by homology modeling for three temperate-climate-adapted fish CAs. The measured structural differences between the two proteins are discussed in terms of the differences in the electrostatic potential between human CAII and CA of C. hamatus. We conclude that modulation of the interaction between the catalytic water molecule and the zinc ion could depend on the effect of the electrostatic potential distribution.
Collapse
Affiliation(s)
- Stefano Marino
- Department of Biology, University of Padova, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Pan P, Leppilampi M, Pastorekova S, Pastorek J, Waheed A, Sly WS, Parkkila S. Carbonic anhydrase gene expression in CA II-deficient (Car2-/-) and CA IX-deficient (Car9-/-) mice. J Physiol 2006; 571:319-27. [PMID: 16396925 PMCID: PMC1796798 DOI: 10.1113/jphysiol.2005.102590] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Using real-time PCR and immunohistochemistry, we have examined the expression of carbonic anhydrase isozymes (CA) I, II, III, IV, IX, XII, XIII and XIV in the brain, kidney, stomach and colon of the wild-type, CA II-deficient (Car2-/-), and CA IX deficient (Car9-/-) mice. The expression of Car4, Car12, Car13 and Car14 mRNAs did not show any significant deviations between the three groups of mice, whereas both groups of CA deficient mice showed decreased expression levels of Car1 in the colon and Car3 in the kidney. The Car2 mRNA level was greatly reduced but not completely abolished in all four tissues from the Car2-/- mice in which no CA II protein was expressed. Sequencing the Car2 cDNA isolated from C57BL6 Car2-/- mice revealed two nucleotide differences from the wild-type C57BL6 mice. One is a silent polymorphism found in Car2 mRNA from wild-type DBA mice, which is the strain that provided the original mutagenized chromosome. The second change is a mutation that causes prematurely terminated translation at codon 155 (Gln155X). Car9 mRNA and CA IX protein expression levels were up-regulated about 2.5- and 3.6-fold, respectively, in the stomach of the Car2-/- mice. These results suggest that the loss of function of cytosolic CA II in the stomach of Car2-/- mice leads to up-regulation of an extracellular CA, namely CA IX, which is expressed on the cell surface of the gastric epithelium.
Collapse
Affiliation(s)
- Peiwen Pan
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Proescholdt MA, Mayer C, Kubitza M, Schubert T, Liao SY, Stanbridge EJ, Ivanov S, Oldfield EH, Brawanski A, Merrill MJ. Expression of hypoxia-inducible carbonic anhydrases in brain tumors. Neuro Oncol 2005; 7:465-75. [PMID: 16212811 PMCID: PMC1871734 DOI: 10.1215/s1152851705000025] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel-Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1alpha staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marsha J. Merrill
- Send correspondence to Marsha Merrill, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg. 10, Rm. 5D37, 10 Center Drive, Bethesda, MD 20892-1414, USA (
)
| |
Collapse
|
24
|
Esbaugh AJ, Perry SF, Bayaa M, Georgalis T, Nickerson J, Tufts BL, Gilmour KM. Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution. ACTA ACUST UNITED AC 2005; 208:1951-61. [PMID: 15879075 DOI: 10.1242/jeb.01551] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well established that the gills of teleost fish contain substantial levels of cytoplasmic carbonic anhydrase (CA), but it is unclear which CA isozyme(s) might be responsible for this activity. The objective of the current study was to determine if branchial CA activity in rainbow trout was the result of a general cytoplasmic CA isozyme, with kinetic properties, tissue distribution and physiological functions distinct from those of the red blood cell (rbc)-specific CA isozyme. Isolation and sequencing of a second trout cytoplasmic CA yielded a 780 bp coding region that was 76% identical with the trout rbc CA (TCAb), although the active sites differed by only 1 amino acid. Interestingly, phylogenetic analyses did not group these two isozymes closely together, suggesting that more fish species may have multiple cytoplasmic CA isozymes. In contrast to TCAb, the second cytoplasmic CA isozyme had a wide tissue distribution with high expression in the gills and brain, and lower expression in many tissues, including the red blood cells. Thus, unlike TCAb, the second isozyme lacks tissue specificity and may be expressed in the cytoplasm of all cells. For this reason, it is referred to hereafter as TCAc (trout cytoplasmic CA). The inhibitor properties of both cytoplasmic isozymes were similar (Ki acetazolamide 1.21+/-0.18 nmol l(-1) and 1.34+/-0.10 nmol l(-1) for TCAc and TCAb, respectively). However, the turnover of TCAb was over three times greater than that of TCAc (30.3+/-5.83 vs 8.90+/-1.95 e4 s(-1), respectively), indicating that the rbc-specific CA isoform was significantly faster than the general cytoplasmic isoform. Induction of anaemia revealed differential expression of the two isozymes in the red blood cell; whereas TCAc mRNA expression was unaffected, TCAb mRNA expression was significantly increased by 30- to 60-fold in anaemic trout.
Collapse
Affiliation(s)
- A J Esbaugh
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6.
| | | | | | | | | | | | | |
Collapse
|
25
|
Seron TJ, Hill J, Linser PJ. A GPI-linked carbonic anhydrase expressed in the larval mosquito midgut. ACTA ACUST UNITED AC 2005; 207:4559-72. [PMID: 15579552 DOI: 10.1242/jeb.01287] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have previously described the first cloning and partial characterization of carbonic anhydrase from larval Aedes aegypti mosquitoes. Larval mosquitoes utilize an alkaline digestive environment in the lumen of their anterior midgut, and we have also demonstrated a critical link between alkalization of the gut and carbonic anhydrase(s). In this report we further examine the nature of the previously described carbonic anhydrase and test the hypothesis that its pattern of expression is consistent with a role in gut alkalization. Additionally we take advantage of the recently published genome of the mosquito Anopheles gambiae to assess the complexity of the carbonic anhydrase gene family in these insects. We report here that the previously described carbonic anhydrase from Aedes aegypti is similar to mammalian CA IV in that it is a GPI-linked peripheral membrane protein. In situ hybridization analyses identify multiple locations of carbonic anhydrase expression in the larval mosquito. An antibody prepared against a peptide sequence specific to the Aedes aegypti GPI-linked carbonic anhydrase labels plasma membranes of a number of cell types including neuronal cells and muscles. A previously undescribed subset of gut muscles is specifically identified by carbonic anhydrase immunohistochemistry. Bioinformatic analyses using the Ensembl automatic analysis pipeline show that there are at least 14 carbonic anhydrase genes in the Anopheles gambiae genome, including a homologue to the GPI-linked gene product described herein. Therefore, as in mammals which similarly possess numerous carbonic anhydrase genes, insects require a large family of these genes to handle the complex metabolic pathways influenced by carbonic anhydrases and their substrates.
Collapse
Affiliation(s)
- Terri J Seron
- The Whitney Laboratory, University of Florida, Saint Augustine, FL 32080, USA
| | | | | |
Collapse
|
26
|
Esbaugh AJ, Lund SG, Tufts BL. Comparative physiology and molecular analysis of carbonic anhydrase from the red blood cells of teleost fish. J Comp Physiol B 2004; 174:429-38. [PMID: 15146348 DOI: 10.1007/s00360-004-0430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/26/2022]
Abstract
This study investigates the early evolution of vertebrate red blood cell (rbc) carbonic anhydrase (CA) by examining the physiological and molecular properties of rbc CA in teleost fish. When representatives of four different families of teleosts were compared, it was found that differences in overall rbc CA activity were due to different concentrations of CA, rather than differences in the enzyme's kinetic properties. Additional molecular analysis of CA from the rbcs of rainbow trout provided further evidence that critical elements of the enzyme, such as the active site, have been highly conserved during vertebrate evolution. The active site of the trout CA differed from that of gar rbc CA at only two amino acid positions. The rainbow trout rbc CA sequence also showed high sequence homology with CA sequences from other fish tissues, and fits into an emerging group of fish CAs that are basal to mammalian CA I, II and III. Northern blot analysis of the tissue expression of the sequenced CA indicated that it is primarily found in the rbcs, but high amounts of cytosolic CA activity were also found in the gill, suggesting the presence of other cytosolic CA isozymes in this species.
Collapse
Affiliation(s)
- A J Esbaugh
- Department of Biology, Queen's University, K7L 3N6, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
27
|
Miyaji E, Nishimori I, Taniuchi K, Takeuchi T, Ohtsuki Y, Onishi S. Overexpression of carbonic anhydrase-related protein VIII in human colorectal cancer. J Pathol 2003; 201:37-45. [PMID: 12950015 DOI: 10.1002/path.1404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase-related protein (CA-RP) VIII, which is a member of the CA gene family, has been shown to have no catalytic CA activity and its biological function is still unknown. Recently, overexpression of CAs IX and XII has been reported in certain types of malignancy. To investigate a potential role for CA-RP VIII in human colorectal epithelial carcinogenesis, colorectal tissue specimens from surgically resected adenocarcinomas (n = 60) and endoscopically polypectomized adenomas (n = 13) were analysed by immunohistochemistry using monoclonal antibodies to CA-RP VIII and Ki-67 antigen. Less than 5% of epithelial cells in normal colonic mucosae (n = 73) were CA-RP VIII-positive and these were localized to the deep part of the cryptal epithelium. Increased expression of CA-RP VIII was observed in 78% of colorectal carcinomas. An intense signal was frequently observed at the tumour invasion front and its distribution was completely different from that of Ki-67 antigen. Colorectal adenomas also showed significant immunopositivity for CA-RP VIII, but its expression level was much lower than in adenocarcinomas. These findings suggest that CA-RP VIII plays a role in the process of invasion in colorectal cancer.
Collapse
Affiliation(s)
- Eiki Miyaji
- First Department of Internal Medicine, Kochi Medical School, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S. Developmental expression of carbonic anhydrase-related proteins VIII, X, and XI in the human brain. Neuroscience 2002; 112:93-9. [PMID: 12044474 DOI: 10.1016/s0306-4522(02)00066-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three cDNA homologues of carbonic anhydrase with unknown biological functions have been reported: carbonic anhydrase-related proteins (CA-RP) VIII, X, and XI. In the present study, we produced monoclonal antibodies to these CA-RPs and studied their regional and cellular distributions in the human adult and fetal brains by immunohistochemical analysis. In the adult brain, CA-RP VIII was expressed in the neural cell body spreading to most parts of the brain. CA-RP X was expressed in the myelin sheath and its expression was shown in the cytoplasm of cultured tumor cells by immunocytochemical analysis. CA-RP XI was expressed in the neural cell body, neurites, and astrocytes in relatively limited regions of the brain. In the fetal brain, CA-RP VIII and XI were expressed in the neuroprogenitor cells in the subventricular zone as early as the 84th day of gestation and subsequently detected in the neural cells migrating to the cortex. CA-RP X first appeared in the neural cells in the cortex at the 141st day. In the choroid plexus, the epithelial cells gave CA-RP VIII and XI expressions in both adult and fetal brains. From the findings in the present study on the distribution and the developmental expression of CA-RP VIII, X, and XI in the human brain we suggest that these CA-RPs play roles in various biological process of the CNS.
Collapse
Affiliation(s)
- K Taniuchi
- First Department of Internal Medicine, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Parkkila S, Kivelä AJ, Kaunisto K, Parkkila AK, Hakkola J, Rajaniemi H, Waheed A, Sly WS. The plasma membrane carbonic anhydrase in murine hepatocytes identified as isozyme XIV. BMC Gastroenterol 2002; 2:13. [PMID: 12033992 PMCID: PMC115862 DOI: 10.1186/1471-230x-2-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 05/21/2002] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biochemical and histochemical studies have both previously indicated plasma membrane-associated carbonic anhydrase (CA) activity in hepatocytes which has been assumed to be CA IV. However, immunohistochemical data did not support this assignment. Recent northern blotting results indicated the presence of mRNA for the most recently discovered membrane-bound CA isozyme, CA XIV, in the liver. The present study was designed to examine whether CA XIV could contribute to the CA activity described in the hepatocytes. METHODS Tissue samples from mouse liver were subjected to immunohistochemical staining using the antibodies raised against recombinant mouse CA XIV and CA IV. RT-PCR and western blotting were also performed for CA XIV. RESULTS A strong immunofluorescent signal was observed in the plasma membrane of mouse hepatocytes. Although CA XIV was expressed on both the apical and basolateral surfaces, the staining was more prominent at the apical (canalicular) membrane domain. The expression of CA XIV in the liver was confirmed by RT-PCR and western blotting. CONCLUSIONS The presence of CA XIV in the hepatocyte plasma membrane places this novel enzyme at a strategic site to control pH regulation and ion transport between the hepatocytes, sinusoids and bile canaliculi.
Collapse
Affiliation(s)
- Seppo Parkkila
- Department of Clinical Chemistry, 90014 University of Oulu, Finland; Institute of Medical Technology, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - Antti J Kivelä
- Department of Anatomy and Cell Biology, 90014 University of Oulu, Finland
| | - Kari Kaunisto
- Department of Anatomy and Cell Biology, 90014 University of Oulu, Finland
- Department of Pediatrics, 90014 University of Oulu, Finland
| | - Anna-Kaisa Parkkila
- Department of Neurology, Tampere University Hospital, 33521 Tampere, Finland
| | - Jukka Hakkola
- Department of Pharmacology and Toxicology, 90014 University of Oulu, Finland
| | - Hannu Rajaniemi
- Department of Anatomy and Cell Biology, 90014 University of Oulu, Finland
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|