1
|
McDermott MM, Sufit R, Domanchuk KJ, Volpe NJ, Kosmac K, Peterson CA, Zhao L, Tian L, Zhang D, Xu S, Ismaeel A, Ferrucci L, Parekh ND, Lloyd-Jones D, Kramer CM, Leeuwenburgh C, Ho K, Criqui MH, Polonsky T, Guralnik JM, Kibbe MR. Hepatocyte growth factor for walking performance in peripheral artery disease. J Vasc Surg 2025; 81:1467-1478.e1. [PMID: 39778757 PMCID: PMC12104005 DOI: 10.1016/j.jvs.2024.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND VM202 is a plasmid encoding two isoforms of hepatocyte growth factor. In preclinical studies, hepatocyte growth factor stimulated angiogenesis and muscle regeneration. This preliminary clinical trial tested the hypothesis that VM202 injections in gastrocnemius muscle would improve walking performance in people with mild to moderate and symptomatic lower extremity peripheral artery disease (PAD). METHODS In a double-blind clinical trial, patients with PAD were randomized to gastrocnemius muscle injections of either 4 mg of VM202 or placebo every 14 days for four treatments. The primary outcome was 6-month change in 6-minute walk distance. Secondary outcomes included 3-month change in treadmill walking time and gastrocnemius muscle biopsy measures. In this preliminary trial, statistical significance was prespecified as a one-sided P value of less than .10. RESULTS Thirty-nine participants with PAD (64.1% Black, 28.2% female) were randomized. Adjusting for age, race, smoking, and baseline performance, VM202 did not improve 6-minute walk at 6-month follow-up, compared with placebo (-13.5 m; 90% confidence interval [CI], -38.5 to +∞). At the 3-month follow-up, VM202 improved the maximum treadmill walking time (+2.38 minutes; 90% CI, +1.08 to +∞; P = .014) and increased central nuclei abundance in gastrocnemius muscle (+5.86; 90% CI, +0.37 to +∞; P = .088), compared with placebo. VM202 did not significantly improve pain-free walking distance (difference, +0.30 minutes; 90% CI, -1.10 to +∞; P = .39), calf muscle perfusion (difference, +1.80 mL/min per 100 g tissue; 90% CI, -3.80 to +∞; P = .33), or the Walking Impairment Questionnaire distance score (difference, +2.02; 90% CI, -8.11 to +∞; P = .40). In post hoc analyses, VM202 significantly improved 6-minute walk in PAD participants with diabetes mellitus at 6-month follow-up (+34.19; 90% CI, 4.04 to +∞; P = .075), but had no effect in people without diabetes (interaction P = .079). CONCLUSIONS These data do not support gastrocnemius injections of VM202 to improve 6-minute walk in PAD. Secondary outcomes suggested potential benefit of VM202 on skeletal muscle measures and treadmill walking, whereas post hoc analyses suggested benefit in PAD participants with diabetes.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Robert Sufit
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, IL
| | - Kathryn J Domanchuk
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicholas J Volpe
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, GA
| | | | - Lihui Zhao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lu Tian
- Department of Health Research and Policy, Stanford University, Palo Alto, CA
| | - Dongxue Zhang
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shujun Xu
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Luigi Ferrucci
- National Institute on Aging, Division of Intramural Research, Baltimore, Maryland
| | - Nishant D Parekh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Donald Lloyd-Jones
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher M Kramer
- Departments of Medicine and Radiology, University of Virginia Health, Charlottesville, VA
| | | | - Karen Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michael H Criqui
- Division of Preventive Medicine, University of California San Diego, La Jolla, CA
| | - Tamar Polonsky
- Department of Medicine, University of Chicago, Chicago, IL
| | - Jack M Guralnik
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Melina R Kibbe
- Department of Surgery, University of Virginia Health, Charlottesville, VA
| |
Collapse
|
2
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Lemon Myrtle ( Backhousia citriodora) Extract and Its Active Compound, Casuarinin, Activate Skeletal Muscle Satellite Cells In Vitro and In Vivo. Nutrients 2022; 14:nu14051078. [PMID: 35268053 PMCID: PMC8912364 DOI: 10.3390/nu14051078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2′-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.
Collapse
|
4
|
Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021; 40:721-734. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the growth, maintenance, and repair of skeletal muscle. In the emerging area of cultured meat, meat products are manufactured with MuSCs using theory and technology from the fields of cell culture, tissue engineering, and food processing. Recently, considerable progress has been made in bioprocessing technologies for MuSCs, including isolation, expansion, differentiation, and tissue building. Here we summarize cutting-edge operational strategies and recently characterized regulatory mechanisms for MuSCs. Furthermore, we discuss their applicability to refining the production process for cultured meat and accelerating its industrialization.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Guan F, Wu J, Li J, Liu S, Weng Y, Chen T, Yang T, Fang K. RETRACTED ARTICLE: Inducible nitric oxide synthase promotes differentiation of satellite cells and prevents stress urinary incontinence via HGF-mediated p38/MAPK signaling. World J Urol 2021; 39:633. [PMID: 32556674 DOI: 10.1007/s00345-020-03289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fei Guan
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China
- The 4th Hospital of Changde, Changde, 415000, People's Republic of China
| | - Jing Wu
- Department of Biochemistry and Molecular Biology, The Primary Medicine School of Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Jiang Li
- Department of Urology, The 1st Hospital of Qujing, Qujing, 650500, People's Republic of China
| | - Shang Liu
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China
| | - Yuting Weng
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China
| | - Tao Chen
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China
| | - Tongxin Yang
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China
| | - Kewei Fang
- Department of Urology, The 2nd Hospital of Kunming Medical University, No. 374, Dianmian AvenueYunnan Province, Kunming, 650101, People's Republic of China.
| |
Collapse
|
6
|
Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther 2020; 15:285-294. [PMID: 33426231 PMCID: PMC7770413 DOI: 10.1016/j.reth.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle injuries have bothered doctors and caused great burdens to the public medical insurance system for a long time. Once injured, skeletal muscles usually go through the processes of inflammation, repairing and remodeling. If repairing and remodeling stages are out of balance, scars will be formed to replace injured skeletal muscles. At present, clinicians usually use conventional methods to restore the injured skeletal muscles, such as flap transplantation. However, flap transplantation sometimes needs to sacrifice healthy autologous tissues and will bring extra harm to patients. In recent years, stem cells-based tissue engineering provides us new treatment ideas for skeletal muscle injuries. Stem cells are cells with multiple differentiation potential and have ability to differentiate into adult cells under special condition. Skeletal muscle tissues also have stem cells, called satellite cells, but they are in small amount and new muscle fibers that derived from them may not be enough to replace injured fibers. Bone marrow mesenchymal stem cells (BM-MSCs) could promote musculoskeletal tissue regeneration and activate the myogenic differentiation of satellite cells. Biomaterial is another important factor to promote tissue regeneration and greatly enhance physiological activities of stem cells in vivo. The combined use of stem cells and biomaterials will gradually become a mainstream to restore injured skeletal muscles in the future. This review article mainly focuses on the review of research about the application of BM-MSCs and several major biomaterials in skeletal muscle regeneration over the past decades.
Collapse
Key Words
- 3D-ECM, three dimensional extracellular matrix
- ASCs, adipose stem cells
- BDNF, brain derived neurotrophic factor
- BM-MSCs
- BM-MSCs, bone marrow mesenchymal stem cells
- Biomaterial
- CREB, cAMP- response element binding protein
- DPSCs, dental pulp stem cells
- Differentiation
- ECM, extracellular matrix
- ECs, endothelial cells
- EGF, epidermal growth factor
- FGF, fibroblast growth factor
- FGF-2, fibroblast growth factor-2
- GCSF, granulocyte colony-stimulating factor
- GDNF, glial derived neurotrophic factor
- GPT, gelatin-poly(ethylene glycol)- tyramine
- HGF, hepatocyte growth factor
- IGF-1, insulin-like growth factor-1
- IL, interleukin
- LIF, leukemia inhibitory factor
- MRF, myogenic muscle factor
- NSAIDs, non-steroidal drugs
- PDGF-BB, platelet derived growth factor-BB
- PGE2, prostaglandin E2
- PRP, platelet rich plasma
- S1P, sphingosine 1-phosphate
- SDF-1, stromal cell derived factor-1
- Skeletal muscle injury
- TGF-β, transforming growth factor-β
- Tissue regeneration
- TrkB, tyrosine kinaseB
- VEGF, vascular endothelial growth factor
- VML, volumetric muscle loss
Collapse
Affiliation(s)
- Yu-Hao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Dian-Ri Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Yu-Chen Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jian Pan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| |
Collapse
|
7
|
Zembron-Lacny A, Morawin B, Wawrzyniak-Gramacka E, Gramacki J, Jarmuzek P, Kotlega D, Ziemann E. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217855. [PMID: 33120891 PMCID: PMC7663269 DOI: 10.3390/ijerph17217855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
The oxi-inflammatory response is part of the natural process mobilizing leukocytes and satellite cells that contribute to clearance and regeneration of damaged muscle tissue. In sports medicine, a number of post-injury recovery strategies, such as whole-body cryotherapy (WBC), are used to improve skeletal muscle regeneration often without scientific evidence of their benefits. The study was designed to assess the impact of WBC on circulating mediators of skeletal muscle regeneration. Twenty elite athletes were randomized to WBC group (3-min exposure to −120 °C, twice a day for 7 days) and control group. Blood samples were collected before the first WBC session and 1 day after the last cryotherapy exposure. WBC did not affect the indirect markers of muscle damage but significantly reduced the generation of reactive oxygen and nitrogen species (H2O2 and NO) as well as the concentrations of serum interleukin 1β (IL-1β) and C-reactive protein (CRP). The changes in circulating growth factors, hepatocyte growth factor (HGF), insulin-like growth factor (IGF-1), platelet-derived growth factor (PDGFBB), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF), were also reduced by WBC exposure. The study demonstrated that WBC attenuates the cascade of injury–repair–regeneration of skeletal muscles whereby it may delay skeletal muscle regeneration.
Collapse
Affiliation(s)
- Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
- Correspondence: ; Tel.: +48-50267-4130
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (B.M.); (E.W.-G.)
| | - Jaroslaw Gramacki
- Centre of Information Technologies, University of Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medium University of Zielona Gora, Neurosurgery Center University Hospital in Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Dariusz Kotlega
- Department of Neurology, Pomeranian Medical University Szczecin, 70-204 Szczecin, Poland;
- Department of Neurology, District Hospital Glogow, 67-200 Glogow, Poland
| | - Ewa Ziemann
- Department of Sport Kinesiology, Poznan University of Physical Education, 61-871 Poznan, Poland;
| |
Collapse
|
8
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
9
|
Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports 2020; 15:926-940. [PMID: 32888505 PMCID: PMC7561495 DOI: 10.1016/j.stemcr.2020.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not undergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
Collapse
|
10
|
Roveimiab Z, Lin F, Anderson JE. Traction and attraction: haptotaxis substrates collagen and fibronectin interact with chemotaxis by HGF to regulate myoblast migration in a microfluidic device. Am J Physiol Cell Physiol 2020; 319:C75-C92. [PMID: 32348173 DOI: 10.1152/ajpcell.00417.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell migration is central to development, wound healing, tissue regeneration, and immunity. Despite extensive knowledge of muscle regeneration, myoblast migration during regeneration is not well understood. C2C12 mouse myoblast migration and morphology were investigated using a triple-docking polydimethylsiloxane-based microfluidic device in which cells moved under gravity-driven laminar flow on uniform (=) collagen (CN=), fibronectin (FN=), or opposing gradients (CN-FN or FN-CN). In haptotaxis experiments, migration was faster on FN= than on CN=. At 10 h, cells were more elongated on FN-CN and migration was faster than on the CN-FN substrate. Net migration distance on FN-CN at 10 h was greater than on CN-FN, as cells rapidly entered the channel as a larger population (bulk-cell movement, wave 1). Hepatocyte growth factor (HGF) stimulated rapid chemotaxis on FN= but not CN=, increasing migration speed at 10 h early in the channel at low HGF in a steep HGF gradient. HGF accelerated migration on FN= and bulk-cell movement on both uniform substrates. An HGF gradient also slowed cells in wave 2 moving on FN-CN, not CN-FN. Both opposing-gradient substrates affected the shape, speed, and net distance of migrating cells. Gradient and uniform configurations of HGF and substrate differentially influenced migration behavior. Therefore, haptotaxis substrate configuration potently modifies myoblast chemotaxis by HGF. Innovative microfluidic experiments advance our understanding of intricate complexities of myoblast migration. Findings can be leveraged to engineer muscle-tissue volumes for transplantation after serious injury. New analytical approaches may generate broader insights into cell migration.
Collapse
Affiliation(s)
- Ziba Roveimiab
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Lin
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Intermittent Hypoxic Exposure with High Dose of Arginine Impact on Circulating Mediators of Tissue Regeneration. Nutrients 2020; 12:nu12071933. [PMID: 32610647 PMCID: PMC7400083 DOI: 10.3390/nu12071933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Intermittent exposure to hypoxia (IHE) increases production of reactive oxygen and nitrogen species which, as signalling molecules, participate in tissue injury–repair–regeneration cascade. The process is also stimulated by arginine whose bioavailability is a limiting factor for NO synthesis. The effects of IHE in combination with arginine (Arg) intake on myogenesis and angiogenesis mediators were examined in a randomized and placebo-controlled trial. Blood samples were collected from 38 elite athletes on the 1st, 7th and 14th days during the training camp. The oral doses of arginine (2 × 6 g/day) and/or IHE using hypoxicator GO2Altitude (IHE and Arg/IHE) were applied. Serum NO and H2O2 concentrations increased significantly and were related to muscle damage (CK activity >900 IU/mL) in IHE and Arg/IHE compared to placebo. The changes in NO and H2O2 elevated the levels of circulating growth factors such as HGF, IHG-1, PDGFBB, BDNF, VEGF and EPO. Modification of the lipid profile, especially reduced non-HDL, was an additional beneficial effect of hypoxic exposure with arginine intake. Intermittent hypoxic exposure combined with high-dose arginine intake was demonstrated to affect circulating mediators of injury–repair–regeneration. Therefore, a combination of IHE and arginine seems to be a potential therapeutic and non-pharmacological method to modulate the myogenesis and angiogenesis in elite athletes.
Collapse
|
12
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Gonzalez ML, Jacobs RD, Ely KM, Johnson SE. Dietary tributyrin supplementation and submaximal exercise promote activation of equine satellite cells. J Anim Sci 2020; 97:4951-4956. [PMID: 31630180 DOI: 10.1093/jas/skz330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Postexercise skeletal muscle repair is dependent on the actions of satellite cells (SCs). The signal(s) responsible for activation of these normally quiescent cells in the horse remain unknown. The objective of the experiment was to determine whether submaximal exercise or tributyrin (TB) supplementation is sufficient to stimulate SC activation. Adult geldings were fed a control diet (n = 6) or a diet containing 0.45% TB (n = 6). After 30 d, the geldings performed a single bout of submaximal exercise. Middle gluteal muscle biopsies and blood were collected on days -1, 1, 3, and 5 relative to exercise. Diet had no effect on any parameter of physical performance. Total RNA isolated from the gluteal muscle of TB fed geldings contained greater (P < 0.05) amounts of myogenin mRNA than controls. Satellite cell isolates from TB supplemented horses had a greater (P = 0.02) percentage of proliferating cell nuclear antigen immunopositive (PCNA+) SC than controls after 48 h in culture. Submaximal exercise was sufficient to increase (P < 0.05) the percentage of PCNA(+) cells in all isolates obtained during recovery period. No change in the amount of gluteal muscle Pax7 mRNA, a lineage marker of SCs, occurred in response to either diet or exercise. Our results indicate that both submaximal exercise and TB prime SCs for activation and cell cycle reentry but are insufficient to cause an increase in Pax7 expression during the recovery period.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Kristine M Ely
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
14
|
Li Y, Zhou H, Chen Y, Zhong D, Su P, Yuan H, Yang X, Liao Z, Qiu X, Wang X, Liang T, Gao W, Shen X, Zhang X, Lian C, Xu C. MET promotes the proliferation and differentiation of myoblasts. Exp Cell Res 2020; 388:111838. [PMID: 31930964 DOI: 10.1016/j.yexcr.2020.111838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.
Collapse
Affiliation(s)
- Yongyong Li
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuyu Chen
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Dongmei Zhong
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqiang Su
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Haodong Yuan
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoming Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xudong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaofang Shen
- Department of Pediatric Orthopedics, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China
| | - Xin Zhang
- Department of Laboratory, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China
| | - Chengjie Lian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Roveimiab Z, Lin F, Anderson JE. Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:30-45. [PMID: 30073911 DOI: 10.1089/ten.teb.2018.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPACT STATEMENT The essential interactions between and among cells in the three types of muscle tissue in development, wound healing, and regeneration of tissues, are underpinned by the ability of cardiac, smooth, and skeletal muscle cells to migrate in maintaining functional capacity after pathologies such as myocardial infarction, tissue grafting, and traumatic and postsurgical injury. Microfluidics-based devices now offer significant enhancement over conventional approaches to studying cell chemotaxis and haptotaxis that are inherent in migration. Advances in experimental approaches to muscle cell movement and tissue formation will contribute to innovations in tissue engineering for patching wound repair and muscle tissue replacement.
Collapse
Affiliation(s)
- Ziba Roveimiab
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Francis Lin
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Judy E Anderson
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Brandt AM, Kania JM, Gonzalez ML, Johnson SE. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ-directed signaling. J Anim Sci 2018; 96:3645-3656. [PMID: 29917108 PMCID: PMC6127786 DOI: 10.1093/jas/sky234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated 5-ethynyl-2'-deoxyuridine (EdU) incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene-expression analysis revealed that eqSC express PKCα, PKCδ, and PKCε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSC with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.
Collapse
Affiliation(s)
- Amanda M Brandt
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Joanna M Kania
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| |
Collapse
|
17
|
Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 2018; 372:549-570. [PMID: 29404727 DOI: 10.1007/s00441-018-2792-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.
Collapse
|
18
|
Brandt AM, Kania JM, Reinholt BM, Johnson SE. Human IL6 stimulates bovine satellite cell proliferation through a Signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. Domest Anim Endocrinol 2018; 62:32-38. [PMID: 28917653 DOI: 10.1016/j.domaniend.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 01/15/2023]
Abstract
Bovine satellite cell (bSC) myogenesis and skeletal muscle hypertrophy occur through the orchestrated actions of multiple autocrine and paracrine growth factors. Intimate to the bSC niche is IL6, a dual-purpose cytokine with proinflammatory and mitogenic properties. The objective of the experiment was to examine the effects of IL6 on proliferation and differentiation of bSC in vitro. Treatment of primary bSC cultures with recombinant bovine IL6 (bIL6) failed to alter myogenesis owing to the absence of intracellular signal transduction. The cytokine was able to stimulate phosphorylation of signal transducer and activator of transcription 3 tyrosine 705 (STAT3Y705) in Madin-Darby bovine kidney (MDBK) epithelial cells, thus demonstrating bioactivity. Media supplemented with recombinant human IL6 (hIL6) caused phosphorylation of STAT3Y705 in bSC and increased (P < 0.05) proliferation. Inclusion of a STAT3 inhibitor in the media blunted phosphorylation of the STAT3Y705 and suppressed (P < 0.05) hIL6-mediated bSC proliferation. Morphologic and biochemical measures of bSC differentiation remained unchanged (P > 0.05) following treatment for 48 h with hIL6. These results support a role for hIL6 as a bSC mitogen in vitro. The inability of bIL6 to initiate an intracellular signal in bSC requires further investigation.
Collapse
Affiliation(s)
- A M Brandt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - J M Kania
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - B M Reinholt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - S E Johnson
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA.
| |
Collapse
|
19
|
Huntsman HD, Rendeiro C, Merritt JR, Pincu Y, Cobert A, De Lisio M, Kolyvas E, Dvoretskiy S, Dobrucki IT, Kemkemer R, Jensen T, Dobrucki LW, Rhodes JS, Boppart MD. The impact of mechanically stimulated muscle-derived stromal cells on aged skeletal muscle. Exp Gerontol 2017; 103:35-46. [PMID: 29269268 DOI: 10.1016/j.exger.2017.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023]
Abstract
Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24h following an acute bout of mechanical strain in vitro (10%, 1Hz, 5h) compared to non-strain controls. Aged (24month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non-strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4wks between groups. Peripheral perfusion was significantly increased in muscle at 4wks post-mMSC injection (p<0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p<0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.
Collapse
Affiliation(s)
- Heather D Huntsman
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jennifer R Merritt
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yair Pincu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam Cobert
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emily Kolyvas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ralf Kemkemer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Tor Jensen
- Division of Biomedical Sciences, Carle Hospital, Urbana, IL 61801, USA
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Influence of high glucose and AGE environment on the proliferation, apoptosis, paracrine effects, and cytokine expression of human adipose stem cells in vitro. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
22
|
Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016; 3:15. [PMID: 27447481 PMCID: PMC4958098 DOI: 10.1186/s40634-016-0051-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland.
| | - Jacques Menetrey
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| |
Collapse
|