1
|
Turner RT, Kuah AF, Trevisiol CH, Howe KS, Branscum AJ, Iwaniec UT. Chronic heavy alcohol consumption impairs the ability of demineralized allogenic bone matrix to support osteoinduction in alcohol-naïve rats. Bone Rep 2025; 25:101836. [PMID: 40171448 PMCID: PMC11957595 DOI: 10.1016/j.bonr.2025.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
Allografts play an important role in treatment of complex bone fractures and deformities. The purpose of this study was to test the hypothesis that alcohol consumption impairs graft incorporation and bone healing by two mechanisms: (1) by lowering osteoinductive capacity and (2) by suppressing bone formation. We performed experiments using a demineralized allogeneic bone matrix (DBM) model in which DBM harvested from donor rats fed control or ethanol diet was implanted subcutaneously into recipient rats fed control or ethanol diet. We also evaluated the efficacy of intermittent parathyroid hormone (PTH) on bone graft incorporation (DBM from donor rats fed alcohol or control diet) using a critical size defect model. Bone formed during osteoinduction was measured by micro-computed tomography. Experiment 1: Bone volume was lower in DBM harvested from ethanol-consuming donors 6 weeks following implantation into recipients fed control diet, indicating that exposure of the donor rats to ethanol lowered osteoinductive capacity. Experiment 2: Bone volume was lower in DBM harvested 3 weeks following implantation from ethanol-consuming donors into ethanol-consuming recipients compared to DBM harvested from control donors implanted into control recipients or DBM harvested from control donors implanted into ethanol-consuming recipients. Experiment 3: Ethanol consumption by donors resulted in a tendency for lower DBM bone volume (p = 0.085) whereas PTH treatment resulted in higher DBM bone volume in the critical size defect model. Our results suggest that chronic heavy alcohol consumption by allograft donors may impair osteoinduction and this negative outcome may be worsened by alcohol intake during bone healing. Additionally, PTH has the potential to increase osteoinduction in DBM harvested from both abstinent and alcohol-consuming donors.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Amida F. Kuah
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Cynthia H. Trevisiol
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Kathy S. Howe
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Nutrition and Public Health, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Shen L, Amei A, Liu B, Liu Y, Xu G, Oh EC, Wang Z. Detection of interactions between genetic marker sets and environment in a genome-wide study of hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542666. [PMID: 37398075 PMCID: PMC10312472 DOI: 10.1101/2023.05.28.542666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
As human complex diseases are influenced by the interplay of genes and environment, detecting gene-environment interactions ( G × E ) can shed light on biological mechanisms of diseases and play an important role in disease risk prediction. Development of powerful quantitative tools to incorporate G × E in complex diseases has potential to facilitate the accurate curation and analysis of large genetic epidemiological studies. However, most of existing methods that interrogate G × E focus on the interaction effects of an environmental factor and genetic variants, exclusively for common or rare variants. In this study, we proposed two tests, MAGEIT_RAN and MAGEIT_FIX, to detect interaction effects of an environmental factor and a set of genetic markers containing both rare and common variants, based on the MinQue for Summary statistics. The genetic main effects in MAGEIT_RAN and MAGEIT_FIX are modeled as random or fixed, respectively. Through simulation studies, we illustrated that both tests had type I error under control and MAGEIT_RAN was overall the most powerful test. We applied MAGEIT to a genome-wide analysis of gene-alcohol interactions on hypertension in the Multi-Ethnic Study of Atherosclerosis. We detected two genes, CCNDBP1 and EPB42, that interact with alcohol usage to influence blood pressure. Pathway analysis identified sixteen significant pathways related to signal transduction and development that were associated with hypertension, and several of them were reported to have an interactive effect with alcohol intake. Our results demonstrated that MAGEIT can detect biologically relevant genes that interact with environmental factors to influence complex traits.
Collapse
Affiliation(s)
- Linchuan Shen
- Department of Mathematical Sciences, University of Nevada, Las Vegas
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas
| | - Bowen Liu
- Department of Mathematical Sciences, University of Nevada, Las Vegas
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health
| | - Gang Xu
- Department of Mathematical Sciences, University of Nevada, Las Vegas
- Department of Biostatistics, Yale School of Public Health
| | - Edwin C. Oh
- Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health
| |
Collapse
|
4
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
5
|
Kumar V, Sethi B, Staller DW, Xin X, Ma J, Dong Y, Talmon GA, Mahato RI. Anti-miR-96 and Hh pathway inhibitor MDB5 synergistically ameliorate alcohol-associated liver injury in mice. Biomaterials 2023; 295:122049. [PMID: 36827892 PMCID: PMC9998370 DOI: 10.1016/j.biomaterials.2023.122049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-β1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-β1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Zou G, Park JI. Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol 2023; 29:33-50. [PMID: 35785913 PMCID: PMC9845677 DOI: 10.3350/cmh.2022.0058] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023] Open
Abstract
The liver exhibits the highest recovery rate from acute injuries. However, in chronic liver disease, the long-term loss of hepatocytes often leads to adverse consequences such as fibrosis, cirrhosis, and liver cancer. The Wnt signaling plays a pivotal role in both liver regeneration and tumorigenesis. Therefore, manipulating the Wnt signaling has become an attractive approach to treating liver disease, including cancer. Nonetheless, given the crucial roles of Wnt signaling in physiological processes, blocking Wnt signaling can also cause several adverse effects. Recent studies have identified cancer-specific regulators of Wnt signaling, which would overcome the limitation of Wnt signaling target approaches. In this review, we discussed the role of Wnt signaling in liver regeneration, precancerous lesion, and liver cancer. Furthermore, we summarized the basic and clinical approaches of Wnt signaling blockade and proposed the therapeutic prospects of cancer-specific Wnt signaling blockade for liver cancer treatment.
Collapse
Affiliation(s)
- Gengyi Zou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author : Gengyi Zou Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd Unit 1054, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA,Jae-Il Park Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| |
Collapse
|
7
|
Darbinian N, Darbinyan A, Sinard J, Tatevosian G, Merabova N, D’Amico F, Khader T, Bajwa A, Martirosyan D, Gawlinski AK, Pursnani R, Zhao H, Amini S, Morrison M, Goetzl L, Selzer ME. Molecular Markers in Maternal Blood Exosomes Allow Early Detection of Fetal Alcohol Spectrum Disorders. Int J Mol Sci 2022; 24:ijms24010135. [PMID: 36613580 PMCID: PMC9820501 DOI: 10.3390/ijms24010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Prenatal alcohol exposure can cause developmental abnormalities (fetal alcohol spectrum disorders; FASD), including small eyes, face and brain, and neurobehavioral deficits. These cannot be detected early in pregnancy with available imaging techniques. Early diagnosis could facilitate development of therapeutic interventions. Banked human fetal brains and eyes at 9−22 weeks’ gestation were paired with maternal blood samples, analyzed for morphometry, protein, and RNA expression, and apoptotic signaling. Alcohol (EtOH)-exposed (maternal self-report) fetuses were compared with unexposed controls matched for fetal age, sex, and maternal race. Fetal brain-derived exosomes (FB-E) were isolated from maternal blood and analyzed for protein, RNA, and apoptotic markers. EtOH use by mothers, assessed by self-report, was associated with reduced fetal eye diameter, brain size, and markers of synaptogenesis. Brain caspase-3 activity was increased. The reduction in eye and brain sizes were highly correlated with amount of EtOH intake and caspase-3 activity. Levels of several biomarkers in FB-E, most strikingly myelin basic protein (MBP; r > 0.9), correlated highly with morphological abnormalities. Reduction in FB-E MBP levels was highly correlated with EtOH exposure (p < 1.0 × 10−10). Although the morphological features of FAS appear long before they can be detected by live imaging, FB-E in the mother’s blood may contain markers, particularly MBP, that predict FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John Sinard
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Faith D’Amico
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tarek Khader
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alina K. Gawlinski
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Richa Pursnani
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Mary Morrison
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (N.D.); (M.E.S.); Tel.: +1-215-926-9318 (M.E.S.)
| |
Collapse
|
8
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Xie X, Wu Z, Wu Y, Liu J, Chen X, Shi X, Wei C, Li J, Lv J, Li Q, Tang L, He S, Zhan T, Tang Z. Cysteine protease of Clonorchis sinensis alleviates DSS-induced colitis in mice. PLoS Negl Trop Dis 2022; 16:e0010774. [PMID: 36084127 PMCID: PMC9491586 DOI: 10.1371/journal.pntd.0010774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Currently, inflammatory bowel disease (IBD) has become a global chronic idiopathic disease with ever-rising morbidity and prevalence. Accumulating evidence supports the IBD-hygiene hypothesis that helminths and their derivatives have potential therapeutic value for IBD. Clonorchis sinensis (C. sinensis) mainly elicit Th2/Treg-dominated immune responses to maintain long-term parasitism in the host. This study aimed to evaluate the therapeutic effects of cysteine protease (CsCP) and adult crude antigen (CsCA) of C. sinensis, and C. sinensis (Cs) infection on DSS-induced colitis mice.
Methods
BALB/c mice were given 5% DSS daily for 7 days to induce colitis. During this period, mice were treated with rCsCP, CsCA or dexamethasone (DXM) every day, or Cs infection which was established in advance. Changes in body weight, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, myeloperoxidase (MPO) activity levels, regulatory T cell (Treg) subset levels, colon gene expression levels, serum cytokine levels, and biochemical indexes were measured.
Results
Compared with Cs infection, rCsCP and CsCA alleviated the disease activity of acute colitis more significant without causing abnormal blood biochemical indexes. In comparison, rCsCP was superior to CsCA in attenuating colonic pathological symptoms, enhancing the proportion of Treg cells in spleens and mesenteric lymph nodes, and improving the secretion of inflammatory-related cytokines (e.g., IL-2, IL-4, IL-10 and IL-13) in serum. Combined with RNA-seq data, it was revealed that CsCA might up-regulate the genes related to C-type lectin receptor and intestinal mucosal repair related signal pathways (e.g., Cd209d, F13a1 and Cckbr) to reduce colon inflammation and benefit intestinal mucosal repair. Dissimilarly, rCsCP ameliorated colitis mainly through stimulating innate immunity, such as Toll like receptor (TLR) signaling pathway, down-regulating the expression of inflammatory cytokines (e.g., IL-12b, IL-23r and IL-7), thereby restraining the differentiation of Th1/Th17 cells.
Conclusions
Both rCsCP and CsCA showed good therapeutic effects on the treatment of acute colitis, but rCsCP is a better choice. rCsCP is a safe, effective, readily available and promising therapeutic agent against IBD mainly by activating innate immunity and regulating the IL-12/IL-23r axis.
Collapse
Affiliation(s)
- Xiaoying Xie
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Yuhong Wu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jing Liu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xinyuan Chen
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoqian Shi
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiheng Wei
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiasheng Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiahui Lv
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Parasitology, Guangxi Medical University, Nanning, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Tingzheng Zhan
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| |
Collapse
|
10
|
Abraham S, Lindo C, Peoples J, Cox A, Lytle E, Nguyen V, Mehta M, Alvarez JD, Yooseph S, Pacher P, Ebert SN. Maternal binge alcohol consumption leads to distinctive acute perturbations in embryonic cardiac gene expression profiles. Alcohol Clin Exp Res 2022; 46:1433-1448. [PMID: 35692084 DOI: 10.1111/acer.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Excessive alcohol consumption during pregnancy is associated with high risk of congenital heart defects, but it is unclear how alcohol specifically affects heart development during the acute aftermath of a maternal binge drinking episode. We hypothesize that administration of a single maternal binge dose of alcohol to pregnant mice at embryonic day 9.5 (E9.5) causes perturbations in the expression patterns of specific genes in the developing heart in the acute period (1-3 days) following the binge episode. To test this hypothesis and identify strong candidate ethanol-sensitive target genes of interest, we adapted a mouse binge alcohol model that is associated with a high incidence of congenital heart defects as described below. METHODS/RESULTS Pregnant mice were administered a single dose of alcohol (2.5 g/kg in saline) or control (saline alone) via oral gavage. To evaluate the impact of maternal binge alcohol on cardiac gene expression profiles, we isolated embryonic hearts from both groups (n = 5/group) at 24, 48, and 72 h post-gavage for transcriptomic analyses. RNA was extracted and evaluated using quantitative RNA-sequencing (RNA-Seq) methods. To identify a cohort of binge-altered cardiac genes, we set the threshold for change at >2.0-fold difference with adjusted p < 0.05 versus control. RNA-Seq analysis of cardiac gene expression revealed that of the 17 genes that were altered within the first 48 h post-binge, with the largest category consisting of transcription factors (Alx1, Alx4, HoxB7, HoxD8, and Runx2), followed by signaling molecules (Adamts18, Dkk2, Rtl1, and Wnt7a). Furthermore, multiple comparative and pathway analyses suggested that several of the candidate genes identified through differential RNA-Seq analysis may interact through certain common pathways. To investigate this further, we performed gene-specific qPCR analyses for three representative candidate targets: Runx2, Wnt7a, and Mlxipl. Notably, only Wnt7a showed significantly (p < 0.05) decreased expression in response to maternal binge alcohol in the qPCR assays. CONCLUSIONS These findings identify Wnt7a and a short list of potential other candidate genes and pathways for further study, which could provide mechanistic insights into how maternal binge alcohol consumption produces congenital cardiac malformations.
Collapse
Affiliation(s)
- Shani Abraham
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Chad Lindo
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jessica Peoples
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Amanda Cox
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Erika Lytle
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Vu Nguyen
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Meeti Mehta
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jose D Alvarez
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Alcohol and Alcohol Abuse (NIAAA), The National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Science, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
11
|
Melis M, Tang XH, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022; 14:1456. [PMID: 35406069 PMCID: PMC9002467 DOI: 10.3390/nu14071456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A (VA), all-trans-retinol (ROL), and its analogs are collectively called retinoids. Acting through the retinoic acid receptors RARα, RARβ, and RARγ, all-trans-retinoic acid, an active metabolite of VA, is a potent regulator of numerous biological pathways, including embryonic and somatic cellular differentiation, immune functions, and energy metabolism. The liver is the primary organ for retinoid storage and metabolism in humans. For reasons that remain incompletely understood, a body of evidence shows that reductions in liver retinoids, aberrant retinoid metabolism, and reductions in RAR signaling are implicated in numerous diseases of the liver, including hepatocellular carcinoma, non-alcohol-associated fatty liver diseases, and alcohol-associated liver diseases. Conversely, restoration of retinoid signaling, pharmacological treatments with natural and synthetic retinoids, and newer agonists for specific RARs show promising benefits for treatment of a number of these liver diseases. Here we provide a comprehensive review of the literature demonstrating a role for retinoids in limiting the pathogenesis of these diseases and in the treatment of liver diseases.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY 10065, USA;
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA; (M.M.); (X.-H.T.)
| |
Collapse
|
12
|
Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncol 2021; 23:161-171. [PMID: 34902334 DOI: 10.1016/s1470-2045(21)00603-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-β-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.
Collapse
|
13
|
Ma Q, Long W, Xing C, Jiang C, Su J, Wang HY, Liu Q, Wang RF. PHF20 Promotes Glioblastoma Cell Malignancies Through a WISP1/ BGN-Dependent Pathway. Front Oncol 2020; 10:573318. [PMID: 33117706 PMCID: PMC7574681 DOI: 10.3389/fonc.2020.573318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) stem cells are resistant to cancer therapy, and therefore responsible for tumor progression and recurrence after conventional therapy. However, the molecular mechanisms driving the maintenance of stemness and dedifferentiation are poorly understood. In this study, we identified plant homeodomain finger-containing protein 20 (PHF20) as a crucial epigenetic regulator for sustaining the stem cell-like phenotype of GBM. It is highly expressed in GBM and tightly associated with high levels of aggressiveness of tumors and potential poor prognosis in GBM patients. Knockout of PHF20 inhibits GBM cell proliferation, as well as its invasiveness and stem cell-like traits. Mechanistically, PHF20 interacts with WDR5 and binds to the promoter regions of WISP1 for its expression. Subsequently, WISP1 and BGN act in concert to regulate the degradation of β-Catenin. Our findings have identified PHF20 as a key driver of GBM malignant behaviors, and provided a potential target for developing prognosis and therapy.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery in the Third Hospital of Peking University, Peking University, Beijing, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chongming Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun Su
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Editorial Office of Asian Biomedicine. Measuring signal transduction and transcription molecules for clinical use. ASIAN BIOMED 2020; 14:175-176. [PMID: 37551264 PMCID: PMC10373411 DOI: 10.1515/abm-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
|
15
|
Mohamed H, Haglund C, Jouhi L, Atula T, Hagström J, Mäkitie A. Expression and Role of E-Cadherin, β-Catenin, and Vimentin in Human Papillomavirus-Positive and Human Papillomavirus-Negative Oropharyngeal Squamous Cell Carcinoma. J Histochem Cytochem 2020; 68:595-606. [PMID: 32794417 PMCID: PMC7469711 DOI: 10.1369/0022155420950841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is subclassified by the World Health Organization into two different entities: human papillomavirus (HPV)-positive and HPV-negative tumors. HPV infection promotes the epithelial-to-mesenchymal transition (EMT) and transformation of keratinocyte stem cells into cancer stem cells. EMT is a crucial process in the carcinogenesis of epithelial-derived malignancies, and we aimed to study the role of its markers in OPSCC. This study consists of 202 consecutive OPSCC patients diagnosed and treated with curative intent. We examined E-cadherin, β-catenin, and vimentin expression using immunohistochemistry and compared these with tumor and patient characteristics and treatment outcome. We found that the cell-membranous expression of β-catenin was stronger in HPV-positive than in HPV-negative tumors, and it was stronger in the presence of regional metastasis. The stromal vimentin expression was stronger among HPV-positive tumors. A high E-cadherin expression was associated with tumor grade. No relationship between these markers and survival emerged. In conclusion, β-catenin and vimentin seem to play different roles in OPSCC: the former in the tumor tissue itself, and the latter in the tumor stroma. HPV infection may exploit the β-catenin and vimentin pathways in carcinogenic process. More, β-catenin may serve as a marker for the occurrence of regional metastasis:
Collapse
Affiliation(s)
- Hesham Mohamed
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Histology, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Lauri Jouhi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Atula
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Reagan M. CAUSES OF CANCER. Cancer 2019. [DOI: 10.1002/9781119645214.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Wang W, Smits R, Hao H, He C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers (Basel) 2019; 11:E926. [PMID: 31269694 PMCID: PMC6679127 DOI: 10.3390/cancers11070926] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam 3015 CN, The Netherlands
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Mercer KE, Pulliam CF, Hennings L, Cleves MA, Jones EE, Drake RR, Ronis MJJ. Diet Supplementation with Soy Protein Isolate, but Not the Isoflavone Genistein, Protects Against Alcohol-Induced Tumor Progression in DEN-Treated Male Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:115-126. [PMID: 30362095 PMCID: PMC6385589 DOI: 10.1007/978-3-319-98788-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diethylnitrosamine-treated male mice were assigned to 4 groups: a casein-based 35% high fat ethanol liquid diet (EtOH), an EtOH diet made with soy protein isolate protein (EtOH/SOY), an EtOH liquid diet supplemented with genistein (EtOH/GEN) and a chow group. EtOH feeding, final concentration 5% (v/v), continued for 16 wks. EtOH increased incidence and multiplicity of basophilic lesions and adenomas compared to the chow group, (p < 0.05). The EtOH/SOY group had reduced adenoma progression when compared to the EtOH and EtOH/GEN group, (p < 0.05). Genistein supplementation had no protective effect. Soy feeding significantly reduced serum ALT concentrations (p < 0.05), decreased hepatic TNFα and CD-14 expression and decreased nuclear accumulation of NFκB protein in EtOH/SOY-treated mice compared to the EtOH group (p < 0.05). With respect to ceramides, high resolution MALDI-FTICR Imaging mass spectrometry revealed changes in the accumulation of long acyl chain ceramide species, in particular C18, in the EtOH group when compared to the EtOH/SOY group. Additionally, expression of acid ceramidase and sphingosine kinase 1 which degrade ceramide into sphingosine and convert sphingosine to sphingosine-1-phosphate (S1P) respectively and expression of S1P receptors S1PR2 and S1PR3 were all upregulated by EtOH and suppressed in the EtOH/SOY group, p < 0.05. EtOH feeding also increased hepatocyte proliferation and mRNA expression of β-catenin targets, including cyclin D1, MMP7 and glutamine synthase, which were reduced in the EtOH/SOY group, p < 0.05. These findings suggest that soy prevents tumorigenesis by reducing inflammation and by reducing hepatocyte proliferation through inhibition of EtOH-mediated β-catenin signaling. These mechanisms may involve blockade of sphingolipid signaling.
Collapse
Affiliation(s)
- K E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - C F Pulliam
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Hennings
- Departmant of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M A Cleves
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - E E Jones
- Medical University of South Carolina Proteomic Center, Charleston, SC, USA
| | - R R Drake
- Medical University of South Carolina Proteomic Center, Charleston, SC, USA
| | - M J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
19
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
20
|
Berral-Gonzalez A, Riffo-Campos AL, Ayala G. OMICfpp: a fuzzy approach for paired RNA-Seq counts. BMC Genomics 2019; 20:259. [PMID: 30940089 PMCID: PMC6444640 DOI: 10.1186/s12864-019-5496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq do not provide accurate absolute measurements and the results can be different for each pipeline used. The major problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the large number of variables. In addition, experimental design must be taken into account and few tools consider it. RESULTS We propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68 sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz . CONCLUSIONS Our study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and robust method to select the target genes for experimental validation.
Collapse
Affiliation(s)
- Alberto Berral-Gonzalez
- Grupo de Investigación Bioinformática y Genómica Funcional. Laboratorio 19. Centro de Investigación del Cáncer (CiC-IBMCC, Universidad de Salamanca-CSIC, Campus Universitario Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Angela L. Riffo-Campos
- Universidad de La Frontera. Centro De Excelencia de Modelación y Computación Científica, C/ Montevideo 740, Temuco, Chile
| | - Guillermo Ayala
- Universidad de Valencia. Departamento de Estadística e Investigación Operativa, Avda. Vicent Andrés Estellés, 1, Burjasot, 46100 Spain
| |
Collapse
|
21
|
Xiao J, Xing F, Liu Y, Lv Y, Wang X, Ling MT, Gao H, Ouyang S, Yang M, Zhu J, Xia Y, So KF, Tipoe GL. Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway. Acta Pharm Sin B 2018; 8:575-586. [PMID: 30109182 PMCID: PMC6090075 DOI: 10.1016/j.apsb.2017.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Whether and how garlic-derived S-allylmercaptocysteine (SAMC) inhibits hepatocellular carcinoma (HCC) is largely unknown. In the current study, the role of low-density lipoprotein receptor (LDLR)-related protein 6 (LRP6) in HCC progression and the anti-HCC mechanism of SAMC was examined in clinical sample, cell model and xenograft/orthotopic mouse models. We demonstrated that SAMC inhibited cell proliferation and tumorigenesis, while induced apoptosis of human HCC cells without influencing normal hepatocytes. SAMC directly interacted with Wnt-pathway co-receptor LRP6 on the cell membrane. LRP6 was frequently over-expressed in the tumor tissue of human HCC patients (66.7% of 48 patients) and its over-expression only correlated with the over-expression of β-catenin, but not with age, gender, tumor size, stage and metastasis. Deficiency or over-expression of LRP6 in hepatoma cells could partly mimic or counteract the anti-tumor properties of SAMC, respectively. In vivo administration of SAMC significantly suppressed the growth of Huh-7 xenograft/orthotopic HCC tumor without causing undesirable side effects. In addition, stable down-regulation of LRP6 in Huh-7 facilitated the anti-HCC effects of SAMC. In conclusion, LRP6 can be a potential therapeutic target of HCC. SAMC is a promising specific anti-tumor agent for treating HCC subtypes with Wnt activation at the hepatoma cell surface.
Collapse
Key Words
- Axin1, axis inhibition protein 1
- DKK-1, Dickkopf Wnt signaling pathway inhibitor 1
- DVL2, disheveled 2
- FADD, Fas-associated protein with death domain
- HCC
- HCC, hepatocellular carcinoma
- Human
- KD, knock-down
- LDH, lactate dehydrogenase
- LRP6
- LRP6, low-density lipoprotein receptor (LDLR)-related protein 6
- MCL-1, myeloid cell leukemin-1
- NAFLD, non-alcoholic fatty liver disease
- Nude mice
- PCNA, proliferating cell nuclear antigen
- S-allylmercaptocysteine
- SAC, S-allylcysteine
- SAMC, S-allylmercaptocysteine
- SPR, surface plasmon resonance
- TCF/LEF, T-cell factor/lymphoid enhancing factor
- TSA, thermal shift assay
- Tm, melting temperature
- Wnt
Collapse
|
22
|
Chen CT, Lee HL, Chiou HL, Chou CH, Wang PH, Yang SF, Chou YE. Impacts of WNT1-inducible signaling pathway protein 1 polymorphism on hepatocellular carcinoma development. PLoS One 2018; 13:e0198967. [PMID: 29889892 PMCID: PMC5995385 DOI: 10.1371/journal.pone.0198967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND WNT1-inducible signaling pathway protein 1 (WISP1) is a member of CCN protein family and a downstream target of β-catenin. Aberrant WISP1 expression is associated with carcinogenesis. In the current study, we focused on examining WISP1 single nucleotide polymorphisms (SNPs) to elucidate hepatocellular carcinoma (HCC) clinicopathologic characteristics. METHODOLOGY/PRINCIPAL FINDINGS The WISP1 SNPs rs2977530, rs2977537, rs2929973, rs2929970, rs62514004, and rs16893344 were analyzed by real-time polymerase chain reaction in 332 patients with HCC and 664 cancer-free controls. RESULTS The patients with higher frequencies of WISP1 rs62514004 (AG + GG) and rs16893344 (CT + TT) variants revealed a lower risk to reach a later clinical stage compared with their wild-type carriers. Furthermore, individuals who carried WISP1 rs62514004 and rs16893344 haplotype G-T showed a greater synergistic effect combined with alcohol drinking on HCC development (AOR = 26.590, 95% CI = 9.780-72.295). CONCLUSIONS Our results demonstrated that the HCC patients with WISP1 SNPs are associated with HCC development, and WISP1 SNPs may serve as markers or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Chih-Tien Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Jiao Y, Wu Y, Du D. Polydatin inhibits cell proliferation, invasion and migration, and induces cell apoptosis in hepatocellular carcinoma. ACTA ACUST UNITED AC 2018. [PMID: 29513792 PMCID: PMC5856444 DOI: 10.1590/1414-431x20176867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polydatin, a small molecule from Polygonum cuspidatum, has many biological functions, particularly anti-cancer effects. However, the anti-cancer effects of polydatin in hepatocellular carcinoma (HCC) have not been examined yet. In the present study, MTT assay, BrdU assay, transwell invasion assay, and wound healing assay were performed to determine cell proliferation, invasion and migration. Flow cytometry and TUNEL assay were used to measure cell apoptosis. Quantitative real-time PCR and western blotting assays were used to determine mRNA and protein expression levels. Xenograft experiment was performed to determine the in vivo anti-tumor effect of polydatin. Immunostaining was performed to analyze the expression of caspase-3 and Ki-67. Our results showed that polydatin inhibited cell proliferation in a concentration-dependent and time-dependent manner in the HCC cell lines. Polydatin also induced cell apoptosis in a concentration-dependent manner possibly via increasing the caspase-3 activity, and up-regulating the protein expression of caspase-3, caspase-9, Bax, and down-regulating the protein expression of Bcl-2. In addition, polydatin treatment had an inhibitory effect on cell proliferation, invasion and migration in HCC cell lines. Polydatin treatment also suppressed the Wnt/beta-catenin signaling activities in HCC cells. Polydatin treatment significantly reduced tumor growth in nude mice inoculated with HepG2 cells, suppressed the expression of Ki-67, and increased caspase-3 expression and TUNEL activity. Our data indicated the important role of polydatin for the suppression of HCC progression.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Physical Examination, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yan Wu
- Department of Endocrinology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dong Du
- Department of Physical Examination, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
24
|
Xu M, Luo J. Alcohol and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9110158. [PMID: 29156633 PMCID: PMC5704176 DOI: 10.3390/cancers9110158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and differentiation capacity, play an important role in tumor initiation, progression, metastasis, recurrence, and therapy resistance. The recent research evidence suggests that alcohol increases the CSC population in cancers, which may underlie alcohol-induced tumor promotion. This review discusses the recent progress in the research of alcohol promotion of CSC and underlying cellular/molecular mechanisms. The review will further explore the therapeutic potential of CSC inhibition in treating alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|
25
|
Dai ZJ, Liu XH, Wang M, Guo Y, Zhu W, Li X, Lin S, Tian T, Liu K, Zheng Y, Xu P, Jin T, Li X. IL-18 polymorphisms contribute to hepatitis B virus-related cirrhosis and hepatocellular carcinoma susceptibility in Chinese population: a case-control study. Oncotarget 2017; 8:81350-81360. [PMID: 29113394 PMCID: PMC5655289 DOI: 10.18632/oncotarget.18531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/04/2017] [Indexed: 12/17/2022] Open
Abstract
IL-18 polymorphisms influence the transcriptional activity of the IL-18 gene and associated with various diseases. However, their relationships with hepatitis B virus-related liver diseases had not reached a consensus. So we conducted this case-control study with a view to clarifying the association. We included four groups: healthy controls, chronic hepatitis B virus (CHB) carriers, liver cirrhosis (LC) and hepatocellular carcinoma (HCC) groups with each group of 250 persons. Odd ratios (ORs) and 95% confidence intervals (95%CIs) with or without adjustment were calculated. Haplotype analysis was also performed. The results showed people carrying rs187238 CG genotype had a lower risk of LC (CG vs. CC: OR = 0.59, 95%CI = 0.38-0.91, P = 0.02), while GG genotype carriers had a higher risk of HCC (GG vs. CC+CG: OR = 4.73, 95%CI = 1.01-22.1, P = 0.03) than those with CC and CG genotypes in healthy group. Rs187238 GG genotype increased the risk from CHB to LC status (GG vs. CC: OR = 4.81, 95%CI = 1.03-22.6; GG vs. CC+CG: OR = 4.73, 95%CI = 1.01-22.1), meanwhile the trend also existed by controlling confounding factors (GG vs. CC: OR = 6.25, 95%CI = 1.09-35.8; GG vs. CC+CG: OR = 5.91, 95%CI = 1.04-33.7). Haplotype Crs187238Trs1946518 moderately decreased the risk of CHB carriers developing into HCC (OR = 0.69, 95%CI = 0.50-0.96, P = 0.03) after adjustment. In conclusion, IL-18 rs187238 GG genotype may increase the risk of HCC in healthy population and the risk of LC in CHB carriers.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xing-Han Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianbo Jin
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi’an, China
| | - Xiaopeng Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
26
|
Alcohol Regulates BK Surface Expression via Wnt/β-Catenin Signaling. J Neurosci 2017; 36:10625-10639. [PMID: 27733613 DOI: 10.1523/jneurosci.0491-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify β-catenin as a primary necessary protein. Alcohol increases β-catenin, and blocking accumulation of β-catenin blocks alcohol-induced internalization in these neurons. In transfected HEK293 cells, suppression of Wnt/β-catenin signaling blocks ethanol-induced internalization. Conversely, activation of Wnt/β-catenin reduces BK current density. A point mutation in a putative glycogen synthase kinase phosophorylation site within the S10 region of BK blocks internalization, suggesting that Wnt/β-catenin directly regulates alcohol-induced BK internalization via glycogen synthase kinase phosphorylation. These findings establish de novo protein synthesis and Wnt/β-catenin signaling as critical in mediating a persistent form of BK molecular alcohol tolerance establishing a commonality with other forms of long-term plasticity. SIGNIFICANCE STATEMENT Alcohol tolerance is a key step toward escalating alcohol consumption and subsequent dependence. Our research aims to make significant contributions toward novel, therapeutic approaches to prevent and treat alcohol misuse by understanding the molecular mechanisms of alcohol tolerance. In our current study, we identify the role of a key regulatory pathway in alcohol-induced persistent molecular changes within the hippocampus. The canonical Wnt/β-catenin pathway regulates BK channel surface expression in a protein synthesis-dependent manner reminiscent of other forms of long-term hippocampal neuronal adaptations. This unique insight opens the possibility of using clinically tested drugs, targeting the Wnt/β-catenin pathway, for the novel use of preventing and treating alcohol dependency.
Collapse
|
27
|
Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther 2017; 10:1665-1671. [PMID: 28360527 PMCID: PMC5364014 DOI: 10.2147/ott.s129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fengyun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haifeng Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
28
|
Qu C, He D, Lu X, Dong L, Zhu Y, Zhao Q, Jiang X, Chang P, Jiang X, Wang L, Zhang Y, Bi L, He J, Peng Y, Su J, Zhang H, Huang H, Li Y, Zhou S, Qu Y, Zhao Y, Zhang Z. Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation. J Hepatol 2016; 64:1076-1089. [PMID: 26778753 DOI: 10.1016/j.jhep.2016.01.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In this study, we investigated the role of salt-inducible kinase 1 (SIK1) and its possible mechanisms in human hepatocellular carcinoma (HCC). METHODS Immunoprecipitation, immunohistochemistry, luciferase reporter, Chromatin immunoprecipitation, in vitro kinase assays and a mouse model were used to examine the role of SIK1 on the β-catenin signaling pathway. RESULTS SIK1 was significantly downregulated in HCC compared with normal controls. Its introduction in HCC cells markedly suppresses epithelial-to-mesenchymal transition (EMT), tumor growth and lung metastasis in xenograft tumor models. The effect of SIK1 on tumor development occurs at least partially through regulation of β-catenin, as evidenced by the fact that SIK1 overexpression leads to repression of β-catenin transcriptional activity, while SIK1 depletion has the opposite effect. Mechanistically, SIK1 phosphorylates the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) at threonine (T)1391, which promotes the association of nuclear receptor corepressor (NCoR)/SMRT with transducin-beta-like protein 1 (TBL1)/transducing-beta-like 1 X-linked receptor 1 (TBLR1) and disrupts the binding of β-catenin to the TBL1/TBLR1 complex, thereby inactivating the Wnt/β-catenin pathway. However, SMRT-T1391A reverses the phenotype of SIK1 and promotes β-catenin transactivation. Twist1 is identified as a critical factor downstream of SIK1/β-catenin axis, and Twist1 knockdown (Twist1(KD)) reverses SIK1(KD)-mediated changes, whereas SIK1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing tumor growth and metastasis than SIK1(KD) cells. The promoter activity of SIK1 were negatively regulated by Twist1, indicating that a double-negative feedback loop exists. Importantly, levels of SIK1 inversely correlate with Twist1 expression in human HCC specimens. CONCLUSIONS Our findings highlight the critical roles of SIK1 and its targets in the regulation of HCC development and provides potential new candidates for HCC therapy.
Collapse
Affiliation(s)
- Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - De He
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Pengyu Chang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xinping Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Lizhe Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Lirong Bi
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Peng
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Heng Zhang
- Department of Medicine, College of Clinical Science, Three Gorges University, Yichang, Hubei, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China.
| | - Zhiyong Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy(Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical University, Nanning, Guangxi, China; Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
29
|
Mercer KE, Pulliam C, Hennings L, Lai K, Cleves M, Jones E, Drake RR, Ronis M. Soy Protein Isolate Protects Against Ethanol-Mediated Tumor Progression in Diethylnitrosamine-Treated Male Mice. Cancer Prev Res (Phila) 2016; 9:466-75. [PMID: 27006377 DOI: 10.1158/1940-6207.capr-15-0417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
In this study, diethylnitrosamine-treated male mice were assigned to three groups: (i) a 35% high fat ethanol liquid diet (EtOH) with casein as the protein source, (ii) the same EtOH liquid diet with soy protein isolate as the sole protein source (EtOH/SPI), (iii) and a chow group. EtOH feeding continued for 16 weeks. As expected, EtOH increased the incidence and multiplicity of basophilic lesions and adenomas compared with the chow group, P < 0.05. Soy protein replacement of casein in the EtOH diet significantly reduced adenoma progression when compared with the EtOH and EtOH/SPI group (P < 0.05). Tumor reduction in the EtOH/SPI group corresponded to reduced liver injury associated with decreased hepatic Tnfα and Cd14 antigen (Cd14) expression and decreased nuclear accumulation of NF-κB1 protein compared with the EtOH group (P < 0.05). Detection of sphingolipids using high-resolution matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging mass spectrometry revealed increased accumulation of long acyl chain ceramide species, and sphingosine-1-phosphate (S1P) in the EtOH group that were significantly reduced in the EtOH/SPI group. Chronic EtOH feeding also increased mRNA expression of β-catenin transcriptional targets, including cyclin D1 (Ccnd1), matrix metallopeptidase 7 (Mmp7), and glutamine synthetase (Glns), which were reduced in the EtOH/SPI group (P < 0.05). We conclude that soy prevents tumorigenesis by reducing proinflammatory and oxidative environment resulting from EtOH-induced hepatic injury, and by reducing hepatocyte proliferation through inhibition of β-catenin signaling. These mechanisms may involve changes in sphingolipid signaling. Cancer Prev Res; 9(6); 466-75. ©2016 AACR.
Collapse
Affiliation(s)
- Kelly E Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas. Arkansas Children's Nutrition Center, Little Rock, Arkansas.
| | - Casey Pulliam
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Keith Lai
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario Cleves
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Ellen Jones
- Medical University of South Carolina Proteomic Center, Charleston, South Carolina
| | - Richard R Drake
- Medical University of South Carolina Proteomic Center, Charleston, South Carolina
| | - Martin Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
30
|
Zhang S, Li J, Liu P, Xu J, Zhao W, Xie C, Yin Z, Wang X. Pygopus-2 promotes invasion and metastasis of hepatic carcinoma cell by decreasing E-cadherin expression. Oncotarget 2016; 6:11074-86. [PMID: 25871475 PMCID: PMC4484440 DOI: 10.18632/oncotarget.3570] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/22/2015] [Indexed: 12/11/2022] Open
Abstract
Pygopus-2 over-expression has been reported in several malignancies, such as ovarian, breast, lung and liver cancers. Here we demonstrated that down-regulation of Pygopus-2 by shRNA inhibited hepatic carcinoma cell invasion in vitro and metastasis in xenograft tumor models, which were promoted when Pygopus-2 was over-expressed. Pygopus-2 increased hepatic carcinoma cell invasion and metastasis, by decreasing E-cadherin. Pygopus-2 could bind to the E-cadherin promoter, increasing its methylation, and also indirectly decreased zeb2 expression. In turn these effects caused down-regulation of E-cadherin, potentiating invasion and metastasis. We suggest that targeting Pygopus-2 may potentially inhibit metastasis of hepatic carcinoma.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Jianfeng Xu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Wenxiu Zhao
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, Fujian, China
| |
Collapse
|
31
|
Hu W, Fan C, Jiang P, Ma Z, Yan X, Di S, Jiang S, Li T, Cheng Y, Yang Y. Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-223. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peng Jiang
- Department of Orthopaedics, The 82th Hospital of PLA, Huaian, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Yedong Cheng
- Department of Orthopaedics, The 82th Hospital of PLA, Huaian, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|