1
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
2
|
Islam SR, Manna SK. Identification of glucose-independent and reversible metabolic pathways associated with anti-proliferative effect of metformin in liver cancer cells. Metabolomics 2024; 20:29. [PMID: 38413541 DOI: 10.1007/s11306-024-02096-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Despite the ability of cancer cells to survive glucose deprivation, most studies on anti-cancer effect of metformin explored its impact on glucose metabolism. No study ever examined whether its anti-cancer effect is reversible. Existing evidences warrant understanding of glucose-independent non-cytotoxic anti-proliferative effect of metformin to rationalize its role in liver cancer. OBJECTIVES Characterization of glucose-independent anti-proliferative metabolic effects of metformin as well as analysis of their reversibility in liver cancer cells. METHODOLOGY The dose-dependent effects of metformin on HepG2 cells were examined in presence and absence of glucose. The longitudinal evolution of metabolome was analyzed along with gene and protein expression as well as their correlations with and reversibility of cellular phenotype and metabolic signatures. RESULTS Metformin concentrations up to 2.5 mM were found to be anti-proliferative irrespective of presence of glucose without significant increase in cytotoxicity. Apart from mitochondrial impairment, derangement of fatty acid desaturation, one-carbon, glutathione, and polyamine metabolism were associated with metformin treatment irrespective of glucose supplementation. Depletion of pantothenic acid, downregulation of essential amino acid uptake and metabolism alongside purine salvage were identified as novel glucose-independent effects of metformin. These were significantly correlated with cMyc expression and reduction in proliferation. Rescue experiments established reversibility upon metformin withdrawal and tight association between proliferation, metabotype, and cMyc expression. CONCLUSIONS The derangement of multiple glucose-independent metabolic pathways, which are often upregulated in therapy-resistant cancer, and concomitant cMyc downregulation coordinately contribute to the anti-proliferative effect of metformin in liver cancer cells. These are reversible and may influence its therapeutic utility.
Collapse
Affiliation(s)
- Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, 700 064, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400 094, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, 700 064, India.
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400 094, India.
| |
Collapse
|
3
|
Cyclin-Dependent Kinase Synthetic Lethality Partners in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23073555. [PMID: 35408915 PMCID: PMC8998982 DOI: 10.3390/ijms23073555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.
Collapse
|
4
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
5
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
6
|
Law ME, Davis BJ, Ghilardi AF, Yaaghubi E, Dulloo ZM, Wang M, Guryanova OA, Heldermon CD, Jahn SC, Castellano RK, Law BK. Repurposing Tranexamic Acid as an Anticancer Agent. Front Pharmacol 2022; 12:792600. [PMID: 35095503 PMCID: PMC8793890 DOI: 10.3389/fphar.2021.792600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Tranexamic Acid (TA) is a clinically used antifibrinolytic agent that acts as a Lys mimetic to block binding of Plasminogen with Plasminogen activators, preventing conversion of Plasminogen to its proteolytically activated form, Plasmin. Previous studies suggested that TA may exhibit anticancer activity by blockade of extracellular Plasmin formation. Plasmin-mediated cleavage of the CDCP1 protein may increase its oncogenic functions through several downstream pathways. Results presented herein demonstrate that TA blocks Plasmin-mediated excision of the extracellular domain of the oncoprotein CDCP1. In vitro studies indicate that TA reduces the viability of a broad array of human and murine cancer cell lines, and breast tumor growth studies demonstrate that TA reduces cancer growth in vivo. Based on the ability of TA to mimic Lys and Arg, we hypothesized that TA may perturb multiple processes that involve Lys/Arg-rich protein sequences, and that TA may alter intracellular signaling pathways in addition to blocking extracellular Plasmin production. Indeed, TA-mediated suppression of tumor cell viability is associated with multiple biochemical actions, including inhibition of protein synthesis, reduced activating phosphorylation of STAT3 and S6K1, decreased expression of the MYC oncoprotein, and suppression of Lys acetylation. Further, TA inhibited uptake of Lys and Arg by cancer cells. These findings suggest that TA or TA analogs may serve as lead compounds and inspire the production of new classes of anticancer agents that function by mimicking Lys and Arg.
Collapse
Affiliation(s)
- Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Bradley J. Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Amanda F. Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zaafir M. Dulloo
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Mengxiong Wang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Coy D. Heldermon
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Stephan C. Jahn
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Yu MC, Ding GY, Ma P, Chen YD, Zhu XD, Cai JB, Shen YH, Zhou J, Fan J, Sun HC, Kuang M, Huang C. CircRNA UBAP2 serves as a sponge of miR-1294 to increase tumorigenesis in hepatocellular carcinoma through regulating c-Myc expression. Carcinogenesis 2021; 42:1293-1303. [PMID: 34314478 DOI: 10.1093/carcin/bgab068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of regulatory RNAs with complex roles in healthy and diseased tissues. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) remains poorly understood, including the mechanisms by which the circular ubiquitin binding associated protein 2 (circUBAP2) contributes to tumorigenesis. We analyzed the expression of circUBAP2 in 20 paired samples of HCC and healthy tissue as well as in seven HCC cell lines via quantitative real-time polymerase chain reaction (qRT-PCR). Functional experiments, such as CCK8 viability assays, colony formation assays, wound healing, transwell assays, and flow cytometry, were conducted to assess the effects of circUBAP2 in vitro. To further elucidate the mechanisms by which circUBAP2 acts, we conducted dual-luciferase assays, western blots, RNA pull-down assays, and rescue experiments. CircUBAP2 was highly upregulated in most HCC tissues and was associated with poor prognosis. HCC patients with high circUBAP2 expression had greater vascular invasion and worse differentiation. Functionally, circUBAP2 overexpression enhanced HCC cell proliferation, migration, and invasion and inhibited apoptosis. Furthermore, we found that circUBAP2 upregulated c-Myc expression by sponging miR-1294, thus contributing to hepatocarcinogenesis. Inhibiting circUBAP2 expression in HCC attenuated the oncogenic effects of c-Myc. These findings suggest that circUBAP2 promotes HCC growth and metastasis. CircUBAP2 may have value as an independent prognostic biomarker or as a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Min-Cheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Guang-Yu Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Yue-Da Chen
- Department of General Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| |
Collapse
|
8
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
9
|
Ortiz-Ruiz A, Ruiz-Heredia Y, Morales ML, Aguilar-Garrido P, García-Ortiz A, Valeri A, Bárcena C, García-Martin RM, Garrido V, Moreno L, Gimenez A, Navarro-Aguadero MÁ, Velasco-Estevez M, Lospitao E, Cedena MT, Barrio S, Martínez-López J, Linares M, Gallardo M. Myc-Related Mitochondrial Activity as a Novel Target for Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071662. [PMID: 33916196 PMCID: PMC8037116 DOI: 10.3390/cancers13071662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are involved in the development and acquisition of a malignant phenotype in hematological cancers. Recently, their role in the pathogenesis of multiple myeloma (MM) has been suggested to be therapeutically explored. MYC is a master regulator of b-cell malignancies such as multiple myeloma, and its activation is known to deregulate mitochondrial function. We investigated the impact of mitochondrial activity on the distinct entities of the disease and tested the efficacy of the mitochondrial inhibitor, tigecycline, to overcome MM proliferation. COXII expression, COX activity, mitochondrial mass, and mitochondrial membrane potential demonstrated a progressive increase of mitochondrial features as the disease progresses. In vitro and in vivo therapeutic targeting using the mitochondrial inhibitor tigecycline showed promising efficacy and cytotoxicity in monotherapy and combination with the MM frontline treatment bortezomib. Overall, our findings demonstrate how mitochondrial activity emerges in MM transformation and disease progression and the efficacy of therapies targeting these novel vulnerabilities.
Collapse
Affiliation(s)
- Alejandra Ortiz-Ruiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Yanira Ruiz-Heredia
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María Luz Morales
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Pedro Aguilar-Garrido
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Carmen Bárcena
- Pathology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Vanesa Garrido
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Laura Moreno
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Alicia Gimenez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - María Velasco-Estevez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
| | - Eva Lospitao
- CNIO-Lilly Cell Signalling and Immunometabolism Section, CNIO, 28029 Madrid, Spain
| | - María Teresa Cedena
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Santiago Barrio
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María Linares
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biochemistry and Molecular Biology Department, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, CNIO, 28029 Madrid, Spain
- Hematology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
10
|
Schneeweis C, Hassan Z, Schick M, Keller U, Schneider G. The SUMO pathway in pancreatic cancer: insights and inhibition. Br J Cancer 2021; 124:531-538. [PMID: 33071285 PMCID: PMC7851129 DOI: 10.1038/s41416-020-01119-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
An urgent medical need to develop novel treatment strategies for patients with pancreatic ductal adenocarcinoma (PDAC) exists. However, despite various efforts in the histopathological and molecular subtyping of PDAC, novel targeted or specific therapies have not been established. Posttranslational modifications (PTMs) with ubiquitin-like proteins, including small ubiquitin-like modifiers (SUMOs), mediate numerous processes that can contribute to the fitness and survival of cancer cells. The contribution of SUMOylation to transcriptional control, DNA repair pathways, mitotic progression, and oncogenic signalling has been described. Here we review functions of the SUMO pathway in PDAC, with a special focus on its connection to an aggressive subtype of the disease characterised by high MYC activity, and discuss SUMOylation inhibitors under development for precise PDAC therapies.
Collapse
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Max-Delbrück-Center for Molecular Medicine, 13092, Berlin, Germany.
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675, München, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Wilde BR, Kaadige MR, Guillen KP, Butterfield A, Welm BE, Ayer DE. Protein synthesis inhibitors stimulate MondoA transcriptional activity by driving an accumulation of glucose 6-phosphate. Cancer Metab 2020; 8:27. [PMID: 33292639 PMCID: PMC7718662 DOI: 10.1186/s40170-020-00233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Protein synthesis is regulated by the availability of amino acids, the engagement of growth factor signaling pathways, and adenosine triphosphate (ATP) levels sufficient to support translation. Crosstalk between these inputs is extensive, yet other regulatory mechanisms remain to be characterized. For example, the translation initiation inhibitor rocaglamide A (RocA) induces thioredoxin-interacting protein (TXNIP). TXNIP is a negative regulator of glucose uptake; thus, its induction by RocA links translation to the availability of glucose. MondoA is the principal regulator of glucose-induced transcription, and its activity is triggered by the glycolytic intermediate, glucose 6-phosphate (G6P). MondoA responds to G6P generated by cytoplasmic glucose and mitochondrial ATP (mtATP), suggesting a critical role in the cellular response to these energy sources. TXNIP expression is entirely dependent on MondoA; therefore, we investigated how protein synthesis inhibitors impact its transcriptional activity. METHODS We investigated how translation regulates MondoA activity using cell line models and loss-of-function approaches. We examined how protein synthesis inhibitors effect gene expression and metabolism using RNA-sequencing and metabolomics, respectively. The biological impact of RocA was evaluated using cell lines and patient-derived xenograft organoid (PDxO) models. RESULTS We discovered that multiple protein synthesis inhibitors, including RocA, increase TXNIP expression in a manner that depends on MondoA, a functional electron transport chain and mtATP synthesis. Furthermore, RocA and cycloheximide increase mtATP and G6P levels, respectively, and TXNIP induction depends on interactions between the voltage-dependent anion channel (VDAC) and hexokinase (HK), which generates G6P. RocA treatment impacts the regulation of ~ 1200 genes, and ~ 250 of those genes are MondoA-dependent. RocA treatment is cytotoxic to triple negative breast cancer (TNBC) cell lines and shows preferential cytotoxicity against estrogen receptor negative (ER-) PDxO breast cancer models. Finally, RocA-driven cytotoxicity is partially dependent on MondoA or TXNIP. CONCLUSIONS Our data suggest that protein synthesis inhibitors rewire metabolism, resulting in an increase in mtATP and G6P, the latter driving MondoA-dependent transcriptional activity. Further, MondoA is a critical component of the cellular transcriptional response to RocA. Our functional assays suggest that RocA or similar translation inhibitors may show efficacy against ER- breast tumors and that the levels of MondoA and TXNIP should be considered when exploring these potential treatment options.
Collapse
Affiliation(s)
- Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Present Address: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohan R Kaadige
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Present Address: Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Katrin P Guillen
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew Butterfield
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bryan E Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Lankes K, Hassan Z, Doffo MJ, Schneeweis C, Lier S, Öllinger R, Rad R, Krämer OH, Keller U, Saur D, Reichert M, Schneider G, Wirth M. Targeting the ubiquitin-proteasome system in a pancreatic cancer subtype with hyperactive MYC. Mol Oncol 2020; 14:3048-3064. [PMID: 33099868 PMCID: PMC7718946 DOI: 10.1002/1878-0261.12835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
The myelocytomatosis oncogene (MYC) is an important driver in a subtype of pancreatic ductal adenocarcinoma (PDAC). However, MYC remains a challenging therapeutic target; therefore, identifying druggable synthetic lethal interactions in MYC‐active PDAC may lead to novel precise therapies. First, to identify networks with hyperactive MYC, we profiled transcriptomes of established human cell lines, murine primary PDAC cell lines, and accessed publicly available repositories to analyze transcriptomes of primary human PDAC. Networks active in MYC‐hyperactive subtypes were analyzed by gene set enrichment analysis. Next, we performed an unbiased pharmacological screen to define MYC‐associated vulnerabilities. Hits were validated by analysis of drug response repositories and genetic gain‐ and loss‐of‐function experiments. In these experiments, we discovered that the proteasome inhibitor bortezomib triggers a MYC‐associated vulnerability. In addition, by integrating publicly available data, we found the unfolded protein response as a signature connected to MYC. Furthermore, increased sensitivity of MYC‐hyperactive PDACs to bortezomib was validated in genetically modified PDAC cells. In sum, we provide evidence that perturbing the ubiquitin–proteasome system (UPS) might be an option to target MYC‐hyperactive PDAC cells. Our data provide the rationale to further develop precise targeting of the UPS as a subtype‐specific therapeutic approach.
Collapse
Affiliation(s)
- Katharina Lankes
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Zonera Hassan
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - María Josefina Doffo
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Schneeweis
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Svenja Lier
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Ulrich Keller
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Matthias Wirth
- Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
13
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
14
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
15
|
Zhang T, Li N, Sun C, Jin Y, Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Mol Med 2020; 12:e11845. [PMID: 32310340 PMCID: PMC7207169 DOI: 10.15252/emmm.201911845] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factors of the MYC family play pivotal roles in the initiation and progression of human cancers. High oncogenic level of MYC invades low‐affinity sites and enhancer sequences, which subsequently alters the transcriptome, causes metabolic imbalance, and induces stress response. The endoplasmic reticulum (ER) not only plays a central role in maintaining proteostasis, but also contributes to other key biological processes, including Ca2+ metabolism and the synthesis of lipids and glucose. Stress conditions, such as shortage in glucose or oxygen and disruption of Ca2+ homeostasis, may perturb proteostasis and induce the unfolded protein response (UPR), which either restores homeostasis or triggers cell death. Crucial roles of ER stress and UPR signaling have been implicated in various cancers, from oncogenesis to treatment response. Here, we summarize the current knowledge on the interaction between MYC and UPR signaling, and its contribution to cancer development. We also discuss the potential of targeting key UPR signaling nodes as novel synthetic lethal strategies in MYC‐driven cancers.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Xia Sheng
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance. Proc Natl Acad Sci U S A 2019; 116:25260-25268. [PMID: 31767764 PMCID: PMC6911241 DOI: 10.1073/pnas.1910391116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The oncoprotein transcription factor MYC is a validated but challenging anticancer target. In this work, we show that WDR5—a well-structured protein with druggable pockets—could be a focal point for effective anti-MYC therapies. We demonstrate that WDR5 recruits MYC to chromatin to control the expression of genes connected to protein synthesis, a process that is arguably deregulated in all cancers. We also show that disrupting the interaction between MYC and WDR5 causes existing tumors to regress. These findings raise the possibility that the MYC–WDR5 nexus could be targeted to treat cancer. The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC–WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt's lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC–WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC–WDR5 inhibitors could be developed as anticancer agents.
Collapse
|
17
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
18
|
Liu X, Song X, Zhang J, Xu Z, Che L, Qiao Y, Ortiz Pedraza Y, Cigliano A, Pascale RM, Calvisi DF, Liu Y, Chen X. Focal adhesion kinase activation limits efficacy of Dasatinib in c-Myc driven hepatocellular carcinoma. Cancer Med 2018; 7:6170-6181. [PMID: 30370649 PMCID: PMC6308083 DOI: 10.1002/cam4.1777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly malignancy with limited treatment options. Recently, it was found that Dasatinib treatment led to synthetic lethality in c-Myc high-expressing human cancer cells due to inhibition of p-Lyn. Overexpression of c-Myc is frequently seen in human HCC. We investigated the sensitivity to Dasatinib in vitro using HCC cell lines and in vivo using c-Myc mouse HCC model. We found that HCC cell line responsiveness to Dasatinib varied significantly. However, there was no correlation between c-Myc expression and IC50 to Dasatinib. In c-Myc-induced HCC in mice, tumors continued to grow despite Dasatinib treatment, although the eventual tumor burden was lower in Dasatinib treatment cohort. Molecular analyses revealed that Dasatinib was effective in inhibiting p-Src, but not p-Lyn, in HCC. Importantly, we found that in HCC cell lines as well as c-Myc mouse HCC, Dasatinib treatment induced up regulation of activated/phosphorylated (p)-focal adhesion kinase(FAK). Concomitant treatment of HCC cell lines with Dasatinib and FAK inhibitor prevented Dasatinib-induced FAK activation, leading to stronger growth restraint. Altogether, our results suggest that Dasatinib may have limited efficacy as single agent for HCC treatment. Combined treatment with Dasatinib with FAK inhibitor might represent a novel therapeutic approach against HCC.
Collapse
Affiliation(s)
- Xianqiong Liu
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of Thoracic Oncology IIKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingChina
| | - Zhong Xu
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of GastroenterologyGuizhou Provincial People's HospitalThe Affiliated People's Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of OncologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Yunuen Ortiz Pedraza
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of Health ScienceUniversidad Autonoma Metropolitana‐ItapalapaMexico CityMexico
| | | | - Rosa M. Pascale
- Department of Clinical and Experimental MedicineUniversity of SassariSassariItaly
| | - Diego F. Calvisi
- Institute of PathologyUniversity of GreifswaldGreifswaldGermany
- Department of Clinical and Experimental MedicineUniversity of SassariSassariItaly
| | - Yanju Liu
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xin Chen
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
19
|
Zhan X, Yu W, Franqui-Machin R, Bates ML, Nadiminti K, Cao H, Amendt BA, Jethava Y, Frech I, Zhan F, Tricot G. Alteration of mitochondrial biogenesis promotes disease progression in multiple myeloma. Oncotarget 2017; 8:111213-111224. [PMID: 29340048 PMCID: PMC5762316 DOI: 10.18632/oncotarget.22740] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Many cancers, including multiple myeloma (MM), retain more cytosolic iron to promote tumor cell growth and drug resistance. Higher cytosolic iron promotes oxidative damage due to its interaction with reactive oxygen species generated by mitochondria. The variation of mitochondrial biogenesis in different stages of MM disease was evaluated using gene expression profiles in a large clinical dataset. Sixteen of 18mitochondrial biogenesis related gene sets, including mitochondrial biogenesis signature and oxidative phosphorylation, were increased in myeloma cells compared with normal plasma cells and high expression was associated with an inferior patient outcome. Relapsed and drug resistant myeloma samples had higher expression of mitochondrial biogenesis signatures than newly diagnosed patient samples. The expression of mitochondrial biogenesis genes was regulated by the cellular iron content, which showed a synergistic effect in patient outcome in MM. Pharmacological ascorbic acid induced myeloma cell death by inhibition of mitochondria oxidative phosphorylation in an in vivo model. Here, we identify that dysregulated mitochondrial biogenesis and iron homeostasis play a major role in myeloma progression and patient outcome and that pharmacological ascorbic acid, through cellular iron content and mitochondrial oxidative species, should be considered as a novel treatment in myeloma including drug-resistant and relapsed patients.
Collapse
Affiliation(s)
- Xin Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology University of Iowa, Iowa City, IA, USA
| | - Reinaldo Franqui-Machin
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Melissa L. Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Kalyan Nadiminti
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Huojun Cao
- Department of Endodontics University of Iowa, Iowa City, IA, USA
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology University of Iowa, Iowa City, IA, USA
- Department of Endodontics University of Iowa, Iowa City, IA, USA
| | - Yogesh Jethava
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Ivana Frech
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Guido Tricot
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
Abstract
The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Collapse
Affiliation(s)
- Chi V. Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Present addresses: Ludwig Institute for Cancer Research, New York, New York 10017, USA, and The Wistar Institute, Philadelphia, Pennsylvania 19104, USA or
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco & Howard Hughes Medical Institute, San Francisco, California 94158, USA.
| | - Laura Soucek
- Vall d’Hebron Institute of Oncology (VHIO), Cellex Centre, Barcelona 08035; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010; and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
21
|
Royla N, Kempa S. The answer's in the tail: MYC mRNA has a metabolic sensor that supports cancer chemoresistance. Mol Cell Oncol 2017; 4:e1338209. [PMID: 28868350 DOI: 10.1080/23723556.2017.1338209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Our recent study shows that the translation of MYC mRNA (mRNA) is controlled by its 3' untranslated region (UTR) in a process that depends on the availability of glutamine and levels of cellular nucleotides. Metabolic feedback protects cells from a lethal glutamine addiction and may compromise metabolic targeting of glutamine metabolism.
Collapse
Affiliation(s)
- Nadine Royla
- Integrative proteomics and metabolomics, Berlin Institute for Medical Systems Biology at the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Stefan Kempa
- Integrative proteomics and metabolomics, Berlin Institute for Medical Systems Biology at the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
22
|
The Stearoyl-CoA Desaturase-1 (Desat1) in Drosophila cooperated with Myc to Induce Autophagy and Growth, a Potential New Link to Tumor Survival. Genes (Basel) 2017; 8:genes8050131. [PMID: 28452935 PMCID: PMC5448005 DOI: 10.3390/genes8050131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/19/2023] Open
Abstract
Lipids are an important energy supply in our cells and can be stored or used to produce macromolecules during lipogenesis when cells experience nutrient starvation. Our proteomic analysis reveals that the Drosophila homologue of human Stearoyl-CoA desaturase-1 (Desat1) is an indirect target of Myc in fat cells. Stearoyl-CoA desaturases are key enzymes in the synthesis of monounsaturated fatty acids critical for the formation of complex lipids such as triglycerides and phospholipids. Their function is fundamental for cellular physiology, however in tumors, overexpression of SCD-1 and SCD-5 has been found frequently associated with a poor prognosis. Another gene that is often upregulated in tumors is the proto-oncogene c-myc, where its overexpression or increased protein stability, favor cellular growth. Here, we report a potential link between Myc and Desat1 to control autophagy and growth. Using Drosophila, we found that expression of Desat1, in metabolic tissues like the fat body, in the gut and in epithelial cells, is necessary for Myc function to induce autophagy a cell eating mechanism important for energy production. In addition, we observed that reduction of Desat1 affects Myc ability to induce growth in epithelial cells. Our data also identify, in prostatic tumor cells, a significant correlation between the expression of Myc and SCD-1 proteins, suggesting the existence of a potential functional relationship between the activities of these proteins in sustaining tumor progression.
Collapse
|
23
|
Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front Cell Dev Biol 2017; 5:10. [PMID: 28280720 PMCID: PMC5322154 DOI: 10.3389/fcell.2017.00010] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Myc is an oncogene deregulated in most-perhaps all-human cancers. Each Myc family member, c-, L-, and N-Myc, has been connected to tumor progression and maintenance. Myc is recognized as a "most wanted" target for cancer therapy, but has for many years been considered undruggable, mainly due to its nuclear localization, lack of a defined ligand binding site, and physiological function essential to the maintenance of normal tissues. The challenge of identifying a pharmacophore capable of overcoming these hurdles is reflected in the current absence of a clinically-viable Myc inhibitor. The first attempts to inhibit Myc used antisense technology some three decades ago, followed by small molecule inhibitors discovered through "classical" compound library screens. Notable breakthroughs proving the feasibility of systemic Myc inhibition were made with the Myc dominant negative mutant Omomyc, showing both the great promise in targeting this infamous oncogene for cancer treatment as well as allaying fears about the deleterious side effects that Myc inhibition might have on normal proliferating tissues. During this time many other strategies have appeared in an attempt to drug the undruggable, including direct and indirect targeting, knockdown, protein/protein and DNA interaction inhibitors, and translation and expression regulation. The inhibitors range from traditional small molecules to natural chemicals, to RNA and antisense, to peptides and miniproteins. Here, we briefly describe the many approaches taken so far, with a particular focus on their potential clinical applicability.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'Hebron Barcelona, Spain
| | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Peptomyc, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de BarcelonaBellaterra, Spain
| |
Collapse
|
24
|
Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic Imaging of Glutamine in Cancer. J Nucl Med 2017; 58:533-537. [PMID: 28232608 DOI: 10.2967/jnumed.116.182345] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Glucose and glutamine are the most abundant nutrients for producing energy and building blocks in normal and tumor cells. Increased glycolysis in tumors, the Warburg Effect, is the basis for 18F-FDG PET imaging. Cancer cells can also be genetically reprogrammed to use glutamine. 5-11C-(2S)-glutamine and 18F-(2S,4R)4-fluoroglutamine may be useful complementary tools to measure changes in tumor metabolism. In glioma patients, the tracer 18F-(2S,4R)4-fluoroglutamine showed tumor-to-background contrast different from that of 18F-FDG and differences in uptake in glioma patients with clinical progression of disease versus stable disease (tumor-to-brain ratio > 3.7 in clinically active glioma tumors, minimal or no specific uptake in clinically stable tumors). These preliminary results suggest that 18F-(2S,4R)4-fluoroglutamine PET may be a new tool for probing in vivo metabolism of glutamine in cancer patients and for guiding glutamine-targeted therapeutics. Further studies of uptake mechanism, and comparison of kinetics for 18F-(2S,4R)4-fluoroglutamine versus the 11C-labeled native glutamine, will be important and enlightening.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry 82#, Beijing Normal University, Beijing, China
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - David Mankoff
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|