1
|
Cannabinoid Receptor 1 Is Required for Neurodevelopment of Striosome-Dendron Bouquets. eNeuro 2022; 9:ENEURO.0318-21.2022. [PMID: 35361667 PMCID: PMC9007419 DOI: 10.1523/eneuro.0318-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has strong effects on neurogenesis and axon pathfinding in the prenatal brain. Endocannabinoids that activate CB1R are abundant in the early postnatal brain and in mother's milk, but few studies have investigated their function in newborns. We examined postnatal CB1R expression in the major striatonigral circuit from striosomes of the striatum to the dopamine-containing neurons of the substantia nigra. CB1R enrichment was first detectable between postnatal day (P)5 and P7, and this timing coincided with the formation of "striosome-dendron bouquets," the elaborate anatomic structures by which striosomal neurons control dopaminergic cell activity through inhibitory synapses. In Cnr1-/- knock-out mice lacking CB1R expression, striosome-dendron bouquets were markedly disorganized by P11 and at adulthood, suggesting a postnatal pathfinding connectivity function for CB1R in connecting striosomal axons and dopaminergic neurons analogous to CB1R's prenatal function in other brain regions. Our finding that CB1R plays a major role in postnatal wiring of the striatonigral dopamine-control system, with lasting consequences at least in mice, points to a crucial need to determine whether lactating mothers' use of CB1R agonists (e.g., in marijuana) or antagonists (e.g., type 2 diabetes therapies) can disrupt brain development in nursing offspring.
Collapse
|
2
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Song Y, Gong T, Saleh MG, Mikkelsen M, Wang G, Edden RAE. Upper brainstem GABA levels in Parkinson's disease. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:689-696. [PMID: 33745095 DOI: 10.1007/s10334-021-00910-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The dopaminergic pathology of Parkinson's disease (PD) impacts circuits involving GABAergic neurons, especially in the brainstem, where the disease manifests early. The aim of this study is to test the hypothesis that levels of gamma-aminobutyric acid (GABA) in the upper brainstem are reduced in patients with PD compared to healthy controls, using edited magnetic resonance spectroscopy (MRS of GABA +). MATERIALS AND METHODS GABA + levels were examined in 18 PD patients and 18 age- and sex-matched healthy controls (HCs). GABA + -edited MRS was performed in 7.5-ml voxels in the upper brainstem, and the spectra were processed using the Gannet software. Differences in GABA + levels between the two groups were analyzed using independent t test analysis. RESULTS GABA + levels were significantly lower (p < 0.05) in the upper brainstem of the patients with PD (4.57 ± 0.94 mM) than the HCs (5.89 ± 1.16 mM). CONCLUSION The lower GABA + levels in the upper brainstem of the PD patients suggest that a GABAergic deficit in the brainstem may contribute to the pathology in PD.
Collapse
Affiliation(s)
- Yulu Song
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Tao Gong
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Department of Imaging and Nuclear Medicine, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
4
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
5
|
The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. PLoS One 2018; 13:e0191436. [PMID: 29466446 PMCID: PMC5821318 DOI: 10.1371/journal.pone.0191436] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Presynaptic cannabinoid-1 receptors (CB1-R) bind endogenous and exogenous cannabinoids to modulate neurotransmitter release. CB1-Rs are expressed throughout the basal ganglia, including striatum and substantia nigra, where they play a role in learning and control of motivated actions. However, the pattern of CB1-R expression across different striatal compartments, microcircuits and efferent targets, and the contribution of different CB1-R-expressing neurons to this pattern, are unclear. We use a combination of conventional techniques and novel genetic models to evaluate CB1-R expression in striosome (patch) and matrix compartments of the striatum, and in nigral targets of striatal medium spiny projection neurons (MSNs). CB1-R protein and mRNA follow a descending dorsolateral-to-ventromedial intensity gradient in the caudal striatum, with elevated expression in striosomes relative to the surrounding matrix. The lateral predominance of striosome CB1-Rs contrasts with that of the classical striosomal marker, the mu opioid receptor (MOR), which is expressed most prominently in rostromedial striosomes. The dorsolateral-to-ventromedial CB1-R gradient is similar to Drd2 dopamine receptor immunoreactivity and opposite to Substance P. This topology of CB1-R expression is maintained downstream in the globus pallidus and substantia nigra. Dense CB1-R-expressing striatonigral fibers extend dorsally within the substantia nigra pars reticulata, and colocalize with bundles of ventrally extending, striosome-targeted, dendrites of dopamine-containing neurons in the substantia nigra pars compacta (striosome-dendron bouquets). Within striatum, CB1-Rs colocalize with fluorescently labeled MSN collaterals within the striosomes. Cre recombinase-mediated deletion of CB1-Rs from cortical projection neurons or MSNs, and MSN-selective reintroduction of CB1-Rs in knockout mice, demonstrate that the principal source of CB1-Rs in dorsolateral striosomes is local MSN collaterals. These data suggest a role for CB1-Rs in caudal dorsolateral striosome collaterals and striosome-dendron bouquet projections to lateral substantia nigra, where they are anatomically poised to mediate presynaptic disinhibition of both striosomal MSNs and midbrain dopamine neurons in response to endocannabinoids and cannabinomimetics.
Collapse
|
6
|
Osacka J, Horvathova L, Majercikova Z, Kiss A. Eff ect of a single asenapine treatment on Fos expression in the brain catecholamine-synthesizing neurons: impact of a chronic mild stress preconditioning. Endocr Regul 2017; 51:73-83. [PMID: 28609288 DOI: 10.1515/enr-2017-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN) pars compacta (SNC, A8), pars reticulata (SNR, A9), and pars lateralis (SNL), the ventral tegmental area (VTA, A10), the locus coeruleus (LC, A6) and subcoeruleus (sLC), the ventrolateral pons (PON-A5), the nucleus of the solitary tract (NTS-A2), the area postrema (AP), and the ventrolateral medulla (VLM-A1) was quantitatively evaluated aft er a single administration of asenapine (ASE) (designated for schizophrenia treatment) in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS) for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1) activate Fos expression in the brain areas selected; 2) activate tyrosine hydroxylase (TH)-synthesizing cells displaying Fos presence; and 3) be modulated by CMS preconditioning. METHODS Control (CON), ASE, CMS, and CMS+ASE groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. Th e ASE and CMS+ASE groups received a single dose of ASE (0.3 mg/kg, s.c.) and CON and CMS saline (300 μl/rat, s.c.). The animals were sacrificed 90 min aft er the treatments. Fos protein and TH-labeled immunoreactive perikarya were analyzed on double labeled histological sections and enumerated on captured pictures using combined light and fluorescence microscope illumination. RESULTS Saline or CMS alone did not promote Fos expression in any of the structures investigated. ASE alone or in combination with CMS elicited Fos expression in two parts of the SN (SNC, SNR) and the VTA. Aside from some cells in the central gray tegmental nuclei adjacent to LC, where a small number of Fos profiles occurred, none or negligible Fos occurrence was detected in the other structures investigated including the LC and sLC, PON-A5, NTS-A2, AP, and VLM-A1. CMS preconditioning did not infl uence the level of Fos induction in the SN and VTA elicited by ASE administration. Similarly, the ratio between the amount of free Fos and Fos colocalized with TH was not aff ected by stress preconditioning in the SNC, SNR, and the VTA. CONCLUSIONS Th e present study provides an anatomical/functional knowledge about the nature of the acute ASE treatment on the catecholamine-synthesizing neurons activity in certain brain structures and their missing interplay with the CMS preconditioning.
Collapse
|
7
|
Maximova OA, Bernbaum JG, Pletnev AG. West Nile Virus Spreads Transsynaptically within the Pathways of Motor Control: Anatomical and Ultrastructural Mapping of Neuronal Virus Infection in the Primate Central Nervous System. PLoS Negl Trop Dis 2016; 10:e0004980. [PMID: 27617450 PMCID: PMC5019496 DOI: 10.1371/journal.pntd.0004980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background During recent West Nile virus (WNV) outbreaks in the US, half of the reported cases were classified as neuroinvasive disease. WNV neuroinvasion is proposed to follow two major routes: hematogenous and/or axonal transport along the peripheral nerves. How virus spreads once within the central nervous system (CNS) remains unknown. Methodology/Principal Findings Using immunohistochemistry, we examined the expression of viral antigens in the CNS of rhesus monkeys that were intrathalamically inoculated with a wild-type WNV. The localization of WNV within the CNS was mapped to specific neuronal groups and anatomical structures. The neurological functions related to structures containing WNV-labeled neurons were reviewed and summarized. Intraneuronal localization of WNV was investigated by electron microscopy. The known anatomical connectivity of WNV-labeled neurons was used to reconstruct the directionality of WNV spread within the CNS using a connectogram design. Anatomical mapping revealed that all structures identified as containing WNV-labeled neurons belonged to the pathways of motor control. Ultrastructurally, virions were found predominantly within vesicular structures (including autophagosomes) in close vicinity to the axodendritic synapses, either at pre- or post-synaptic positions (axonal terminals and dendritic spines, respectively), strongly indicating transsynaptic spread of the virus between connected neurons. Neuronal connectivity-based reconstruction of the directionality of transsynaptic virus spread suggests that, within the CNS, WNV can utilize both anterograde and retrograde axonal transport to infect connected neurons. Conclusions/Significance This study offers a new insight into the neuropathogenesis of WNV infection in a primate model that closely mimics WNV encephalomyelitis in humans. We show that within the primate CNS, WNV primarily infects the anatomical structures and pathways responsible for the control of movement. Our findings also suggest that WNV most likely propagates within the CNS transsynaptically, by both, anterograde and retrograde axonal transport. West Nile virus (WNV) is a mosquito-borne neurotropic flavivirus that has emerged as a human pathogen of global scale. During recent WNV outbreaks in the US, half of the reported human cases were classified as neuroinvasive disease. Although much research has been done, there are still gaps in our understanding of WNV neuropathogenesis. While WNV neuroinvasion is proposed to occur by the hematogenous route and/or by axonal transport along the peripheral nerves, how virus spreads once within the central nervous system (CNS) remains unknown. In this study, we examined the expression of viral antigens in the CNS of monkeys that were intrathalamically inoculated with WNV. Next, we mapped the localization of WNV-infected neurons to specific anatomical structures, identified the intraneuronal localizations of WNV particles and investigated the role of neuronal connectivity in the spread of WNV within the CNS. Our results revealed that all structures containing WNV-labeled neurons belonged to the pathways of motor control. Virions were found in close vicinity to the axodendritic synapses, strongly indicating transsynaptic spread of the virus. Neuronal connectivity-based reconstruction of the directionality of transsynaptic virus spread suggests that, within the CNS, WNV can utilize both anterograde and retrograde axonal transport to infect connected neurons.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (OAM); (AGP)
| | - John G. Bernbaum
- Office of the Chief Scientist, Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (OAM); (AGP)
| |
Collapse
|
8
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
9
|
Luo SX, Huang EJ. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:478-88. [PMID: 26724386 DOI: 10.1016/j.ajpath.2015.09.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
Abstract
Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah X Luo
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California
| | - Eric J Huang
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California; Pathology Service 113B, San Francisco Veterans Affairs Medical Center, San Francisco, California.
| |
Collapse
|
10
|
Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2015; 89:221-34. [PMID: 26711118 DOI: 10.1016/j.neuron.2015.11.028] [Citation(s) in RCA: 849] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022]
Abstract
Changes in pupil diameter that reflect effort and other cognitive factors are often interpreted in terms of the activity of norepinephrine-containing neurons in the brainstem nucleus locus coeruleus (LC), but there is little direct evidence for such a relationship. Here, we show that LC activation reliably anticipates changes in pupil diameter that either fluctuate naturally or are driven by external events during near fixation, as in many psychophysical tasks. This relationship occurs on as fine a temporal and spatial scale as single spikes from single units. However, this relationship is not specific to the LC. Similar relationships, albeit with delayed timing and different reliabilities across sites, are evident in the inferior and superior colliculus and anterior and posterior cingulate cortex. Because these regions are interconnected with the LC, the results suggest that non-luminance-mediated changes in pupil diameter might reflect LC-mediated coordination of neuronal activity throughout some parts of the brain.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yin Li
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi M Kalwani
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Rossi MA, Fan D, Barter JW, Yin HH. Bidirectional modulation of substantia nigra activity by motivational state. PLoS One 2013; 8:e71598. [PMID: 23936522 PMCID: PMC3735640 DOI: 10.1371/journal.pone.0071598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023] Open
Abstract
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.
Collapse
Affiliation(s)
- Mark A. Rossi
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - David Fan
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Joseph W. Barter
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics. PLoS One 2013; 8:e68609. [PMID: 23922658 PMCID: PMC3724835 DOI: 10.1371/journal.pone.0068609] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/30/2013] [Indexed: 02/04/2023] Open
Abstract
Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients, in this study we characterize how the dynamics of the healthy brain differ from the "dynamically balanced" state of the brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can be observed in band power, synchronization and network measures, as well as deviations from the small world network (SWN) architecture of the healthy brain. The θ (4-7 Hz) and high α (10-13 Hz) bands showed the biggest deviations from healthy controls across various measures. In particular, patients demonstrated significantly higher power and synchronization than controls in the θ band, but lower synchronization and power in the high α band. Furthermore, differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the θ band epilepsy patients showed deviations toward an orderly network, while in the high α band they deviated toward a random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph theory metrics to investigate the reorganization of resting state functional networks in LTLE patients.
Collapse
|
13
|
Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiol Dis 2013; 58:183-90. [PMID: 23747310 PMCID: PMC3752970 DOI: 10.1016/j.nbd.2013.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). The most prevalent LRRK2 mutation is the G2019S coding change, located in the kinase domain of this complex multi-domain protein. The majority of G2019S autopsy cases feature typical Lewy Body pathology with a clinical phenotype almost indistinguishable from idiopathic PD (iPD). Here we have investigated the biochemical characteristics of α-synuclein in G2019S LRRK2 PD post-mortem material, in comparison to pathology-matched iPD. Immunohistochemistry with pS129 α-synuclein antibody showed that the medulla is heavily affected with pathology in G2019S PD whilst the basal ganglia (BG), limbic and frontal cortical regions demonstrated comparable pathology scores between G2019S PD and iPD. Significantly lower levels of the highly aggregated α-synuclein species in urea–SDS fractions were observed in G2019S cases compared to iPD in the BG and limbic cortex. Our data, albeit from a small number of cases, highlight a difference in the biochemical properties of aggregated α-synuclein in G2019S linked PD compared to iPD, despite a similar histopathological presentation. This divergence in solubility is most notable in the basal ganglia, a region that is affected preclinically and is damaged before overt dopaminergic cell death. We compared α-synuclein biochemistry from LRRK2 G2019S and idiopathic PD brains. We used four G2019S PD post-mortem brains and pathology matched idiopathic PD cases. G2019S PD and idiopathic PD cases show comparable Limbic stage Lewy Body pathology. Minimal SDS-insoluble α-synuclein seen in G2019S PD in contrast to idiopathic PD We propose a divergent nature of α-synuclein pathogenic species in G2019S PD.
Collapse
|
14
|
Gambardella C, Pignatelli A, Belluzzi O. The h-current in the substantia Nigra pars compacta neurons: a re-examination. PLoS One 2012; 7:e52329. [PMID: 23284989 PMCID: PMC3528748 DOI: 10.1371/journal.pone.0052329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/12/2012] [Indexed: 01/15/2023] Open
Abstract
The properties of the hyperpolarization-activated cation current (Ih) were investigated in rat substantia nigra - pars compacta (SNc) principal neurons using patch-clamp recordings in thin slices. A reliable identification of single dopaminergic neurons was made possible by the use of a transgenic line of mice expressing eGFP under the tyrosine hydroxylase promoter. The effects of temperature and different protocols on the Ih kinetics showed that, at 37°C and minimizing the disturbance of the intracellular milieu with perforated patch, this current actually activates at potentials more positive than what is generally indicated, with a half-activation potential of −77.05 mV and with a significant level of opening already at rest, thereby substantially contributing to the control of membrane potential, and ultimately playing a relevant function in the regulation of the cell excitability. The implications of the known influence of intracellular cAMP levels on Ih amplitude and kinetics were examined. The direct application of neurotransmitters (DA, 5-HT and noradrenaline) physiologically released onto SNc neurons and known to act on metabotropic receptors coupled to the cAMP pathway modify the Ih amplitude. Here, we show that direct activation of dopaminergic and of 5-HT receptors results in Ih inhibition of SNc DA cells, whereas noradrenaline has the opposite effect. Together, these data suggest that the modulation of Ih by endogenously released neurotransmitters acting on metabotropic receptors –mainly but not exclusively linked to the cAMP pathway- could contribute significantly to the control of SNc neuron excitability.
Collapse
Affiliation(s)
- Cristina Gambardella
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Angela Pignatelli
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Ottorino Belluzzi
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
- * E-mail:
| |
Collapse
|
15
|
Ramírez-Latorre JA. Functional upregulation of Ca(2+)-activated K(+) channels in the development of substantia nigra dopamine neurons. PLoS One 2012; 7:e51610. [PMID: 23284723 PMCID: PMC3527479 DOI: 10.1371/journal.pone.0051610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Many connections in the basal ganglia are made around birth when animals are exposed to a host of new affective, cognitive, and sensori-motor stimuli. It is thought that dopamine modulates cortico-striatal synapses that result in the strengthening of those connections that lead to desired outcomes. We propose that there must be a time before which stimuli cannot be processed into functional connections, otherwise it would imply an effective link between stimulus, response, and reward in uterus. Consistent with these ideas, we present evidence that early in development dopamine neurons are electrically immature and do not produce high-frequency firing in response to salient stimuli. We ask first, what makes dopamine neurons immature? and second, what are the implications of this immaturity for the basal ganglia? As an answer to the first question, we find that at birth the outward current is small (3nS-V), insensitive to Ca(2+), TEA, BK, and SK blockers. Rapidly after birth, the outward current increases to 15nS-V and becomes sensitive to Ca(2+), TEA, BK, and SK blockers. We make a detailed analysis of the kinetics of the components of the outward currents and produce a model for BK and SK channels that we use to reproduce the outward current, and to infer the geometrical arrangement of BK and Ca(2+) channels in clusters. In the first cluster, T-type Ca(2+) and BK channels are coupled within distances of ~20 nm (200 Å). The second cluster consists of L-type Ca(2+) and BK channels that are spread over distances of at least 60 nm. As for the second question, we propose that early in development, the mechanism of action selection is in a "locked-in" state that would prevent dopamine neurons from reinforcing cortico-striatal synapses that do not have a functional experiential-based value.
Collapse
|
16
|
Solari SVH, Stoner R. Cognitive consilience: primate non-primary neuroanatomical circuits underlying cognition. Front Neuroanat 2011; 5:65. [PMID: 22194717 PMCID: PMC3243081 DOI: 10.3389/fnana.2011.00065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/01/2011] [Indexed: 11/16/2022] Open
Abstract
Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge).
Collapse
|
17
|
Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience 2011; 198:69-94. [PMID: 21839148 PMCID: PMC3221915 DOI: 10.1016/j.neuroscience.2011.07.061] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/27/2022]
Abstract
The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active type 3 transient receptor potential (TRPC3) channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches -60 mV, a voltage-gated persistent sodium current (I(NaP)) starts to activate, further depolarizing the membrane potential. At or slightly below -50 mV, the large transient voltage-activated sodium current (I(NaT)) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of I(NaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. I(NaT) also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators including dopamine, serotonin, endocannabinoids, and H₂O₂.
Collapse
Affiliation(s)
- F-M Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
18
|
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol Rev 2011; 63:938-66. [PMID: 21969327 PMCID: PMC3186078 DOI: 10.1124/pr.110.003269] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the "gold standard" for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
19
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
20
|
Abstract
Increasing evidence implicates hydrogen peroxide (H(2)O(2)) as an intracellular and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H(2)O(2) can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H(2)O(2) activates ATP-sensitive K(+) (K-ATP) channels that inhibit DA neuron firing. In the striatum, H(2)O(2) generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via K-ATP channels. The source of dynamically generated H(2)O(2) is mitochondrial respiration; thus, H(2)O(2) provides a novel link between activity and metabolism via K-ATP channels. Additional targets of H(2)O(2) include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H(2)O(2) acting via K-ATP channels, TRP channel activation is excitatory. This review describes emerging roles of H(2)O(2) as a signaling agent in the nigrostriatal pathway and basal ganglia neurons.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Lee CR, Witkovsky P, Rice ME. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H₂O₂ via Flufenamic Acid-Sensitive Channels and K ATP Channels. Front Syst Neurosci 2011; 5:14. [PMID: 21503158 PMCID: PMC3074506 DOI: 10.3389/fnsys.2011.00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 03/05/2011] [Indexed: 11/13/2022] Open
Abstract
Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H₂O₂), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H₂O₂ affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H₂O₂ levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H₂O₂ or amplification of endogenous H₂O₂ through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H₂O₂ by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H₂O₂. Elevation of H₂O₂ in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K(+) (K(ATP)) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H₂O₂ elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H₂O₂-dependent regulation. Thus, H₂O₂ is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via K(ATP) channels to regulate SNr output.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine New York, NY, USA
| | | | | |
Collapse
|
22
|
González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J. Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Front Neuroanat 2010; 4:140. [PMID: 21079748 PMCID: PMC2978035 DOI: 10.3389/fnana.2010.00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022] Open
Abstract
The term vulnerability was first associated with the midbrain dopaminergic neurons 85 years ago, before they were identified as monoaminergic neurons, when Foix and Nicolesco (1925) reported the loss of neuromelanin containing neurons in the midbrain of patients with post-encephalitic Parkinson's disease (PD). A few years later, Hassler (1938) showed that degeneration is more intense in the ventral tier of the substantia nigra compacta than in its dorsal tier and the ventral tegmental area (VTA), outlining the concept of differential vulnerability of midbrain dopaminergic (DA-) neurons. Nowadays, we know that other neuronal groups degenerate in PD, but the massive loss of nigral DA-cells is its pathological hallmark, having a pivotal position in the pathophysiology of the disease as it is responsible for the motor symptoms. Data from humans as well as cellular and animal models indicate that DA-cell degeneration is a complex process, probably precipitated by the convergence of different risk factors, mediated by oxidative stress, and involving pathogenic factors arising within the DA-neuron (intrinsic factors), and from its environment and distant interconnected brain regions (extrinsic factors). In light of current data, intrinsic factors seem to be preferentially involved in the first steps of the degenerative process, and extrinsic factors in its progression. A controversial issue is the relative weight of the impairment of common cell functions, such as energy metabolism and proteostasis, and specific dopaminergic functions, such as pacemaking activity and DA handling, in the pathogenesis of DA-cell degeneration. Here we will review the current knowledge about the relevance of these factors at the beginning and during the progression of PD, and in the differential vulnerability of midbrain DA-cells.
Collapse
|
23
|
Witkovsky P, Patel JC, Lee CR, Rice ME. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons. Neuroscience 2009; 164:488-96. [PMID: 19682556 DOI: 10.1016/j.neuroscience.2009.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, USA.
| | | | | | | |
Collapse
|