1
|
Conner TS, Baaijens FPT, Bouten CVC, Angeloni L, Smits AIPM. A call for standardization: Evaluating different methodologies to induce in vitro foreign body giant cell formation for biomaterials research and design. Acta Biomater 2025; 194:20-37. [PMID: 39826854 DOI: 10.1016/j.actbio.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Foreign body giant cells (FBGCs) are crucial in the foreign body reaction at the biomaterial-tissue interface, forming through the fusion of cells from the monocyte/macrophage lineage and performing functions such as material degradation and fibrous encapsulation. Yet, their presence and role in biomaterials research is only slowly unveiled. This review analyzed existing FBGC literature identified through a search string and sources from FBGC articles to evaluate the most commonly used methods and highlight the challenges in establishing a standardized protocol. Our findings revealed a fragmented research landscape marked by significant variability in in vitro culture conditions, i.e., cell origin and type, culture media and sera, fusion-inducing factors, seeding density, culture surface, and inconsistencies in the read-outs. This complicates efforts toward standardization and hampers cross-study comparisons. Based on these results, we highlight the need and propose guidelines for standardized culture protocols for FBGC research. Overall, this review aims to underscore the relevance of improving reproducibility and reliability in FBGC research, facilitating effective cross-study comparisons and advancing understanding of FBGC formation and function, ultimately contributing to designing more effective biomaterial-based therapies. STATEMENT OF SIGNIFICANCE: Foreign body giant cells (FBGCs) are crucial in the body's response to implanted biomaterials. Yet, current research addressing their role and impact is highly fragmented. This review comprehensively and systematically examines the diverse methodologies and definitions used in FBGC research and identifies critical gaps and inconsistencies hindering the reproducibility and comparison of findings. By advocating for standardized protocols, we aim to enhance the reliability and equivalence of research, thus providing a stronger foundation for understanding biomaterial-driven FBGC formation and function. Establishing such a framework will impact biomaterial-based therapies, supporting their effectiveness and safety in medical applications, and is thus of relevance for scientists, companies, and clinicians in the biomaterial and medical device communities.
Collapse
Affiliation(s)
- Thijs S Conner
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Livia Angeloni
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands.
| |
Collapse
|
2
|
Mahanty M, Dutta B, Ou W, Zhu X, Bromberg JS, He X, Rahaman SO. Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants. Biomaterials 2025; 314:122855. [PMID: 39362025 PMCID: PMC11560625 DOI: 10.1016/j.biomaterials.2024.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. FBR presents a complex bioengineering and medical challenge due to the lack of current treatments, making the detailed exploration of its molecular mechanisms crucial for developing new and effective therapies. To identify key molecular targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR as assessed by atomic force microscopy; and (e) miR-146a is linked to F-actin production and cellular traction force induction as determined by traction force microscopy, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.
Collapse
Affiliation(s)
- Manisha Mahanty
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Bidisha Dutta
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA
| | - Wenquan Ou
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | | | - Xiaoming He
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- University of Maryland, Department of Nutrition and Food Science, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Schoberleitner I, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. SMI-Capsular Fibrosis and Biofilm Dynamics: Molecular Mechanisms, Clinical Implications, and Antimicrobial Approaches. Int J Mol Sci 2024; 25:11675. [PMID: 39519227 PMCID: PMC11546664 DOI: 10.3390/ijms252111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Silicone mammary implants (SMIs) frequently result in capsular fibrosis, which is marked by the overproduction of fibrous tissue surrounding the implant. This review provides a detailed examination of the molecular and immunological mechanisms driving capsular fibrosis, focusing on the role of foreign body responses (FBRs) and microbial biofilm formation. We investigate how microbial adhesion to implant surfaces and biofilm development contribute to persistent inflammation and fibrotic responses. The review critically evaluates antimicrobial strategies, including preoperative antiseptic protocols and antimicrobial-impregnated materials, designed to mitigate infection and biofilm-related complications. Additionally, advancements in material science, such as surface modifications and antibiotic-impregnated meshes, are discussed for their potential to reduce capsular fibrosis and prevent contracture of the capsule. By integrating molecular insights with clinical applications, this review aims to elucidate the current understanding of SMI-related fibrotic responses and highlight knowledge gaps. The synthesis of these findings aims to guide future research directions of improved antimicrobial interventions and implant materials, ultimately advancing the management of capsular fibrosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Mahanty M, Dutta B, Ou W, Zhu X, Bromberg JS, He X, Rahaman SO. Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588018. [PMID: 38617341 PMCID: PMC11014630 DOI: 10.1101/2024.04.03.588018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Host recognition and immune-mediated foreign body response (FBR) to biomaterials can adversely affect the functionality of implanted materials. To identify key targets underlying the generation of FBR, here we perform analysis of microRNAs (miR) and mRNAs responses to implanted biomaterials. We found that (a) miR-146a levels inversely affect macrophage accumulation, foreign body giant cell (FBGC) formation, and fibrosis in a murine implant model; (b) macrophage-derived miR-146a is a crucial regulator of the FBR and FBGC formation, as confirmed by global and cell-specific knockout of miR-146a; (c) miR-146a modulates genes related to inflammation, fibrosis, and mechanosensing; (d) miR-146a modulates tissue stiffness near the implant during FBR; and (e) miR-146a is linked to F-actin production and cellular traction force induction, which are vital for FBGC formation. These novel findings suggest that targeting macrophage miR-146a could be a selective strategy to inhibit FBR, potentially improving the biocompatibility of biomaterials.
Collapse
|
6
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
7
|
Lee S, Park S, Park J, Lee JY. Implantable polypyrrole bioelectrodes inducing anti-inflammatory macrophage polarization for long-term in vivo signal recording. Acta Biomater 2023; 168:458-469. [PMID: 37414115 DOI: 10.1016/j.actbio.2023.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Bioelectrodes are critical components of implantable electronic devices that enable precise electrical signal transmission in close contact with living tissues. However, their in vivo performance is often compromised by inflammatory tissue reactions mainly induced by macrophages. Hence, we aimed to develop implantable bioelectrodes with high performance and high biocompatibility by actively modulating the inflammatory response of macrophages. Consequently, we fabricated heparin-doped polypyrrole electrodes (PPy/Hep) and immobilized anti-inflammatory cytokines (interleukin-4 [IL-4]) via non-covalent interactions. IL-4 immobilization did not alter the electrochemical performance of the original PPy/Hep electrodes. In vitro primary macrophage culture revealed that IL-4-immobilized PPy/Hep electrodes induced anti-inflammatory polarization of macrophages, similar to the soluble IL-4 control. In vivo subcutaneous implantation indicated that IL-4 immobilization on PPy/Hep promoted the anti-inflammatory polarization of host macrophages and significantly mitigated scarring around the implanted electrodes. In addition, high-sensitivity electrocardiogram signals were recorded from the implanted IL-4-immobilized PPy/Hep electrodes and compared to bare gold and PPy/Hep electrodes, which were maintained for up to 15 days post-implantation. This simple and effective surface modification strategy for developing immune-compatible bioelectrodes will facilitate the development of various electronic medical devices that require high sensitivities and long-term stabilities. STATEMENT OF SIGNIFICANCE: To fabricate highly immunocompatible conductive polymer-based implantable electrodes with high performance and stability in vivo, we introduced the anti-inflammatory activity to PPy/Hep electrodes by immobilizing IL-4 via non-covalent surface modification. IL-4-immobilized PPy/Hep could significantly mitigate inflammatory responses and scarring around implants by skewing macrophages to an anti-inflammatory phenotype. The IL-4-immobilized PPy/Hep electrodes could successfully record in vivo electrocardiogram signals for up to 15 days with no substantial sensitivity loss, retaining their superior sensitivity compared to bare gold and pristine PPy/Hep electrodes. Our simple and effective surface modification strategy for developing immune-compatible bioelectrodes will facilitate the development of various electronic medical devices that require high sensitivities and long-term stabilities, such as neural electrode arrays, biosensors, and cochlear electrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sehyeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Ma J, Xu Y, Zhang M, Li Y. Geraniol ameliorates acute liver failure induced by lipopolysaccharide/D-galactosamine via regulating macrophage polarization and NLRP3 inflammasome activation by PPAR-γ methylation Geraniol alleviates acute liver failure. Biochem Pharmacol 2023; 210:115467. [PMID: 36849063 DOI: 10.1016/j.bcp.2023.115467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Geraniol (Ger), a natural acyclic monoterpene alcohol, has been reported to exert protective effects through anti-inflammation in Acute liver failure (ALF). However, its specific roles and precise mechanisms underlying anti-inflammatory effects in ALF have not yet fully explored. We aimed to investigated the hepatoprotective effects and mechanisms of Ger against ALF induced by lipopolysaccharide (LPS)/D-galactosamine (GaIN). In this study, the liver tissue and serum of LPS/D-GaIN-induced mice were collected. The degree of liver tissue injury was evaluated by HE and TUNEL staining. Serum levels of liver injury markers (ALT and AST) and inflammatory factors were measured by ELISA assays. PCR and western blotting were conducted to determine the expression of inflammatory cytokines, NLRP3 inflammasome-related proteins, PPAR-γ pathway-related proteins, DNA Methyltransferases and M1/M2 polarization cytokines. Immunofluorescence staining was used to assess the localization and expression of macrophage markers (F4/80 and CD86), NLRP3 and PPAR-γ. In vitro experiments were performed in macrophages stimulated with LPS with or without IFN-γ. Purification of macrophages and cell apoptosis was analyzed using flow cytometry. We found that Ger effectively alleviated ALF in mice, specified by the attenuation of liver tissue pathological damage, inhibition of ALT, AST and inflammatory factor levels, and inactivation of NLRP3 inflammasome. Meanwhile, downregulation M1 macrophage polarization may involve in the protective effects of Ger. In vitro, Ger reduced the activation of NLRP3 inflammasome and apoptosis through regulating PPAR-γ methylation by inhibiting M1 macrophage polarization. In conclusion, Ger protects against ALF through suppressing NLRP3 inflammasome-mediated inflammation and LPS-induced macrophage M1 polarization via modulating PPAR-γ methylation.
Collapse
Affiliation(s)
- Jing Ma
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yun Xu
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Min Zhang
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yi Li
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Jimenez-Rosales A, Cortes-Camargo S, Acuña-Avila PE. Minireview: biocompatibility of engineered biomaterials, their interaction with the host cells, and evaluation of their properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Stefani Cortes-Camargo
- Department of Nanotechnology, Technological University of Zinacantepec, Zinacantepec, Mexico
| | | |
Collapse
|
12
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front Cardiovasc Med 2022; 9:952178. [PMID: 36176991 PMCID: PMC9513146 DOI: 10.3389/fcvm.2022.952178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In situ heart valve tissue engineering approaches have been proposed as promising strategies to overcome the limitations of current heart valve replacements. Tissue engineered heart valves (TEHVs) generated from in vitro grown tissue engineered matrices (TEMs) aim at mimicking the microenvironmental cues from the extracellular matrix (ECM) to favor integration and remodeling of the implant. A key role of the ECM is to provide mechanical support to and attract host cells into the construct. Additionally, each ECM component plays a critical role in regulating cell adhesion, growth, migration, and differentiation potential. Importantly, the immune response to the implanted TEHV is also modulated biophysically via macrophage-ECM protein interactions. Therefore, the aim of this review is to summarize what is currently known about the interactions and signaling networks occurring between ECM proteins and macrophages, and how these interactions may impact the long-term in situ remodeling outcomes of TEMs. First, we provide an overview of in situ tissue engineering approaches and their clinical relevance, followed by a discussion on the fundamentals of the remodeling cascades. We then focus on the role of circulation-derived and resident tissue macrophages, with particular emphasis on the ramifications that ECM proteins and peptides may have in regulating the host immune response. Finally, the relevance of these findings for heart valve tissue engineering applications is discussed.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert, ,
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Emanuela S. Fioretta,
| |
Collapse
|
13
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
14
|
Goswami R, Arya RK, Sharma S, Dutta B, Stamov DR, Zhu X, Rahaman SO. Mechanosensing by TRPV4 mediates stiffness-induced foreign body response and giant cell formation. Sci Signal 2021; 14:eabd4077. [PMID: 34726952 PMCID: PMC9976933 DOI: 10.1126/scisignal.abd4077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Implantation of biomaterials or devices into soft tissue often leads to the development of the foreign body response (FBR), an inflammatory condition that can cause implant failure, tissue injury, and death of the patient. Macrophages accumulate and fuse to generate destructive foreign body giant cells (FBGCs) at the tissue-implant interface, leading to the development of fibrous scar tissue around the implant that is generated by myofibroblasts. We previously showed that the FBR in vivo and FBGC formation in vitro require transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel. Here, we report that TRPV4 was required specifically for the FBR induced by implant stiffness independently of biochemical cues and for intracellular stiffening that promotes FBGC formation in vitro. TRPV4 deficiency reduced collagen deposition and the accumulation of macrophages, FBGCs, and myofibroblasts at stiff, but not soft, implants in vivo and inhibited macrophage-induced differentiation of wild-type fibroblasts into myofibroblasts in vitro. Atomic force microscopy demonstrated that TRPV4 was required for implant-adjacent tissue stiffening in vivo and for cytoskeletal remodeling and intracellular stiffening induced by fusogenic cytokines in vitro. Together, these data suggest a mechanism whereby a reciprocal functional interaction between TRPV4 and substrate stiffness leads to cytoskeletal remodeling and cellular force generation to promote FBGC formation during the FBR.
Collapse
Affiliation(s)
- Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Rakesh K. Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Dimitar R. Stamov
- JPK BioAFM Business, Nano Surfaces Division, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.,Corresponding author.:
| |
Collapse
|
15
|
Cercone M, Chevalier J, Kennedy JG, Miller AD, Fortier LA. Early Failure of a Polyvinyl Alcohol Hydrogel Implant With Osteolysis and Foreign Body Reactions in an Ovine Model of Cartilage Repair. Am J Sports Med 2021; 49:3395-3403. [PMID: 34424105 DOI: 10.1177/03635465211033601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hemiarthroplasty using a polyvinyl alcohol (PVA) hydrogel synthetic implant has been suggested as a good alternative to arthrodesis for the treatment of hallux rigidus. However, failure rates as high as 20% have been recorded. PURPOSE To characterize the pathological processes in bone, cartilage, and the synovial membrane after PVA hemiarthroplasty in an ovine model with 6 months of follow-up. STUDY DESIGN Controlled laboratory study. METHODS A unilateral osteochondral defect (8-mm diameter × 10-mm depth) was made in the medial femoral condyle in 6 sheep. Animals were randomized to receive a PVA implant (n = 4) or to have an empty defect (n = 2) and were monitored for 6 months. Patellofemoral radiographs were obtained at monthly intervals, and quantitative computed tomography was performed at the end of the study. After death, the joints were macroscopically evaluated and scored. Osteochondral and synovial membrane histological findings were assessed using modified Osteoarthritis Research Society International (OARSI) and aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) scoring systems. Immunohistochemistry using Iba1 was performed to evaluate activated macrophage infiltration. RESULTS Overall, 2 sheep with PVA implants were euthanized at 1 and 5 months because of uncontrollable pain and lameness (failed implants). Quantitative computed tomography showed that sheep with failed implants had 2.1-fold more osteolysis than those with successful implants. The sheep with failed implants had osteoarthritis with extensive glycosaminoglycan loss and cartilage fibrillation of the condyle and opposing tibial surface on histological examination. A foreign body reaction with severe chronic lymphoplasmacytic and granulomatous inflammation with giant cells was detected surrounding the implant. The synovial membrane ALVAL score was 9 of 19 and 14 of 19 in failed implants with synovial hyperplasia and lymphoplasmacytic and macrophage infiltration. In contrast, the synovial membrane in successful implants and empty defects was normal (ALVAL score = 0/19). Immunolabeling for Iba1 in failed implants confirmed extensive and dense macrophage infiltration within the condyle and synovial membrane, with the highest immunoreactive score (9/9). CONCLUSION PVA hydrogel implants had a 50% failure rate with uncontrollable pain, severe osteolysis, inflammation, and foreign body reactions. CLINICAL RELEVANCE The failure rate and pathological characteristics of the PVA implants suggest that their use should not be continued in human patients without further in vivo safety studies.
Collapse
Affiliation(s)
- Marta Cercone
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacqueline Chevalier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - John G Kennedy
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, USA
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Chung JT, Lau CML, Chau Y. The effect of polysaccharide-based hydrogels on the response of antigen-presenting cell lines to immunomodulators. Biomater Sci 2021; 9:6542-6554. [PMID: 34582528 DOI: 10.1039/d1bm00854d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel presents as foreign material to the host and participates in immune responses, which skew the biofunctions of immunologic loads (antigen and adjuvants) during in situ DC priming. This study aims to investigate the effect of the hydrogel made from different polysaccharides on macrophage (RAW264.7) activation and DC (JAWSII) modulation. We adopted polysaccharides of different sugar chemistry to fabricate hydrogels. Hyaluronate (HA), glycol chitosan (GC) and dextran (DX) were functionalized with vinyl sulfone and chemically cross-linked with dithiothreitol via thiol-click chemistry. We found that HA reduced macrophage adhesion and activation on the hydrogel surface. GC and DX promoted M1 polarization in terms of higher CCR7 expression and TNF-α, IL-6 production. In terms of DC engagement, GC promoted antigen uptake by JAWSII and all hydrogels promoted antigen presentation on MHC-I molecules. GC and DX favoured the generation of immunogenic DC while accommodating immunostimulatory functions of IFN-γ and polyI:C or LPS during co-incubation. Particularly, the co-incubation of IP with GC promoted CCR7 expression on JAWSII. Conversely, HA was more appropriate for the construction of a tolerogenic DC priming platform. We observed that HA did not induce co-stimulatory markers expression on DC but suppressed the action of LPS in inducing TNF-α generation. Moreover, when immunosuppressive cytokines, IL-10 and TGF-β were added, cytokines' immunosuppressive action was amplified by hydrogel bedding, HA, GC and to a less extent DX in suppressing LPS-induced IL-6 generation from JAWSII. We concluded that HA is preferable for tolerogenic DC development while minimizing the macrophage response in conferring foreign body response, whereas DX and GC are more appropriate for immunogenic DC development. This study demonstrates the potential of polysaccharides in conferring in situ DC priming together with antigen and adjuvant loads while addressing the tradeoff between the foreign body responses and DC engagement by selecting appropriate polysaccharides for the hydrogel platform construction.
Collapse
Affiliation(s)
- Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
17
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Safran T, Nepon H, Chu CK, Winocour S, Murphy AM, Davison PG, Dionisopolos T, Vorstenbosch J. Current Concepts in Capsular Contracture: Pathophysiology, Prevention, and Management. Semin Plast Surg 2021; 35:189-197. [PMID: 34526867 DOI: 10.1055/s-0041-1731793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over 400,000 women in the United States alone will have breast implant surgery each year. Although capsular contracture represents the most common complication of breast implant surgery, surgeons continue to debate the precise etiology. General agreement exists concerning the inflammatory origin of capsular fibrosis, but the inciting events triggering the inflammatory cascade appear to be multifactorial, making it difficult to predict why one patient may develop capsular contracture while another will not. Accordingly, researchers have explored many different surgical, biomaterial, and medical therapies to address these multiple factors in an attempt to prevent and treat capsular contracture. In the current paper, we aim to inform the reader on the most up-to-date understanding of the pathophysiology, prevention, and treatment of capsular contracture.
Collapse
Affiliation(s)
- Tyler Safran
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Hillary Nepon
- Division of Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Carrie K Chu
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sebastian Winocour
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Amanda M Murphy
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | - Peter G Davison
- Division of Plastic Surgery, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
19
|
Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M. Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials. Biomedicines 2021; 9:biomedicines9060588. [PMID: 34064090 PMCID: PMC8224387 DOI: 10.3390/biomedicines9060588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique. Chitosan electrospinning membranes (ChEsM) were made from Ch and polyethylene oxide (PEO) powders for rich high-porous material with sufficient hemostatic parameters. The structure, porosity, density, antibacterial properties, in vitro degradation and biocompatibility of ChEsM were evaluated and compared to the conventional Ch sponge (ChSp). In addition, the hemostatic and bioactive performance of both materials were examined in vivo, using the liver-bleeding model in rats. A penetrating punch biopsy of the left liver lobe was performed to simulate bleeding from a non-compressible irregular wound. Appropriately shaped ChSp or ChEsM were applied to tissue lesions. Electrospinning allows us to produce high-porous membranes with relevant ChSp degradation and swelling properties. Both materials demonstrated high biocompatibility and hemostatic effectiveness in vitro. However, the antibacterial properties of ChEsM were not as good when compared to the ChSp. In vivo studies confirmed superior ChEsM biocompatibility and sufficient hemostatic performance, with tight interplay with host cells and tissues. The in vivo model showed a higher biodegradation rate of ChEsM and advanced liver repair.
Collapse
Affiliation(s)
- Volodymyr Deineka
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- Correspondence: (V.D.); (M.P.)
| | - Oksana Sulaieva
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- Medical Laboratory CSD, 03148 Kyiv, Ukraine
| | - Mykola Pernakov
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Anna Yanovska
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Aziza Yusupova
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Yuliia Tkachenko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | | | - Alena Zlatska
- Biotechnology Laboratory Ilaya Regeneration, Medical Company Ilaya, 03115 Kyiv, Ukraine;
- State Institute of Genetic and Regenerative Medicine of NAMS of Ukraine, 04114 Kyiv, Ukraine
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- NanoPrime, 39-200 Dębica, Poland
- Correspondence: (V.D.); (M.P.)
| |
Collapse
|
20
|
Zheng Y, Jia XH, Gao N, Xu XD, Cong N, Chi FL. Evaluations on the stability and bio-compatibility of a new piezoelectric microphone for the implantable middle ear microphone. Acta Otolaryngol 2021; 141:506-512. [PMID: 33645422 DOI: 10.1080/00016489.2021.1889030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND A new floating piezoelectric microphone (NFPM), driven by the acoustic vibration of the ossicles, has been manufactured in the lab. OBJECTIVES This study aimed at exploring the stability and bio-compatibility of this NFPM. MATERIALS AND METHODS The NFPM was implanted into the cat tympanic cavity by clamping it to the handle of the malleus, and then a temporal bone computed tomography (CT) plain scan and three dimensional reconstruction were performed to observe its coupling with the handle of the malleus. After six months of implantation, cats' blood samples were taken for pro-inflammatory factor analysis. Then, the operative cavity was opened to check the NFPM, the auditory ossicular chain and some granulation tissue surrounding the NFPM. RESULTS The NFPM was firmly clamped to the handle of the malleus of the cats during the six months of implantation. Besides, there was no obvious systemic inflammatory response in the experimental animals. In addition, local proliferation of granulation tissue occurred in the tympanic cavity without hampering the movement of the auditory ossicle,or causing ischemia of the auditory ossicle. CONCLUSION The NFPM could be implanted in our experimental cats for a long period of time and had good bio-compatibility.
Collapse
Affiliation(s)
- Yu Zheng
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, China
| | - Xian-hao Jia
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, China
| | - Na Gao
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, China
| | - Xin-Da Xu
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, China
| | - Ning Cong
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Fang-lu Chi
- ENT institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, China
| |
Collapse
|
21
|
Wu P, Liang Y, Sun G. Engineering immune-responsive biomaterials for skin regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:61-71. [PMID: 35837252 PMCID: PMC9255827 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
The progress of biomaterials and tissue engineering has led to significant advances in wound healing, but the clinical therapy to regenerate perfect skin remains a great challenge. The implantation of biomaterial scaffolds to heal wounds inevitably leads to a host immune response. Many recent studies revealed that the immune system plays a significant role in both the healing process and the outcome. Immunomodulation or immuno-engineering has thus become a promising approach to develop pro-regenerative scaffolds for perfect skin regeneration. In this paper, we will review recent advancements in immunomodulating biomaterials in the field of skin repair and regeneration, and discuss strategies to modulate the immune response by tailoring the chemical, physical and biological properties of the biomaterials. Understanding the important role of immune responses and manipulating the inherent properties of biomaterials to regulate the immune reaction are approaches to overcome the current bottleneck of skin repair and regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Yangyang Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China,Corresponding author: Guoming Sun,
| |
Collapse
|
22
|
Choi Y, Park C, Kwon D, Lee H, Hong S, Kim GY, Cha HJ, Kim DH, Kim S, Kim HS, Hwang HJ. Immunostimulatory effect of ethanol extract of Chondracanthus tenellus in RAW 264.7 macrophages in vitro. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Biocompatibility and Immune Response of a Newly Developed Volume-Stable Magnesium-Based Barrier Membrane in Combination with a PVD Coating for Guided Bone Regeneration (GBR). Biomedicines 2020; 8:biomedicines8120636. [PMID: 33419327 PMCID: PMC7767206 DOI: 10.3390/biomedicines8120636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
To date, there are no bioresorbable alternatives to non-resorbable and volume-stable membranes in the field of dentistry for guided bone or tissue regeneration (GBR/GTR). Even magnesium (Mg) has been shown to constitute a favorable biomaterial for the development of stabilizing structures. However, it has been described that it is necessary to prevent premature degradation to ensure both the functionality and the biocompatibility of such Mg implants. Different coating strategies have already been developed, but most of them did not provide the desired functionality. The present study analyses a new approach based on ion implantation (II) with PVD coating for the passivation of a newly developed Mg membrane for GBR/GTR procedures. To demonstrate comprehensive biocompatibility and successful passivation of the Mg membranes, untreated Mg (MG) and coated Mg (MG-Co) were investigated in vitro and in vivo. Thereby a collagen membrane with an already shown biocompatibility was used as control material. All investigations were performed according to EN ISO 10993 regulations. The in vitro results showed that both the untreated and PVD-coated membranes were not cytocompatible. However, both membrane types fulfilled the requirements for in vivo biocompatibility. Interestingly, the PVD coating did not have an influence on the gas cavity formation compared to the uncoated membrane, but it induced lower numbers of anti-inflammatory macrophages in comparison to the pure Mg membrane and the collagen membrane. In contrast, the pure Mg membrane provoked an immune response that was fully comparable to the collagen membrane. Altogether, this study shows that pure magnesium membranes represent a promising alternative compared to the nonresorbable volume-stable materials for GBR/GTR therapy.
Collapse
|
24
|
Mohammadi M, Luong JC, Rodriguez SM, Cao R, Wheeler AE, Lau H, Li S, Shabestari SK, Chadarevian JP, Alexander M, de Vos P, Zhao W, Lakey JRT. Controlled Release of Stem Cell Secretome Attenuates Inflammatory Response against Implanted Biomaterials. Adv Healthc Mater 2020; 9:e1901874. [PMID: 32419390 DOI: 10.1002/adhm.201901874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/25/2020] [Indexed: 01/04/2023]
Abstract
Inflammatory response against implanted biomaterials impairs their functional integration and induces medical complications in the host's body. To suppress such immune responses, one approach is the administration of multiple drugs to halt inflammatory pathways. This challenges patient's adherence and can cause additional complications such as infection. Alternatively, biologics that regulate multiple inflammatory pathways are attractive agents in addressing the implants immune complications. Secretome of mesenchymal stromal cells (MSCs) is a multipotent biologic, regulating the homeostasis of lymphocytes and leukocytes. Here, it is reported that alginate microcapsules loaded with processed conditioned media (pCM-Alg) reduces the infiltration and/or expression of CD68+ macrophages likely through the controlled release of pCM. In vitro cultures revealed that alginate can dose dependently induce macrophages to secrete TNFα, IL-6, IL-1β, and GM-CSF. Addition of pCM to the cultures attenuates the secretion of TNFα (p = 0.023) and IL-6 (p < 0.0001) by alginate or lipopolysaccharide (LPS) stimulations. Mechanistically, pCM suppressed the NfκB pathway activation of macrophages in response to LPS (p < 0.0001) in vitro and cathepsin activity (p = 0.005) in response to alginate in vivo. These observations suggest the efficacy of using MSC-derived secretome to prevent or delay the host rejection of implants.
Collapse
Affiliation(s)
- Mohammadreza Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, 92617, USA
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | - Jennifer Cam Luong
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Rui Cao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Hien Lau
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Shiri Li
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | | | - Jean Paul Chadarevian
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Michael Alexander
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Weian Zhao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jonathan Robert Tod Lakey
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, 92617, USA
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, CA, 92868, USA
| |
Collapse
|
25
|
Saleh LS, Vanderheyden C, Frederickson A, Bryant SJ. Prostaglandin E2 and Its Receptor EP2 Modulate Macrophage Activation and Fusion in Vitro. ACS Biomater Sci Eng 2020; 6:2668-2681. [PMID: 33463295 DOI: 10.1021/acsbiomaterials.9b01180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The foreign body response (FBR) has impaired progress of new implantable medical devices through its hallmark of chronic inflammation and foreign body giant cell (FBGC) formation leading to fibrous encapsulation. Macrophages are known to drive the FBR, but efforts to control macrophage polarization remain challenging. The goal for this study was to investigate whether prostaglandin E2 (PGE2), and specifically its receptors EP2 and/or EP4, attenuate classically activated (i.e., inflammatory) macrophages and macrophage fusion into FBGCs in vitro. Lipopolysaccharide (LPS)-stimulated macrophages exhibited a dose-dependent decrease in gene expression and protein production of tumor necrosis factor alpha (TNF-α) when treated with PGE2. This attenuation was primarily by the EP4 receptor, as the addition of the EP2 antagonist PF 04418948 to PGE2-treated LPS-stimulated cells did not recover TNF-α production while the EP4 antagonist ONO AE3 208 did. However, direct stimulation of EP2 with the agonist butaprost to LPS-stimulated macrophages resulted in a ∼60% decrease in TNF-α secretion after 4 h and corresponded with an increase in gene expression for Cebpb and Il10, suggesting a polarization shift toward alternative activation through EP2 alone. Further, fusion of macrophages into FBGCs induced by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was inhibited by PGE2 via EP2 signaling and by an EP2 agonist, but not an EP4 agonist. The attenuation by PGE2 was confirmed to be primarily by the EP2 receptor. Mrc1, Dcstamp, and Retlna expressions increased upon IL-4/GM-CSF stimulation, but only Retnla expression with the EP2 agonist returned to levels that were not different from controls. This study identified that PGE2 attenuates classically activated macrophages and macrophage fusion through distinct EP receptors, while targeting EP2 is able to attenuate both. In summary, this study identified EP2 as a potential therapeutic target for reducing the FBR to biomaterials.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Casey Vanderheyden
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Andrew Frederickson
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Role of macrophage TRPV4 in inflammation. J Transl Med 2020; 100:178-185. [PMID: 31645630 PMCID: PMC7261496 DOI: 10.1038/s41374-019-0334-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023] Open
Abstract
Transient receptor ion channels have emerged as immensely important channels/receptors in diverse physiological and pathological responses. Of particular interest is the transient receptor potential channel subfamily V member 4 (TRPV4), which is a polymodal, nonselective, calcium-permeant cation channel, and is activated by both endogenous and exogenous stimuli. Both neuronal and nonneuronal cells express functional TRPV4, which is responsive to a variety of biochemical and biomechanical stimuli. Emerging discoveries have advanced our understanding of the role of macrophage TRPV4 in numerous inflammatory diseases. In lung injury, TRPV4 mediates macrophage phagocytosis, secretion of pro-resolution cytokines, and generation of reactive oxygen species. TRPV4 regulates lipid-laden macrophage foam cell formation, the hallmark of atheroinflammatory conditions, in response to matrix stiffness and lipopolysaccharide stimulation. Accumulating data also point to a role of macrophage TRPV4 in the pathogenesis of the foreign body response, a chronic inflammatory condition, through the formation of foreign body giant cells. Deletion of TRPV4 in macrophages suppresses the allergic and nonallergic itch in a mouse model, suggesting a role of TRPV4 in skin disease. Here, we discuss the current understanding of the role of macrophage TRPV4 in various inflammatory conditions.
Collapse
|
27
|
AlKhoury H, Hautmann A, Erdmann F, Zhou G, Stojanović S, Najman S, Groth T. Study on the potential mechanism of anti-inflammatory activity of covalently immobilized hyaluronan and heparin. J Biomed Mater Res A 2020; 108:1099-1111. [PMID: 31967394 DOI: 10.1002/jbm.a.36885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Inflammation and subsequent fibrotic encapsulation that occur after implantation of biomaterials are issues that fostered efforts in designing novel biocompatible materials to modulate the immune response. In this study, glycosaminoglycans (GAG) like hyaluronic acid (HA) and heparin (Hep) that possess anti-inflammatory activity were covalently bound to NH2 -modified surfaces using EDC/NHS cross-linking chemistry. Immobilization and physical surface properties were characterized by atomic forces microscopy, water contact angle studies and streaming potential measurements demonstrating the presence of GAG on the surfaces that became more hydrophilic and negatively charged compared to NH2 -modified. THP-1 derived macrophages were used here to study the mechanism of action of GAG to affect the inflammatory responses illuminated by studying macrophage adhesion, the formation of multinucleated giant cells (MNGCs) and IL-1β release that were reduced on GAG-modified surfaces. Detailed investigation of the signal transduction processes related to macrophage activation was performed by immunofluorescence staining of NF-κB (p65 subunit) together with immunoblotting. We studied also association and translocation of FITC-labeled GAG. The results show a significant decrease in NF-κB level as well as the ability of macrophages to associate with and take up HA and Hep. These results illustrate that the anti-inflammatory activity of GAG is not only related to making surfaces more hydrophilic, but also their active involvement in signal transduction processes related to inflammatory reactions, which may pave the way to design new anti-inflammatory surface coatings for implantable biomedical devices.
Collapse
Affiliation(s)
- Hala AlKhoury
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Adrian Hautmann
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Frank Erdmann
- Pharmaceutical Biology and Pharmacology Department, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Guoying Zhou
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| |
Collapse
|
28
|
Akentieva TN, Ovcharenko EA, Kudryavtseva YA. [Influence of suture material on the development of postoperative complications in vascular surgery and their prevention]. Khirurgiia (Mosk) 2019:75-81. [PMID: 31626243 DOI: 10.17116/hirurgia201910175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Postoperative complications in vascular surgery may be partly provoked by suture material. Analysis of the mechanisms of these complications may be useful for their prevention. Mechanisms of suture-induced thrombosis and neointimal hyperplasia, possible strategies for prevention of postoperative complications including those allowing drug deliveries directly to the vascular anastomosis area are discussed in the article. According to the literature data, heparin is the most optimal drug for modifying suture material and prevention of thrombosis and neointimal hyperplasia. Heparin delivery to the vascular anastomosis site will reduce the risk of thrombosis by inhibiting the activity of thrombin. Complex of heparin and antithrombin III increases inhibitory effect of antithrombin against thrombin. In addition, heparin is able to reduce proliferation of vascular smooth muscle cells through inhibition of the synthesis of extracellular matrix proteases involved in migration and proliferation of cells. Thus, heparin delivery to the vascular injury site may be used to prevent thrombosis and myoproliferative response. Moreover, this strategy prevents complications associated with systemic administration of anticoagulants.
Collapse
Affiliation(s)
- T N Akentieva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Yu A Kudryavtseva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
29
|
Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, Wu C, Chang J. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. NANOSCALE 2019; 11:17699-17708. [PMID: 31545331 DOI: 10.1039/c9nr05730g] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biomaterial topography-based strategies are regarded as an effective way to regulate the osteoimmune environment which plays an indispensable role in the bone regeneration process. The rapid development of manufacture techniques makes it possible to investigate the cell-topography interactions by preparing various micro and nano-topographical surfaces on biomaterials. Still, it is a challenge to prepare well-defined micro/nano hierarchical structures of bioceramics due to the inherent brittleness of ceramic materials. Also, the correlation between osteoimmunomodulation initiated by micro/nano hierarchical topographies and the tissue regeneration outcomes is unclear. In this study, we prepared well-defined micro/nano hierarchical structures on hydroxyapatite (HA) bioceramics through the combination of the photolithography and hydrothermal techniques. Three different microscale circular patterns (4 μm, 12 μm and 36 μm) and nanotopographies (nanoneedle, nanosheet and nanorod) were fabricated by changing the size of the mask and the condition of the hydrothermal reaction. The macrophage responses on the nanoneedle structures with different micropatterns were investigated and the micro/nano hierarchical structures with appropriate pattern sizes could either promote or alleviate the macrophage polarization, which further affected the outcomes of the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and angiogenic activity of human umbilical vein endothelial cells (HUVECs). Our study demonstrated that osteoimmunomodulation could be manipulated via tuning the micro/nano hierarchical structures, which could lead to a new strategy for the development of bone biomaterials with favorable osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Goswami R, Arya RK, Biswas D, Zhu X, Rahaman SO. Transient Receptor Potential Vanilloid 4 Is Required for Foreign Body Response and Giant Cell Formation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1505-1512. [PMID: 31121133 DOI: 10.1016/j.ajpath.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
The presence of biomaterials and devices implanted into soft tissue is associated with development of a foreign body response (FBR), a chronic inflammatory condition that can ultimately lead to implant failure, which may cause harm to or death of the patient. Development of FBR includes activation of macrophages at the tissue-implant interface, generation of destructive foreign body giant cells (FBGCs), and generation of fibrous tissue that encapsulates the implant. However, the mechanisms underlying the FBR remain poorly understood, as neither the materials composing the implants nor their chemical properties can explain triggering of the FBR. Herein, we report that genetic ablation of transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable mechanosensitive cation channel in the transient receptor potential vanilloid family, protects TRPV4 knockout mice from FBR-related events. The mice showed diminished collagen deposition along with reduced macrophage accumulation and FBGC formation compared with wild-type mice in a s.c. implantation model. Analysis of macrophage markers in spleen tissues and peritoneal cavity showed that the TRPV4 deficiency did not impair basal macrophage maturation. Furthermore, genetic deficiency or pharmacologic antagonism of TRPV4 blocked cytokine-induced FBGC formation, which was restored by lentivirus-mediated TRPV4 reintroduction. Taken together, these results suggest an important, previously unknown, role for TRPV4 in FBR.
Collapse
Affiliation(s)
- Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Rakesh K Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland.
| |
Collapse
|
31
|
Eickhoff RM, Bolle T, Kossel K, Heise D, Kroh A, Lambertz A, Blaeser A, Gries T, Jockenhoevel S, Neumann UP, Klink CD. Improved biocompatibility of profiled sutures through lower macrophages adhesion. J Biomed Mater Res B Appl Biomater 2018; 107:1772-1778. [PMID: 30452123 DOI: 10.1002/jbm.b.34269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/12/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
The biocompatibility of a textile implant is determined by various parameters, such as material composition and surface chemistry. However, little is known about the influence of geometry of sutures on biocompatibility. To elucidate this factor we focused on geometry-modification resulting in ultrafine polyethylene terephthalate (UFPET) suture and a snowflake like shaped polyvenylidenfluorid (PVDF) suture. Forty-eight rats were divided into two observation periods. In each rat 3 out of 4 sutures (profiled UFPET, snowflake-like profiled PVDF, reference Prolene and Mersilene suture) were randomly placed into the subcutaneous tissue. Rats were euthanized after 7 and 21 days and samples were explanted. Foreign body granuloma was measured and expression of CD68, TUNEL, Ki-67 and Collagen I/III ratio were determined. The profiled (snowflake) suture showed a significantly smaller FBG in comparison to standard sutures (p < 0.001). Both modified sutures showed a significant lower tissue remodeling by Ki-67 and TUNEL expression (p < 0.03). Furthermore, profiled sutures caused a lower inflammatory reaction expressed in a significant lower amount of CD68 positive macrophages after 21 days (p < 0.001). Modifications of suture geometry alter the foreign body granuloma and the inflammatory reaction. Therefore, profiled sutures might be a promising approach to improve biocompatibility of textile mesh prosthesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1772-1778, 2019.
Collapse
Affiliation(s)
- Roman M Eickhoff
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Tim Bolle
- Institut fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Klas Kossel
- Institut fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Daniel Heise
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Kroh
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Lambertz
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Blaeser
- Institut fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Thomas Gries
- Institut fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian D Klink
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
32
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 505] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Vieyra H, Juárez E, López UF, Morales AG, Torres M. Cytotoxicity and biocompatibility of biomaterials based in polyhydroxybutyrate reinforced with cellulose nanowhiskers determined in human peripheral leukocytes. Biomed Mater 2018; 13:045011. [DOI: 10.1088/1748-605x/aaaaf4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Zhang Y, Davenport AJ, Burke B, Vyas N, Addison O. Effect of Zr Addition on the Corrosion of Ti in Acidic and Reactive Oxygen Species (ROS)-Containing Environments. ACS Biomater Sci Eng 2018; 4:1103-1111. [DOI: 10.1021/acsbiomaterials.7b00882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yue Zhang
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Alison J. Davenport
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Bernard Burke
- Biomaterials Unit, School of Dentistry, University of Birmingham, Birmingham B5 7EG, United Kingdom
- Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5LW, United Kingdom
| | - Nina Vyas
- Biomaterials Unit, School of Dentistry, University of Birmingham, Birmingham B5 7EG, United Kingdom
| | - Owen Addison
- Biomaterials Unit, School of Dentistry, University of Birmingham, Birmingham B5 7EG, United Kingdom
- School of Dentistry, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
35
|
Sun T, Qu Y, Cui W, Yang L, Ji Y, Yu W, Navinduth R, Shao Z, Yang H, Guo X. Evaluation of osteogenic inductivity of a novel BMP2-mimicking peptide P28 and P28-containing bone composite. J Biomed Mater Res A 2017; 106:210-220. [PMID: 28884509 DOI: 10.1002/jbm.a.36228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tingfang Sun
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yanzhen Qu
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wei Cui
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Liang Yang
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yanhui Ji
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wei Yu
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Ramphul Navinduth
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Zengwu Shao
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Hu Yang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond Virginia 23219
- Department of Pharmaceutics; Virginia Commonwealth University; Richmond Virginia 23298
- Massey Cancer Center; Virginia Commonwealth University; Richmond Virginia 23298
| | - Xiaodong Guo
- Department of Orthopedics; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
36
|
Zhan W, Lu F. Activated macrophages as key mediators of capsule formation on adipose constructs in tissue engineering chamber models. Cell Biol Int 2017; 41:354-360. [DOI: 10.1002/cbin.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Weiqing Zhan
- Department of Plastic and Cosmetic Surgery; Nanfang Hospital, Southern Medical University, Guang Zhou; Guang Dong People's Republic of China
- O'Brien Institute Department; St Vincent's Institute of Medical Research; Victoria Australia
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery; Nanfang Hospital, Southern Medical University, Guang Zhou; Guang Dong People's Republic of China
| |
Collapse
|
37
|
Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 2017; 4:55-68. [PMID: 28149530 PMCID: PMC5274707 DOI: 10.1093/rb/rbw041] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil’s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration.
Collapse
Affiliation(s)
- Gretchen S Selders
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA, 858 Madison Ave, Room 201 Molecular Science Building, Memphis, TN 38163, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
38
|
Abstract
Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice, and the following step-wise FBR process. We observed that immigrating myeloid cells (predominantly macrophages of the M1 type) engaged and became immobilized along the scaffold/tissue interface, before forming multinucleated giant cells. Both macrophages and giant cells locally produced vascular endothelial growth factor (VEGF), which initiated and maintained an immature neovessel network, followed by formation of a dense collagen capsule 2-4 weeks post-implantation. Elimination of the macrophage/giant-cell compartment by clodronate and/or neutralization of VEGF by VEGF Trap significantly diminished giant-cell accumulation, neovascularization and fibrosis. Our findings identify macrophages and giant cells as incendiaries of the fibrotic encapsulation of engrafted biomaterials via VEGF release and neovascularization, and therefore as targets for therapy.
Collapse
|
39
|
Lee HW, Kim YH. Protoaphin-fb, Newly Isolated fromGalla Rhois, Suppresses LPS-Stimulated Inflammatory Reactions in Murine Macrophages. J Food Biochem 2016. [DOI: 10.1111/jfbc.12317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hee Won Lee
- Department of Food and Nutrition, College of Engineering; Daegu University; Gyeongsangbuk-do 38453 Korea
| | - Yoon Hee Kim
- Department of Food and Nutrition, College of Engineering; Daegu University; Gyeongsangbuk-do 38453 Korea
| |
Collapse
|
40
|
Yu T, Wang W, Nassiri S, Kwan T, Dang C, Liu W, Spiller KL. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:721-42. [PMID: 26902292 DOI: 10.1080/09205063.2016.1155881] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, it is not well understood how changes in biomaterial properties affect the foreign body response (FBR) or macrophage behavior. Because failed attempts at biomaterial degradation by macrophages have been linked to frustrated phagocytosis, a defining feature of the FBR, we hypothesized that increased hydrogel crosslinking density (and decreased degradability) would exacerbate the FBR. Gelatin hydrogels were crosslinked with glutaraldehyde (0.05, 0.1, and 0.3%) and implanted subcutaneously in C57BL/6 mice over the course of 3 weeks. Interestingly, changes in hydrogel crosslinking did not affect the thickness of the fibrous capsule surrounding the hydrogels, expression of the pan-macrophage marker F480, expression of three macrophage phenotype markers (iNOS, Arg1, CD163), or expression of the myofibroblast marker aSMA, determined using semi-quantitative immunohistochemical analysis. With respect to temporal changes, the level of expression of the M1 marker (iNOS) remained relatively constant throughout the study, while the M2 markers Arg1 and CD163 increased over time. Expression of these M2 markers was highly correlated with fibrous capsule thickness. Differences in spatial distribution of staining also were noted, with the strongest staining for iNOS at the hydrogel surface and increasing expression of the myofibroblast marker aSMA toward the outer edge of the fibrous capsule. These results confirm previous reports that macrophages in the FBR exhibit characteristics of both M1 and M2 phenotypes. Understanding the effects (or lack of effects) of biomaterial properties on the FBR and macrophage phenotype may aid in the rational design of biomaterials to integrate with surrounding tissue.
Collapse
Affiliation(s)
- Tony Yu
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wenbo Wang
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Sina Nassiri
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Thomas Kwan
- c Institute of Science and Technology in Medicine , Keele University , Stoke-on-Trent , UK
| | - Chau Dang
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wei Liu
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Kara L Spiller
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| |
Collapse
|
41
|
Yu Y, Wu RX, Yin Y, Chen FM. Directing immunomodulation using biomaterials for endogenous regeneration. J Mater Chem B 2016; 4:569-584. [PMID: 32262939 DOI: 10.1039/c5tb02199e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy and tissue engineering hold considerable potential for innovative and transformative strategies to repair damaged tissue form and function. Although many approaches are adopting ex vivo expanded cells for transplantation, an alternative is to manipulate the biomaterial-host interactions that recruit the patients' own stem cells endogenously for regeneration. There are several considerations in targeting the biomaterial-host interactions therapeutically, not the least of which is the biomimetic design of extracellular matrix (ECM)-mimicking materials and the administration of navigation cues and small molecules that target specific aspects of the native healing cascades to stimulate homing of endogenous stem cells and, thereafter, their expansion and differentiation. A sequence of coordinated interactions between the local niche cells and implanted biomaterials offers signals and sign posts that may instruct the cells traveling toward the injured tissues. Furthermore, stem cell function is critically influenced by extrinsic signals provided by the niche as well as by the implanted biomaterials. Novel strategies harnessing growth factors and immunological cues to design materials not only can modulate the behavior of stem cells but also can alter innate and adaptive immunity in a controlled manner. We envisage that successful and safe endogenous regeneration will involve at least three aspects, i.e., homing of sufficient stem cells, controlling cell fate determination, and blunting host immune responses to outside biomaterial devices. Improving our understanding of the biological and physicochemical signals of biomimetic biomaterials that govern immunomodulation for in situ tissue regeneration, particularly context-dependent macrophage (Mφ) polarization, will lead to a concurrent improvement in clinical outcomes.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi, Xi'an 710032, P. R. China.
| | | | | | | |
Collapse
|