1
|
Simões-Faria R, Daems M, Peacock HM, Declercq M, Willems A, Jones EAV, Ghesquière B. Wall shear stress modulates metabolic pathways in endothelial cells. Metabolomics 2025; 21:16. [PMID: 39832080 PMCID: PMC11753319 DOI: 10.1007/s11306-024-02214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways. OBJECTIVES The aim of this study is to examine the effects of WSS on EC metabolism, specifically evaluating its impact on central carbon metabolism and glycolysis using transcriptomics and tracer metabolomics approaches. METHODS ECs were exposed to WSS, and transcriptomic analysis was performed to assess gene expression changes related to metabolic pathways. Tracer metabolomics was used to track metabolic fluxes, focusing on glutamine and glycolytic metabolism. Additionally, chemical inhibition of glutamate dehydrogenase was conducted to evaluate its role in EC fitness under WSS. RESULTS Transcriptomic data revealed upregulation of glutamine and glutamate pathways, alongside downregulation of glycolytic activity in ECs exposed to WSS. Tracer metabolomics confirmed that WSS promotes glutamine anaplerosis into the Krebs cycle, while decreasing glycolytic metabolism. Suppression of glutamate dehydrogenase impaired EC fitness under WSS conditions. CONCLUSION Our findings illuminate that ECs subjected to WSS exhibit a preference for glutamine as a key nutrient source for central carbon metabolism pathways, indicating diminished reliance on glycolysis. This study elucidates the nutritional predilections and regulatory mechanisms governing EC metabolism under WSS in vitro, underscoring the pivotal role of physical stimuli in shaping EC metabolic responses.
Collapse
Affiliation(s)
- Rita Simões-Faria
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Mathias Declercq
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Anton Willems
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
2
|
Lin H, Xing J, Ma X, Nakanishi R, Kondo H, Fujita M, Sutoh K, Maeshige N, Fujino H. Dietary RNA from Torula Yeast Prevents Capillary Regression in Atrophied Skeletal Muscle in Rats. Life (Basel) 2024; 14:1616. [PMID: 39768324 PMCID: PMC11679692 DOI: 10.3390/life14121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic neuromuscular inactivity induces capillary regression within skeletal muscle. The objective of this study was to investigate the potential effects of dietary nucleic acids in counteracting the capillary reduction linked to chronic neuromuscular inactivity in the soleus muscle. The study utilized four distinct groups of female Wistar rats: a control group (CON), a hindlimb-unloading group (HU), an HU group supplemented with DNA (HU + DNA), and an HU group supplemented with RNA (HU + RNA). For a duration of two weeks, rats in the HU + DNA and HU + RNA groups were administered 1500 mg/kg of DNA or RNA orally on a daily basis. Two weeks of hindlimb unloading was concomitant with a reduction in the absolute weight of the soleus muscle and the capillary-to-fiber (C/F) ratio. This was associated with changes due to disuse, including increased accumulation of reactive oxygen species (ROS) and reduced levels of superoxide dismutase (SOD-2), along with elevated levels of thrombospondin-1 (TSP-1), an anti-angiogenic factor. Administering DNA at a medium concentration in the diet did not effectively prevent the reduction in the ratio between capillaries and fibers. In contrast, the equivalent concentration of RNA successfully averted the regression of capillaries during the unloading phase. Additionally, reactive oxygen species (ROS), superoxide dismutase-2 (SOD-2), and thrombospondin-1 (TSP-1) protein were kept at the same levels as in the control. The aforementioned findings reveal that RNA is more effective than DNA in preventing capillary regression triggered by muscle atrophy.
Collapse
Affiliation(s)
- Hao Lin
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Jihao Xing
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Mica Fujita
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| |
Collapse
|
3
|
Chen Y, Li S, Hou X, Jia Y. PDE4B abrogation extenuates angiotensin II-induced endothelial dysfunction related to hypertension through up-regulation of AMPK/Sirt1/Nrf2/ARE signaling. Tissue Cell 2024; 91:102637. [PMID: 39591723 DOI: 10.1016/j.tice.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Endothelial dysfunction is commonly perceived as a precursor in the process of hypertension, a severe cardiovascular disorder. Phosphodiesterase 4B (PDE4B) inactivation has been proposed to exert cardioprotective effects and prevent pulmonary hypertension. However, the role of PDE4B in endothelial dysfunction in hypertension remains inexplicit, which will be investigated in the present work. In angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs), RT-qPCR and Western blotting were used to analyze PDE4B expression. CCK-8 method was used to detect cell viability. Flow cytometry assay and Caspase 3 assay kit were used to detect cellular apoptotic level. Wound healing and tube formation assays were respectively used to detect cell migration and angiogenesis. Western blotting and corresponding assay kits were respectively used to analyze the expressions and contents of endothelial dysfunction markers. JC-1 assay, RT-qPCR and relevant assay kit were respectively used to detect mitochondrial membrane potential (ΔΨm), quantify mitochondrial DNA (mtDNA) copy number and mitochondrial permeability transition pore (mPTP) opening. Besides, Western blotting was used to analyze the expressions of endoplasmic reticulum stress (ERS) and AMP-activated protein kinase (AMPK)/sirtuin 1 (Sirt1)/nuclear factor-erythroid 2 related factor 2 (Nrf2)/antioxidant response element (ARE) signaling-associated proteins. PDE4B expression was increased in Ang II- induced HUVECs. PDE4B knockdown promoted the viability, migration, angiogenesis while inhibiting the apoptosis, endothelial dysfunction, ERS and mitochondrial damage in Ang II-induced HUVECs. Additionally, PDE4B silence activated AMPK/Sirt1/Nrf2/ARE pathway and AMPK inhibitor Compound C (CC) partially reversed the effects of PDE4B down-regulation on Ang II-induced HUVECs. Conclusively, PDE4B inhibition might protect against Ang II-induced endothelial dysfunction in HUVECs via up-regulating AMPK/Sirt1/Nrf2/ARE pathway, which might be mediated by the suppression of ERS and mitochondrial damage.
Collapse
Affiliation(s)
- Yong Chen
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China.
| | - Suipeng Li
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| | - Xuqing Hou
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| | - Yinfeng Jia
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| |
Collapse
|
4
|
Wang W, Yang H, Fan Z, Shi R. STL Inhibited Angiogenesis of DPSCs Through Depressing Mitochondrial Respiration by Enhancing RNF217. Adv Biol (Weinh) 2024; 8:e2400042. [PMID: 38880848 DOI: 10.1002/adbi.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Angiogenesis is the determining factor during dental pulp regeneration. Six-twelve leukemia (STL) is identified as a key regulatory factor on the biological function of dental pulp stem cells (DPSCs) under hypoxic conditions, but its effect on angiogenesis is unclear. Co-culture of DPSCs and human umbilical vein endothelial cells (HUVECs) is used to detect tubule formation ability in vitro and the angiogenesis ability in vivo. RNA-seq and bioinformatic analyses are performed to screen differentially expressed genes. Seahorse Cell Mito Stress Test is proceeded to exam mitochondrial respiration. STL decreased tubule formation and mitochondrial respiration of DPSCs in vitro and restrained the number of blood vessels and the expression of VEGF in new formed tissue in vivo. Furthermore, pretreating STL-depleted DPSCs with rotenone, a mitochondrial respiration inhibitor, counteracted the promoting effect of STL knockdown on tubule formation. Then, RNA-seq and bioinformatic analyses identified some angiogenesis relevant genes and pathways in STL-depleted DPSCs. And STL enhanced expression of mRNA-ring finger protein 217 (RNF217), which inhibited the tubule formation and mitochondrial respiration of DPSCs. STL inhibited the angiogenesis of DPSCs through depressing mitochondrial respiration by enhancing RNF217, indicating that STL is a potential target for angiogenesis of DPSCs.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
5
|
Gou F, Cai F, Li X, Lin Q, Zhu J, Yu M, Chen S, Lu J, Hu C. Mitochondria-associated endoplasmic reticulum membranes involve in oxidative stress-induced intestinal barrier injury and mitochondrial dysfunction under diquat exposing. ENVIRONMENTAL TOXICOLOGY 2024; 39:3906-3919. [PMID: 38567716 DOI: 10.1002/tox.24232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 02/18/2024] [Indexed: 06/12/2024]
Abstract
Many factors induced by environmental toxicants have made oxidative stress a risk factor for the intestinal barrier injury and growth restriction, which is serious health threat for human and livestock and induces significant economic loss. It is well-known that diquat-induced oxidative stress is implicated in the intestinal barrier injury. Although some studies have shown that mitochondria are the primary target organelle of diquat, the underlying mechanism remains incompletely understood. Recently, mitochondria-associated endoplasmic reticulum membranes (MAMs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and signal transduction. In this study, we investigated whether MAMs involved in intestinal barrier injury and mitochondrial dysfunction induced by diquat-induced oxidative stress in piglets and porcine intestinal epithelial cells (IPEC-J2 cells). The results showed that diquat induced growth restriction and impaired intestinal barrier. The mitochondrial reactive oxygen species (ROS) was increased and mitochondrial membrane potential was decreased following diquat exposure. The ultrastructure of mitochondria and MAMs was also disturbed. Meanwhile, diquat upregulated endoplasmic reticulum stress marker protein and activated PERK pathway. Furthermore, loosening MAMs alleviated intestinal barrier injury, decrease of antioxidant enzyme activity and mitochondrial dysfunction induced by diquat in IPEC-J2 cells, while tightening MAMs exacerbated diquat-induced mitochondrial dysfunction. These results suggested that MAMs may be associated with the intestinal barrier injury and mitochondrial dysfunction induced by diquat in the jejunum of piglets.
Collapse
Affiliation(s)
- Feiyang Gou
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Fengzhou Cai
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Xin Li
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Qian Lin
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Jiang Zhu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Minjie Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Shaokui Chen
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jianjun Lu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
6
|
Huan MJ, Fu PP, Chen X, Wang ZX, Ma ZR, Cai SZ, Jiang Q, Wang Q. Identification of the central role of RNA polymerase mitochondrial for angiogenesis. Cell Commun Signal 2024; 22:343. [PMID: 38907279 PMCID: PMC11191269 DOI: 10.1186/s12964-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.
Collapse
Affiliation(s)
- Meng-Jia Huan
- Department of Ophthalmology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ping-Ping Fu
- Department of Ophthalmology, Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xia Chen
- Department of Anesthesiology, Children's hospital of Soochow University, Suzhou, 215025, China
| | - Zhao-Xia Wang
- Department of Endocrinology, Fengcheng Hospital of Fengxian Distric, Shanghai, China
| | - Zhou-Rui Ma
- Department of Burn and Plastic Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China.
- Key Laboratory of Congenital Structural Malformations of Suzhou City, Suzhou, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Qian Wang
- Department of Anesthesiology, Children's hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
7
|
Li X, Lin Q, Gou F, Zhu J, Yu M, Hong Q, Hu C. Effects of hesperidin on mitochondrial function, mitochondria-associated endoplasmic reticulum membranes and IP3R-MCU calcium axis in the intestine of piglets exposed to deoxynivalenol. Food Funct 2024; 15:6459-6474. [PMID: 38804659 DOI: 10.1039/d4fo00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Deoxynivalenol (DON) pollution is prevalent in crops, and can induce oxidative stress and intestinal injury. Hesperidin is one of the major flavonoids in citrus fruits that has various biological activities such as antioxidant and anti-inflammatory activities. However, whether hesperidin could alleviate DON-induced intestinal injury and the mechanism remain unclear. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) have attracted attention for their crucial signaling points to regulate ER-mitochondria calcium transfer. This study aims to evaluate the effects of hesperidin on the intestinal barrier, mitochondrial function, MAMs, and inositol 1,4,5-triphosphate receptor (IP3R)-mitochondrial calcium uniporter (MCU) calcium axis in the intestine of piglets exposed to DON. Twenty-four piglets were randomly divided into four groups in a 2 × 2 factorial arrangement for a 21-d experiment: Control: basal diet; hesperidin group: basal diet + 300 mg kg-1 hesperidin; DON: basal diet + 1.5 mg kg-1 DON; DON + hesperidin group: basal diet + 1.5 mg kg-1 DON + 300 mg kg-1 hesperidin. The data showed that when compared with the DON group, hesperidin improved growth performance and the intestinal barrier, alleviated intestinal oxidative stress and ER stress, and decreased the serum alanine aminotransferase (ALT) level (P < 0.05). Hesperidin also alleviated mitochondrial dysfunction and ferroptosis in the intestine of piglets exposed to DON (P < 0.05). Importantly, hesperidin prevented excessive MAM formation by downregulating the protein levels of Mitofusin 2 (Mfn2) and glucose-regulated protein 75 (GRP75), decreasing the ratio of the mitochondria with MAMs/total mitochondria and the ratio of MAM length/mitochondrial perimeter and lengthening the mitochondria-ER distance in MAMs (P < 0.05). Furthermore, hesperidin regulated the IP3R-glucose-regulated protein 75 (GRP75)-voltage-dependent anion channel 1 (VDAC1)-MCU calcium axis by decreasing the protein levels of GRP75 and MCU and the calcium level of the mitochondria compared with the DON group (P < 0.05). An in vitro experiment was conducted to further explore whether IP3R-mediated ER-mitochondria calcium transfer was involved in the protective effects of hesperidin on the intestinal epithelium barrier and mitochondria. Data showed that hesperidin may exert protective effects on the intestinal epithelium barrier and mitochondria via inhibiting ER-mitochondrial calcium transfer mediated by IP3Rs. These data suggested that hesperidin could alleviate MAM-mediated mitochondrial calcium overload, thereby improving mitochondrial function and alleviating oxidative stress and intestinal injury in DON-challenged piglets.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Qian Lin
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Feiyang Gou
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Jiang Zhu
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Minjie Yu
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
8
|
Zeng X, Ma S, Luo Y, Zhang Y, Wang Q, Zhang Z, Ke W, Ma Y, Hu H, Hartung T, Wei Y, Zhong X. Environmentally Relevant Concentrations of Tetrabromobisphenol A Exposure Impends Neurovascular Formation through Perturbing Mitochondrial Metabolism in Zebrafish Embryos and Human Primary Endothelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5267-5278. [PMID: 38478874 DOI: 10.1021/acs.est.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 μg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21230, United States
- University of Konstanz, Konstanz 78464, Germany
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Zhang K, Ren YQ, Xue Y, Duan D, Zhou T, Ding YZ, Li X, Gong WK, Guan JQ, Ma L. Alpha 2-adrenoceptor participates in anti-hyperalgesia by regulating metabolic demand. Front Pharmacol 2024; 15:1359319. [PMID: 38584597 PMCID: PMC10996398 DOI: 10.3389/fphar.2024.1359319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qing Ren
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xue
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Duan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhuo Ding
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Department of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wan-Kun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Qiong Guan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Ma
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Li X, Gou F, Zhu J, Lin Q, Yu M, Tu X, Hong Q, Hu C. Deoxynivalenol induced intestinal barrier injury, mitochondrial dysfunction and calcium overload by inositol 1,4,5-triphosphate receptors (IP3Rs)-mitochondrial calcium uniporter (MCU) calcium axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169729. [PMID: 38160839 DOI: 10.1016/j.scitotenv.2023.169729] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Deoxynivalenol (DON) contamination is widespread in crops and could easily cause intestinal injury, which brings hazards to animals. Mitochondria are considered as an important target of DON, nevertheless, the mechanism is still unclear. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) have gained arousing interest and are recognized as critical signaling hubs that control calcium signaling transduction between ER and mitochondria. This study aims to investigate the effects of DON on intestinal barrier, mitochondria, MAMs and inositol 1,4,5-triphosphate receptors (IP3Rs)-mitochondrial calcium uniporter (MCU) calcium axis in piglets and porcine intestinal epithelial cells (IPEC-J2). Furthermore, inhibition of IP3Rs or MCU was used to explore whether IP3Rs-MCU axis of MAMs was involved in the mitochondria dysfunction and intestinal epithelium barrier injury induced by DON in IPEC-J2. The data showed that DON induced intestinal barrier injury, mitochondrial dysfunction and ERS in piglets' jejunum and IPEC-J2. Moreover, DON increased MAMs by upregulating the protein level of Mitofusin 2 (Mfn2), increasing the percentage of mitochondria with MAMs/total mitochondria and the ratio of MAMs length/mitochondrial perimeter and shortening the distance between mitochondria and ER of MAMs. Importantly, DON influenced IP3Rs-glucose-regulated protein 75 (GRP75)-voltage-dependent anion channel 1 (VDAC1)-MCU calcium axis by increasing the protein levels of GRP75 and MCU and the interaction of VDAC1-GRP75-IP3Rs complex, which in turn induced mitochondrial calcium overload. Furthermore, inhibition of IP3Rs or MCU alleviated DON-induced intestinal epithelium barrier injury, mitochondrial dysfunction and mitochondrial calcium overload of IPEC-J2. The current investigation proposed that DON induced intestinal injury, mitochondrial dysfunction and calcium overload via IP3Rs-GRP75-VDAC1-MCU calcium axis.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Feiyang Gou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Jiang Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Qian Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Minjie Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Xiaodian Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, China.
| |
Collapse
|
11
|
Gao T, Cheng S, Lu H, Li X, Weng X, Ge J. Histidine Triad Nucleotide-Binding Protein 1 Improves Critical Limb Ischemia by Regulating Mitochondrial Homeostasis. Nutrients 2023; 15:4859. [PMID: 38068718 PMCID: PMC10708213 DOI: 10.3390/nu15234859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Critical limb ischemia (CLI) is a common complication of diabetes mellitus that typically occurs in the later stages of the disease. Vascularization is indeed an important physiological process involving the formation of new blood vessels from existing ones. It occurs in response to various normal and pathophysiological conditions, and one of its critical roles is to compensate for inadequate oxygen supply, which is often seen in situations like chronic limb ischemia (CLI). Histidine triad nucleotide-binding protein 1 (Hint1) is a member of the Hint family that has been shown to attenuate cardiac hypertrophy, but its role in vascularization still needs to be clarified. In this study, we investigated the role of Hint1 in CLI. We found that Hint1 is significantly reduced in the muscle tissue of STZ-induced diabetic mice and high-glucose (HG)-treated endothelial cells (ECs). Hint1 deletion impaired blood flow recovery and vascularization, whereas Hint1 overexpression promoted these processes. In addition, our in vitro study showed that Hint1 deficiency aggravated mitochondrial dysfunction in ECs, as evidenced by impaired mitochondrial respiration, decreased mitochondrial membrane potential, and increased reactive oxygen species. Our findings suggest that Hint1 deficiency impairs blood perfusion by damaging mitochondrial function and that Hint1 may represent a potential therapeutic target for treating CLI.
Collapse
Affiliation(s)
- Tingwen Gao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China; (T.G.); (H.L.); (X.L.)
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiology, Rizhao International Heart Hospital, Rizhao 276825, China
| | - Shuo Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China; (T.G.); (H.L.); (X.L.)
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiao Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China; (T.G.); (H.L.); (X.L.)
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China; (T.G.); (H.L.); (X.L.)
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai 200032, China; (T.G.); (H.L.); (X.L.)
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Li X, Gou F, Xiao K, Zhu J, Lin Q, Yu M, Hong Q, Hu C. Effects of DON on Mitochondrial Function, Endoplasmic Reticulum Stress, and Endoplasmic Reticulum Mitochondria Contact Sites in the Jejunum of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13234-13243. [PMID: 37643317 DOI: 10.1021/acs.jafc.3c03380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recent research has emphasized the significance of investigating the interplay between organelles, with endoplasmic reticulum mitochondria contact sites (ERMCSs) being recognized as critical signaling hubs between organelles. The objective of the current study was to assess the impact of deoxynivalenol (DON) on jejunal mitochondria, ER, and ERMCSs. Twelve piglets (35 d, 10.22 ± 0.35 kg) were randomized into two groups: control group, basal diet; the DON group, basal diet + 1.5 mg/kg DON. The findings revealed that DON decreased growth performance, induced jejunal oxidative stress, and impaired jejunal barrier function. DON was also found to induce mitochondrial dysfunction, trigger endoplasmic reticulum stress (ERS) in the piglets' jejunum, and activate mitochondrial and ER apoptosis pathways by upregulating apoptosis-related proteins (Caspase-8, Caspase-12, Bax, and CHOP). To investigate the involvement of ERMCSs in DON-induced intestinal injury, we measured the protein levels of ERMCS proteins, such as mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and glucose-regulated protein 75 (GRP75) and Pearson's correlation coefficient of ERMCS proteins and ERMCS ultrastructure. Our finding showed that DON upregulated the protein level of Mfn2 and GRP75 and increased the percentage of mitochondria with ERMCSs/total mitochondria, the length of ERMCSs compared to the perimeter of mitochondria, and the Pearson's correlation coefficient of voltage-dependent anion-selective channel protein 1 (VDAC1) and inositol 1,4,5-triphosphate receptors (IP3Rs) in piglets' jejunum. Furthermore, DON shortened the distance between mitochondria and ER at ERMCSs. These findings suggested that DON impaired mitochondrial function, triggered ERS, and increased ERMCSs, indicating that the increased ERMCSs could be related to mitochondrial dysfunction and ERS involved in the intestinal injury of piglets induced by DON.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Gou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kan Xiao
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiang Zhu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lin
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Yu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qihua Hong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Dou X, Qiao L, Song X, Chang J, Pi S, Zhang X, Zeng X, Zhu L, Xu C. Biogenic selenium nanoparticles alleviate intestinal epithelial barrier injury by regulating mitochondria-lysosome crosstalk. Food Funct 2023; 14:4891-4904. [PMID: 37144827 DOI: 10.1039/d2fo03992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The intestinal epithelial barrier plays a fundamental role in human and animal health. Mitochondrial dysfunction can lead to intestinal epithelial barrier damage. The interaction between mitochondria and lysosomes has been proved to regulate each other's dynamics. Our previous studies have demonstrated that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier injury through regulating mitochondrial autophagy. In this study, we hypothesize that the protective effects of SeNPs against intestinal epithelial barrier dysfunction are associated with mitochondrial-lysosomal crosstalk. The results showed that lipopolysaccharide (LPS) and TBC1D15 siRNA transfection both caused the increase of intestinal epithelial permeability, activation of mitophagy, and mitochondrial and lysosomal dysfunction in porcine jejunal epithelial cells (IPEC-J2). SeNP pretreatment significantly up-regulated the expression levels of TBC1D15 and Fis1, down-regulated Rab7, caspase-3, MCOLN2 and cathepsin B expression levels, reduced cytoplasmic Ca2+ concentration, effectively alleviated mitochondrial and lysosomal dysfunction, and maintained the integrity of the intestinal epithelial barrier in IPEC-J2 cells exposed to LPS. Furthermore, SeNPs obviously reduced cytoplasmic Ca2+ concentration and activated the TBC1D15/Fis/Rab7-mediated signaling pathway, shortened the contact time between mitochondria and lysosomes, inhibited mitophagy, maintained mitochondrial and lysosomal homeostasis, and effectively attenuated intestinal epithelial barrier injury in IPEC-J2 cells transfected with TBC1D15 siRNA. These results indicated that the protective effect of SeNPs on intestinal epithelial barrier injury is closely associated with the TBC1D15/Rab7-mediated mitochondria-lysosome crosstalk signaling pathway.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
14
|
Ma ZR, Li HP, Cai SZ, Du SY, Chen X, Yao J, Cao X, Zhen YF, Wang Q. The mitochondrial protein TIMM44 is required for angiogenesis in vitro and in vivo. Cell Death Dis 2023; 14:307. [PMID: 37147302 PMCID: PMC10163060 DOI: 10.1038/s41419-023-05826-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The mitochondrial integrity and function in endothelial cells are essential for angiogenesis. TIMM44 (translocase of inner mitochondrial membrane 44) is essential for integrity and function of mitochondria. Here we explored the potential function and the possible mechanisms of TIMM44 in angiogenesis. In HUVECs, human retinal microvascular endothelial cells and hCMEC/D3 brain endothelial cells, silence of TIMM44 by targeted shRNA largely inhibited cell proliferation, migration and in vitro capillary tube formation. TIMM44 silencing disrupted mitochondrial functions in endothelial cells, causing mitochondrial protein input arrest, ATP reduction, ROS production, and mitochondrial depolarization, and leading to apoptosis activation. TIMM44 knockout, by Cas9-sgRNA strategy, also disrupted mitochondrial functions and inhibited endothelial cell proliferation, migration and in vitro capillary tube formation. Moreover, treatment with MB-10 ("MitoBloCK-10"), a TIMM44 blocker, similarly induced mitochondrial dysfunction and suppressed angiogenic activity in endothelial cells. Contrarily, ectopic overexpression of TIMM44 increased ATP contents and augmented endothelial cell proliferation, migration and in vitro capillary tube formation. In adult mouse retinas, endothelial knockdown of TIMM44, by intravitreous injection of endothelial specific TIMM44 shRNA adenovirus, inhibited retinal angiogenesis, causing vascular leakage, acellular capillary growth, and retinal ganglion cells degeneration. Significant oxidative stress was detected in TIMM44-silenced retinal tissues. Moreover, intravitreous injection of MB-10 similarly induced oxidative injury and inhibited retinal angiogenesis in vivo. Together, the mitochondrial protein TIMM44 is important for angiogenesis in vitro and in vivo, representing as a novel and promising therapeutic target of diseases with abnormal angiogenesis.
Collapse
Affiliation(s)
- Zhou-Rui Ma
- Department of Burns and Plastic Surgery, Children's hospital of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Children's Structural Deformities, Suzhou, China
| | - Hong-Peng Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Shi-Zhong Cai
- Suzhou Key Laboratory of Children's Structural Deformities, Suzhou, China
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng-Yang Du
- Department of Orthopedics, Xuzhou First People's Hospital, Xuzhou, China
| | - Xia Chen
- Department of Anesthesiology, Children's hospital of Soochow University, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Xu Cao
- Suzhou Key Laboratory of Children's Structural Deformities, Suzhou, China.
- Department of Urology, Children's Hospital of Soochow University, Suzhou, China.
| | - Yun-Fang Zhen
- Department of Orthopedics, Children's hospital of Soochow University, Suzhou, China.
| | - Qian Wang
- Department of Anesthesiology, Children's hospital of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
16
|
Mohammadi P, Yarani R, Rahimpour A, Ranjbarnejad F, Mendes Lopes de Melo J, Mansouri K. Targeting endothelial cell metabolism in cancerous microenvironment: a new approach for anti-angiogenic therapy. Drug Metab Rev 2022; 54:386-400. [PMID: 36031813 DOI: 10.1080/03602532.2022.2116033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-angiogenic therapy is a practical approach to managing diseases with increased angiogenesis, such as cancer, maculopathies, and retinopathies. Considering the fundamental gaps in the knowledge of the vital pathways involved in angiogenesis and its inhibition and the insufficient efficiency of existing angiogenesis inhibitors, there is an increasing focus on the emergence of new therapeutic strategies aimed at inhibiting pathological angiogenesis. Angiogenesis is forming a new vascular network from existing vessels; endothelial cells (ECs), vascular lining cells, are the main actors of angiogenesis in physiological or pathological conditions. Switching from a quiescent state to a highly migratory and proliferative state during new vessel formation called "angiogenic switch" is driven by a "metabolic switch" in ECs, angiogenic growth factors, and other signals. As the characteristics of ECs change by altering the surrounding environment, they appear to have a different metabolism in a tumor microenvironment (TME). Therefore, pathological angiogenesis can be inhibited by targeting metabolic pathways. In the current review, we aim to discuss the EC metabolic pathways under normal and TME conditions to verify the suitability of targeting them with novel therapies.
Collapse
Affiliation(s)
- Parisa Mohammadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
| | - Fatemeh Ranjbarnejad
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Pritchard KA, Jing X, Teng M, Wells C, Jia S, Afolayan AJ, Jarzembowski J, Day BW, Naylor S, Hessner MJ, Konduri GG, Teng RJ. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One 2022; 17:e0269564. [PMID: 36018859 PMCID: PMC9417039 DOI: 10.1371/journal.pone.0269564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.
Collapse
Affiliation(s)
- Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Xigang Jing
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Clive Wells
- Electron Microscope Facility, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Adeleye J. Afolayan
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Jason Jarzembowski
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Billy W. Day
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Stephen Naylor
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Martin J. Hessner
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - G. Ganesh Konduri
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| |
Collapse
|
18
|
Zhang Y, Zhong Y, Liu W, Zheng F, Zhao Y, Zou L, Liu X. PFKFB3-mediated glycometabolism reprogramming modulates endothelial differentiation and angiogenic capacity of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:391. [PMID: 35918720 PMCID: PMC9344722 DOI: 10.1186/s13287-022-03089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have a great potential ability for endothelial differentiation, contributing to an effective means of therapeutic angiogenesis. Placenta-derived mesenchymal stem cells (PMSCs) have gradually attracted attention, while the endothelial differentiation has not been fully evaluated in PMSCs. Metabolism homeostasis plays an important role in stem cell differentiation, but less is known about the glycometabolic reprogramming during the PMSCs endothelial differentiation. Hence, it is critical to investigate the potential role of glycometabolism reprogramming in mediating PMSCs endothelial differentiation. METHODS Dil-Ac-LDL uptake assay, flow cytometry, and immunofluorescence were all to verify the endothelial differentiation in PMSCs. Seahorse XF Extracellular Flux Analyzers, Mito-tracker red staining, Mitochondrial membrane potential (MMP), lactate secretion assay, and transcriptome approach were to assess the variation of mitochondrial respiration and glycolysis during the PMSCs endothelial differentiation. Glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) was considered a potential modulator for endothelial differentiation in PMSCs by small interfering RNA. Furthermore, transwell, in vitro Matrigel tube formation, and in vivo Matrigel plug assays were performed to evaluate the effect of PFKFB3-induced glycolysis on angiogenic capacities in this process. RESULTS PMSCs possessed the superior potential of endothelial differentiation, in which the glycometabolic preference for glycolysis was confirmed. Moreover, PFKFB3-induced glycometabolism reprogramming could modulate the endothelial differentiation and angiogenic abilities of PMSCs. CONCLUSIONS Our results revealed that PFKFB3-mediated glycolysis is important for endothelial differentiation and angiogenesis in PMSCs. Our understanding of cellular glycometabolism and its regulatory effects on endothelial differentiation may propose and improve PMSCs as a putative strategy for clinical therapeutic angiogenesis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Zheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
19
|
Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural Herbal Medicine as a Treatment Strategy for Myocardial Infarction through the Regulation of Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8831750. [PMID: 35600953 PMCID: PMC9119779 DOI: 10.1155/2022/8831750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Methods We conducted a literature search on the bioactive components of medicinal plants and their effects on angiogenesis after MI. We searched for articles in Web of Science, MEDLINE, PubMed, Scopus, Google Scholar, and China National Knowledge Infrastructure databases before April 2021. Results In this article, we summarized the mechanisms by which copper ions, microRNA, Akt1, inflammation, oxidative stress, mitochondria, and pericytes are involved in angiogenesis after myocardial infarction. In addition, we reviewed the angiogenic effects of natural herbal medicines such as Salvia miltiorrhiza Bunge Bunge, Carthamus tinctorius L., Pueraria lobata, Astragalus, Panax ginseng C.A. Mey., Panax notoginseng (Burkill) F.H. Chen, Cinnamomum cassia (L.) J. Presl, Rehmannia glutinosa (Gaertn.) DC., Leonurus japonicus Houtt, Scutellaria baicalensis Georgi., and Geum macrophyllum Willd. Conclusions Some herbs have the effect of promoting angiogenesis. In the future, natural proangiogenic drugs may become candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mu-xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wan-li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling-xiao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun-lun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
20
|
Wang Y, Chen F, Zhang Y, Zheng X, Liu S, Tang M, Wang Z, Wang P, Bao Y, Li D. Biphasic effect of sulforaphane on angiogenesis in hypoxia via modulation of both Nrf2 and mitochondrial dynamics. Food Funct 2022; 13:2884-2898. [PMID: 35179529 DOI: 10.1039/d1fo04112f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulforaphane (SFN) is an isothiocyanate (ITC) derived from a glucosinolate, glucoraphinin found in cruciferous vegetables. There are few studies that focus on the role of SFN in angiogenesis under hypoxic conditions. The effect of SFN on angiogenesis and the underlying mechanisms including the roles of Nrf2 and mitochondrial dynamics were investigated using cultured human umbilical vein endothelial cells (HUVECs) in hypoxia. SFN at low doses (1.25-5 μM) increased hypoxia-induced HUVEC migration and tube formation, and alleviated hypoxia-induced retarded proliferation, but high doses (≥10 μM) exhibited an opposite effect. Under hypoxia, the expression of Nrf2 and heme oxygenase-1 was up-regulated by SFN treatment. Nrf2 knockdown abrogated SFN (2.5 μM)-induced tube formation and further potentiated the inhibitory effect of SFN (10 μM) on angiogenesis. Meanwhile, the mitochondrial function, morphology and expression of dynamic-related proteins suggested that low-dose SFN protected against hypoxia-induced mitochondrial injury and alleviated hypoxia-induced fission Nrf2-dependently without affecting the expression of key effector proteins (Drp1, Fis1, Mfn1/2 and Opa1), while high concentrations (≥10 μM SFN) aggravated hypoxia-induced mitochondrial injury, fission and Drp1 expression, and inhibited Mfn1/2 expression. These findings suggest that SFN biphasically affected the angiogenic capacity of hypoxia challenged HUVECs potentially via mechanisms involving an integrated modulation of Nrf2 and mitochondrial dynamics.
Collapse
Affiliation(s)
- Yaqian Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Fangfang Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Yuan Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510150, P. R. China
| | - Xiangyu Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Shiyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Meijuan Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK.
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, Guangdong Province 510080, P. R. China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, P. R. China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, P. R. China
| |
Collapse
|
21
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
22
|
Yang TT, Li H, Dong LJ. Role of glycolysis in retinal vascular endothelium, glia, pigment epithelium, and photoreceptor cells and as therapeutic targets for related retinal diseases. Int J Ophthalmol 2021; 14:1302-1309. [PMID: 34540603 DOI: 10.18240/ijo.2021.09.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Glycolysis produces large amounts of adenosine triphosphate (ATP) in a short time. The retinal vascular endothelium feeds itself primarily through aerobic glycolysis with less ATP. But when it generates new vessels, aerobic glycolysis provides rapid and abundant ATP support for angiogenesis, and thus inhibition of glycolysis in endothelial cells can be a target for the treatment of neovascularization. Aerobic glycolysis has a protective effect on Müller cells, and it can provide with a target for visual protection and maintenance of the blood-retinal barrier. Under physiological conditions, the mitochondria of RPE can use lactic acid produced by photoreceptor cells as an energy source to provide ATP for survival. In pathological conditions, because RPE cells avoid their oxidative damage by increasing glycolysis, a large number of glycolysis products accumulate, which in turn has a toxic effect on photoreceptor cells. This shows that stabilizing the function of RPE mitochondria may become a target for the treatment of diseases such as retinal degeneration. The decrease of aerobic glycolysis leads to the decline of photoreceptor cell function and impaired vision; therefore, aerobic glycolysis of stable photoreceptor cells provides a reliable target for delaying vision loss. It is of great significance to study the role of glycolysis in various retinal cells for the targeted treatment of ocular fundus diseases.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Editorial Department of Chinese Journal of Ocular Fundus Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
23
|
Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem 2021; 402:887-909. [PMID: 34218539 DOI: 10.1515/hsz-2021-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
The placenta is a highly vascularized and complex foetal organ that performs various tasks, crucial to a healthy pregnancy. Its dysfunction leads to complications such as stillbirth, preeclampsia, and intrauterine growth restriction. The specific cause of placental dysfunction remains unknown. Recently, the role of mitochondrial function and mitochondrial adaptations in the context of angiogenesis and placental dysfunction is getting more attention. The required energy for placental remodelling, nutrient transport, hormone synthesis, and the reactive oxygen species leads to oxidative stress, stemming from mitochondria. Mitochondria adapt to environmental changes and have been shown to adjust their oxygen and nutrient use to best support placental angiogenesis and foetal development. Angiogenesis is the process by which blood vessels form and is essential for the delivery of nutrients to the body. This process is regulated by different factors, pro-angiogenic factors and anti-angiogenic factors, such as sFlt-1. Increased circulating sFlt-1 levels have been linked to different preeclamptic phenotypes. One of many effects of increased sFlt-1 levels, is the dysregulation of mitochondrial function. This review covers mitochondrial adaptations during placentation, the importance of the anti-angiogenic factor sFlt-1in placental dysfunction and its role in the dysregulation of mitochondrial function.
Collapse
Affiliation(s)
- Yolanda Correia
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany
| | - Keqing Wang
- Aston Medical School, College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
24
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Local complement factor H protects kidney endothelial cell structure and function. Kidney Int 2021; 100:824-836. [PMID: 34139209 DOI: 10.1016/j.kint.2021.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
Factor H (FH) is a critical regulator of the alternative complement pathway and its deficiency or mutation underlie kidney diseases such as dense deposit disease. Since vascular dysfunction is an important facet of kidney disease, maintaining optimal function of the lining endothelial cells is important for vascular health. To investigate the molecular mechanisms that are regulated by FH in endothelial cells, FH deficient and sufficient mouse kidney endothelial cell cultures were established. Endothelial FH deficiency resulted in cytoskeletal remodeling, increased angiogenic potential, loss of cellular layer integrity and increased cell proliferation. FH reconstitution prevented these FH-dependent proliferative changes. Respiratory flux analysis showed reduced basal mitochondrial respiration, ATP production and maximal respiratory capacity in FH deficient endothelial cells, while proton leak remained unaltered. Similar changes were observed in FH deficient human glomerular endothelial cells indicating the translational potential of these studies. Gene expression analysis revealed that the FH-dependent gene changes in mouse kidney endothelial cells include significant upregulation of genes involved in inflammation and the complement system. The transcription factor nuclear factor-kB, that regulates many biological processes, was translocated from the cytoplasm to the nucleus in the absence of FH. Thus, our studies show the functional relevance of intrinsic FH in kidney endothelial cells in man and mouse.
Collapse
|
26
|
Interactions between dietary carbohydrate and thiamine: implications on the growth performance and intestinal mitochondrial biogenesis and function of Megalobrama amblycephala. Br J Nutr 2021; 127:321-334. [PMID: 33749571 DOI: 10.1017/s000711452100101x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A12-week experiment was conducted to evaluate the influences of thiamine ongrowth performance, and intestinal mitochondrial biogenesis and function of Megalobramaamblycephala fed a high-carbohydrate (HC) diet. Fish (24·73 (sem 0·45) g) were randomly assigned to one of four diets: two carbohydrate (CHO) levels (30 and 45 %) and two thiamine levels (0 and 1·5 mg/kg). HC diets significantly decreased DGC, GRMBW, FIMBW, intestinal activities of amylase, lipase, Na+, K+-ATPase, CK, complexes I, III and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK: T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, mitochondrial transcription factor A, Opa-1, ND-1 and COX-1 and 2, while the opposite was true for ATP, AMP and reactive oxygen species, and the transcriptions of dynamin-related protein-1, fission-1 and mitochondrial fission factor. Dietarythiamine concentrations significantly increased DGC, GRMBW, intestinal activities of amylase, Na+, K+-ATPase, CK, complexes I and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, ND-1, COX-1 and 2, SGLT-1 and GLUT-2. Furthermore, a significant interaction between dietary CHO and thiamine was observed in DGC, GRMBW, intestinal activities of amylase, CK, complexes I and IV, ΔΨm, the AMP:ATP ratio, the P-AMPK:T-AMPK ratio, PGC-1β protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1β, Opa-1, COX-1 and 2, SGLT-1 and GLUT-2. Overall, thiamine supplementation improved growth performance, and intestinal mitochondrial biogenesis and function of M. amblycephala fed HC diets.
Collapse
|
27
|
Melatonin Attenuates ox-LDL-Induced Endothelial Dysfunction by Reducing ER Stress and Inhibiting JNK/Mff Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5589612. [PMID: 33763168 PMCID: PMC7952160 DOI: 10.1155/2021/5589612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Endothelial dysfunction, which is characterized by damage to the endoplasmic reticulum (ER) and mitochondria, is involved in a variety of cardiovascular disorders. Here, we explored whether mitochondrial damage and ER stress are associated with endothelial dysfunction. We also examined whether and how melatonin protects against oxidized low-density lipoprotein- (ox-LDL-) induced damage in endothelial cells. We found that CHOP, GRP78, and PERK expressions, which are indicative of ER stress, increased significantly in response to ox-LDL treatment. ox-LDL also induced mitochondrial dysfunction as evidenced by decreased mitochondrial membrane potential, increased mitochondrial ROS levels, and downregulation of mitochondrial protective factors. In addition, ox-LDL inhibited antioxidative processes, as evidenced by decreased antioxidative enzyme activity and reduced Nrf2/HO-1 expression. Melatonin clearly reduced ER stress and promoted mitochondrial function and antioxidative processes in the presence of ox-LDL. Molecular investigation revealed that ox-LDL activated the JNK/Mff signaling pathway, and melatonin blocked this effect. These results demonstrate that ox-LDL induces ER stress and mitochondrial dysfunction and activates the JNK/Mff signaling pathway, thereby contributing to endothelial dysfunction. Moreover, melatonin inhibited JNK/Mff signaling and sustained ER homeostasis and mitochondrial function, thereby protecting endothelial cells against ox-LDL-induced damage.
Collapse
|
28
|
Rao G, Murphy B, Dey A, Dhar Dwivedi SK, Zhang Y, Roy RV, Chakraborty P, Bhattacharya R, Mukherjee P. Cystathionine beta synthase regulates mitochondrial dynamics and function in endothelial cells. FASEB J 2020; 34:9372-9392. [PMID: 32463541 PMCID: PMC7675787 DOI: 10.1096/fj.202000173r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the human cystathionine beta synthase (CBS) gene are known to cause endothelial dysfunction responsible for cardiovascular and neurovascular diseases. CBS is the predominant hydrogen sulfide (H2 S)-producing enzyme in endothelial cells (ECs). Recently, H2 S was shown to attenuate ROS and improve mitochondrial function. Mitochondria are metabolic organelles that actively transform their ultrastructure to mediate their function. Therefore, we questioned whether perturbation of CBS/H2 S activity could drive mitochondrial dysfunction via mitochondrial dynamics in ECs. Here we demonstrate that silencing CBS induces mitochondria fragmentation, attenuates efficient oxidative phosphorylation, and decreases EC function. Mechanistically, CBS silencing significantly elevates ROS production, thereby leading to reduced mitofusin 2 (MFN2) expression, decouple endoplasmic reticulum-mitochondria contacts, increased mitochondria fission, enhanced receptor-mediated mitophagy, and increased EC death. These defects were significantly rescued by the treatment of H2 S donors. Taken together our data highlights a novel signaling axis that mechanistically links CBS with mitochondrial function and ER-mitochondrial tethering and could be considered as a new therapeutic approach for the intervention of EC dysfunction-related pathologies.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Yushan Zhang
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ram Vinod Roy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Prabir Chakraborty
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Zhao X, Cui L, Xiao Y, Mao Q, Aishanjiang M, Kong W, Liu Y, Chen H, Hong F, Jia Z, Wang M, Jiang P, Guan MX. Hypertension-associated mitochondrial DNA 4401A>G mutation caused the aberrant processing of tRNAMet, all 8 tRNAs and ND6 mRNA in the light-strand transcript. Nucleic Acids Res 2019; 47:10340-10356. [PMID: 31504769 PMCID: PMC6821173 DOI: 10.1093/nar/gkz742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial tRNA processing defects were associated with human diseases but their pathophysiology remains elusively. The hypertension-associated m.4401A>G mutation resided at a spacer between mitochondrial tRNAMet and tRNAGln genes. An in vitro processing experiment revealed that the m.4401A>G mutation caused 59% and 69% decreases in the 5' end processing efficiency of tRNAGln and tRNAMet precursors, catalyzed by RNase P, respectively. Using human umbilical vein endothelial cells-derived cybrids, we demonstrated that the m.4401A>G mutation caused the decreases of all 8 tRNAs and ND6 and increases of longer and uncleaved precursors from the Light-strand transcript. Conversely, the m.4401A>G mutation yielded the reduced levels of tRNAMet level but did not change the levels of other 13 tRNAs, 12 mRNAs including ND1, 12S rRNA and 16S rRNA from the Heavy-strand transcript. These implicated the asymmetrical processing mechanisms of H-strand and L-strand polycistronic transcripts. The tRNA processing defects play the determined roles in the impairing mitochondrial translation, respiratory deficiency, diminishing membrane potential, increasing production of reactive oxygen species and altering autophagy. Furthermore, the m.4401A>G mutation altered the angiogenesis, evidenced by aberrant wound regeneration and weaken tube formation in mutant cybrids. Our findings provide new insights into the pathophysiology of hypertension arising from mitochondrial tRNA processing defects.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qin Mao
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Kong
- Department of Clinical Laboratory, Wenzhou Traditional Chinese Medicine Hospital, Wenzhou, Zhejiang 325000, China
| | - Yuqi Liu
- Cardiac Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Chen
- Emergy Medicine Department, Ningbo First Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang 315000, China
| | - Fang Hong
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
30
|
Falkenberg KD, Rohlenova K, Luo Y, Carmeliet P. The metabolic engine of endothelial cells. Nat Metab 2019; 1:937-946. [PMID: 32694836 DOI: 10.1038/s42255-019-0117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qindao, Qindao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
31
|
Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab 2019; 30:414-433. [PMID: 31484054 DOI: 10.1016/j.cmet.2019.08.011] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023]
Abstract
In 2009, it was postulated that endothelial cells (ECs) would only be able to execute the orders of growth factors if these cells would accordingly adapt their metabolism. Ten years later, it has become clear that ECs, often differently from other cell types, rely on distinct metabolic pathways to survive and form new blood vessels; that manipulation of EC metabolic pathways alone (even without changing angiogenic signaling) suffices to alter vessel sprouting; and that perturbations of these metabolic pathways can underlie excess formation of new blood vessels (angiogenesis) in cancer and ocular diseases. Initial proof of evidence has been provided that targeting (normalizing) these metabolic perturbations in diseased ECs and delivery of metabolites deserve increasing attention as novel therapeutic approaches for inhibiting or stimulating vessel growth in multiple disorders.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium.
| |
Collapse
|
32
|
Jia Z, Zhang Y, Li Q, Ye Z, Liu Y, Fu C, Cang X, Wang M, Guan MX. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis. Nucleic Acids Res 2019; 47:2056-2074. [PMID: 30541130 PMCID: PMC6393294 DOI: 10.1093/nar/gky1241] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
The tissue specificity of mitochondrial tRNA mutations remains largely elusive. In this study, we demonstrated the deleterious effects of tRNAThr 15927G>A mutation that contributed to pathogenesis of coronary artery disease. The m.15927G>A mutation abolished the highly conserved base-pairing (28C-42G) of anticodon stem of tRNAThr. Using molecular dynamics simulations, we showed that the m.15927G>A mutation caused unstable tRNAThr structure, supported by decreased melting temperature and slower electrophoretic mobility of mutated tRNA. Using cybrids constructed by transferring mitochondria from a Chinese family carrying the m.15927G>A mutation and a control into mitochondrial DNA (mtDNA)-less human umbilical vein endothelial cells, we demonstrated that the m.15927G>A mutation caused significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr. The aberrant tRNAThr metabolism yielded variable decreases in mtDNA-encoded polypeptides, respiratory deficiency, diminished membrane potential and increased the production of reactive oxygen species. The m.15927G>A mutation promoted the apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 3, 7, 9 and PARP. Moreover, the lower wound healing cells and perturbed tube formation were observed in mutant cybrids, indicating altered angiogenesis. Our findings provide new insights into the pathophysiology of coronary artery disease, which is manifested by tRNAThr mutation-induced alterations.
Collapse
Affiliation(s)
- Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Zhang
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Li
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqi Liu
- Cardiac Department, PLA General Hospital, Beijing 100853, China
| | - Changzhu Fu
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
33
|
L-tryptophan Enhances Intestinal Integrity in Diquat-Challenged Piglets Associated with Improvement of Redox Status and Mitochondrial Function. Animals (Basel) 2019; 9:ani9050266. [PMID: 31121956 PMCID: PMC6562546 DOI: 10.3390/ani9050266] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the present study, three groups of piglets were treated with diquat, a bipyridyl herbicide which can utilize molecular oxygen to generate superoxide anion radicals and is widely considered as an effective chemical agent for inducing oxidative stress. The three groups were fed a 0, 0.15%, and 0.30% tryptophan (Trp) supplemented diet, and one control group without diquat treatment was used to study the protective effects of supplemented Trp on growth performance and intestinal barrier function of piglets exposed to oxidative stress. The results showed that 0.15% Trp supplementation alleviated diquat-induced impaired growth performance, intestinal barrier injury, redox imbalance, and mitochondrial dysfunction. These findings from the current study suggest that piglets under the condition of stress might need more Trp to maintain intestinal integrity and optimal growth performance, but the proper dosage of Trp supplementation is needed to determine for different conditions or models. Abstract Tryptophan (Trp) supplementation has been shown to improve growth performance and enhance intestinal integrity in piglets. However, the effects of dietary Trp supplementation on the intestinal barrier function in piglets exposed to oxidative stress remain unknown. This study was conducted to evaluate whether dietary Trp supplementation can attenuate intestinal injury, oxidative stress, and mitochondrial dysfunction of piglets caused by diquat injection. Thirty-two piglets at 25 days of age were randomly allocated to four groups: (1) the non-challenged control; (2) diquat-challenged control; (3) 0.15% Trp-supplemented diet + diquat; (4) 0.30% Trp supplemented diet + diquat. On day seven, the piglets were injected intraperitoneally with sterilized saline or diquat (10 mg/kg body weight). The experiment lasted 21 days. Dietary supplementation with 0.15% Trp improved growth performance of diquat-challenged piglets from day 7 to 21. Diquat induced an increased intestinal permeability, impaired antioxidant capacity, and mitochondrial dysfunction. Although dietary supplementation with 0.15% Trp ameliorated these negative effects induced by diquat challenge that showed decreasing permeability of 4 kDa fluorescein isothiocyanate dextran, increasing antioxidant indexes, and enhancing mitochondrial biogenesis. Results indicated that dietary supplementation with 0.15% Trp enhanced intestinal integrity, restored the redox status, and improved the mitochondrial function of piglets challenged with diquat.
Collapse
|
34
|
Xu W, Liang M, Zhang Y, Huang K, Wang C. Endothelial FAM3A positively regulates post-ischaemic angiogenesis. EBioMedicine 2019; 43:32-42. [PMID: 31000420 PMCID: PMC6562148 DOI: 10.1016/j.ebiom.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis improves reperfusion to the ischaemic tissue after vascular obstruction. The underlying molecular mechanisms of post-ischaemic angiogenesis are not clear. FAM3A belongs to the family with sequence similarity 3 (FAM3) genes, but its biological function in endothelial cells in regards to vascular diseases is not well understood. Methods Gain- and loss-of-function methods by adenovirus or associated-adenovirus (AAV) in different models were applied to investigate the effects of FAM3A on endothelial angiogenesis. Endothelial angiogenesis was analysed by tube formation, migration and proliferation in vitro, and the blood flow and capillary density in a hind limb ischaemic model in vivo. Findings Endothelial FAM3A expression is downregulated under hypoxic conditions. Overexpression of FAM3A promotes, but depletion of FAM3A suppresses, endothelial tube formation, proliferation and migration. Utilizing the mouse hind limb ischaemia model, we also observe that FAM3A overexpression can improve blood perfusion and increase capillary density, whereas FAM3A knockdown has the opposite effects. Mechanistically, mitochondrial FAM3A increases adenosine triphosphate (ATP) production and secretion; ATP binds to P2 receptors and then upregulates cytosolic free Ca2+ levels. Increased intracellular Ca2+ levels enhance phosphorylation of the transcriptional factor cAMP response element binding protein (CREB) and its recruitment to the VEGFA promoter, thus activating VEGFA transcription and the final endothelial angiogenesis. Interpretation In summary, our data demonstrate that FAM3A positively regulates angiogenesis through activation of VEGFA transcription, suggesting that FAM3A may constitute a novel molecular therapeutic target for ischaemic vascular disease.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Cao S, Shen Z, Wang C, Zhang Q, Hong Q, He Y, Hu C. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets1. Food Funct 2019; 10:344-354. [DOI: 10.1039/c8fo02091d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated whether resveratrol can alleviate intestinal injury and enhance the mitochondrial function and the mitophagy level in diquat induced oxidative stress of piglets.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Zhuojun Shen
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Chunchun Wang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qianhui Zhang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qihua Hong
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Yonghui He
- Henan Province Engineering Technology Centre of Intelligent Cleaner Production of Livestock and Poultry
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Caihong Hu
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| |
Collapse
|
36
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
37
|
Cao S, Wu H, Wang C, Zhang Q, Jiao L, Lin F, Hu CH. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018; 96:1795-1805. [PMID: 29562342 DOI: 10.1093/jas/sky104] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In the present study, we investigated the influence of diquat-induced oxidative stress on intestinal barrier, mitochondrial function, and the level of mitophagy in piglets. Twelve male Duroc × Landrace × Yorkshire 35-d-old pigs (weaned at 21 d of age), with an average body of 9.6 kg, were allotted to two treatments of six piglets each including the challenged group and the control group. The challenged pigs were injected with 100 mg/kg bodyweight diquat and control pigs injected with 0.9% (w/v) NaCl solution. The results showed that diquat injection decreased ADFI and ADG. Diquat decreased (P < 0.05) the activities of superoxide dismutase and glutathione peroxidase and increased (P < 0.05) the malondialdehyde concentrations. The lower (P < 0.05) transepithelial electrical resistance and higher (P < 0.05) paracellular permeability of fluorescein isothiocyanatedextran 4 kDa were found in diquat challenged piglets. Meanwhile, diquat decreased (P < 0.05) the protein abundance of claudin-1, occluding, and zonula occludens-1 in jejunum compared with the control group. Diquat-induced mitochondrial dysfunction, as demonstrated by increased (P < 0.05) reactive oxygen species production and decreased (P < 0.05) membrane potential of intestinal mitochondria. Diquat-injected pigs revealed a decrease (P < 0.05) of mRNA abundance of genes related to mitochondrial biogenesis and functions, PPARg coactivator-1α, mammalian-silencing information regulator-1, nuclear respiratory factor-1, mt transcription factor A, mt single-strand DNA-binding protein, mt polymerase r, glucokinase, citrate synthase, ATP synthase, and cytochrome coxidase subunit I and V in the jejunum. Diquat induced an increase (P < 0.05) in expression of mitophagy-related proteins, phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase, and Parkin in the intestinal mitochondria, as well as an enhancement of the ratio of light chain 3-II (LC3-II) to LC3-I content in the jejunal mucosa. These results suggest that oxidative stress disrupted the intestinal barrier, caused mitochondrial dysfunction, and triggered mitophagy.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Huan Wu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - ChunChun Wang
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Qianhui Zhang
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Fanghui Lin
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Caihong H Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
38
|
Cao ST, Wang CC, Wu H, Zhang QH, Jiao LF, Hu CH. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018; 96:1073-1083. [PMID: 29617867 DOI: 10.1093/jas/skx062] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the influence of weaning on antioxidant status, intestinal integrity, mitochondrial function, and the mitophagy level in piglets (weaned at 21 d) during the 1 wk after weaning. The redox status was measured by antioxidant enzymes activities, related genes expression, and malondialdehyde (MDA) content in jejunum. The intestinal barrier function was assessed by the Ussing chamber and expression of tight junction proteins in the jejunum. The function of intestine mitochondria was measured by mitochondrial DNA (mtDNA) content and activities of mitochondria oxidative phosphorylation complexes. The levels of light chain 3-1 (LC3-I), light chain 3-II (LC3-II), PTEN-induced putative kinase 1 (PINK1), and Parkin were determined to investigate whether mitophagy is involved in the weaning process. The results showed that, as compared with the preweaning phase (d 0), weaning suppressed (P < 0.05) the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) on d 3 and d 7 postweaning, decreased (P < 0.05) the expression of copper and zinc superoxide dismutase (Cu/Zn-SOD), manganese-containing superoxide dismutase (Mn-SOD) on d 3 postweaning, declined (P < 0.05) the level of glutathione peroxidase 1 (GPX-1) and glutathione peroxidase 4 (GPX-4) on d 3 and d 7 postweaning, and increased (P < 0.05) MDA content in jejunum on d 3 and d 7 postweaning. The jejunal transepithelial electrical resistance and levels of occludin, claudin-1, and zonula occludens-1 on d 3 and d 7 postweaning were reduced (P < 0.05), and paracellular flux of fluorescein isothiocyanatedextran (4 kDa) on d 3 and d 7 postweaning was increased (P < 0.05). Weaning induced mitochondrial dysfunction, as demonstrated by decreased (P < 0.05) content of mtDNA on d 3 and d 7 postweaning and declined (P < 0.05) activities of mitochondria complexes (I, II, III, IV) in jejunum on d 1, d 3, and d 7 postweaning. Weaning led to an increased (P < 0.05) expression level of mitophagy-related proteins, PINK1 and Parkin, in the intestinal mitochondria, as well as an enhancement (P < 0.05) of the ratio of LC3-II to LC3-I content in the jejunal mucosa on d 1, d 3, and d 7 postweaning. These results suggest that weaning disrupted intestinal oxidative balance, and this imbalance may impair intestinal barrier and mitochondrial function and trigger mitophagy in piglets.
Collapse
Affiliation(s)
- S T Cao
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - C C Wang
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - H Wu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Q H Zhang
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - L F Jiao
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - C H Hu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
39
|
Cao S, Zhang Q, Wang C, Wu H, Jiao L, Hong Q, Hu C. LPS challenge increased intestinal permeability, disrupted mitochondrial function and triggered mitophagy of piglets. Innate Immun 2018; 24:221-230. [PMID: 29642727 PMCID: PMC6830921 DOI: 10.1177/1753425918769372] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Here we investigated the influence of LPS-induced gut injury on antioxidant homeostasis, mitochondrial (mt) function and the level of mitophagy in piglets. The results showed that LPS-induced intestinal injury decreased the transepithelial electrical resistance, increased the paracellular permeability of F1TC dextran 4 kDa, and decreased the expression of claudin-1, occludin and zonula occludens-1 in the jejunum compared with the control group. LPS decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde in the jejunum. Meanwhile, the expression of SOD-related genes ( Cu/Zn-SOD, Mn-SOD) and GSH-Px-related genes ( GPX-1, GPX-4) declined in LPS-challenged pigs compared with the control. LPS also increased TNF-α, IL-6, IL-8 and IL-1β mRNA expression. LPS induced mt dysfunction, as demonstrated by increased reactive oxygen species production and decreased membrane potential of intestinal mitochondria, intestinal content of mt DNA and activities of the intestinal mt respiratory chain. Furthermore, LPS induced an increase in expression of mitophagy related proteins, PTEN-induced putative kinase (PINK1) and Parkin in the intestinal mitochondria, as well as an enhancement of the ratio of light chain 3-II (LC3-II) to LC3-I content in the jejunal mucosa. These results suggested that LPS-induced intestinal injury accompanied by disrupted antioxidant homeostasis, caused mt dysfunction and triggered mitophagy.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Qianhui Zhang
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - ChunChun Wang
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Huan Wu
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Lefei Jiao
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Qihua Hong
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Caihong Hu
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| |
Collapse
|
40
|
Frump A, Prewitt A, de Caestecker MP. BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018765840. [PMID: 29521190 PMCID: PMC5912278 DOI: 10.1177/2045894018765840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the discovery more than 15 years ago that patients with hereditary pulmonary arterial hypertension (HPAH) inherit BMP type 2 receptor ( BMPR2) mutations, it is still unclear how these mutations cause disease. In part, this is attributable to the rarity of HPAH and difficulty obtaining tissue samples from patients with early disease. However, in addition, limitations to the approaches used to study the effects of BMPR2 mutations on the pulmonary vasculature have restricted our ability to determine how individual mutations give rise to progressive pulmonary vascular pathology in HPAH. The importance of understanding the mechanisms by which BMPR2 mutations cause disease in patients with HPAH is underscored by evidence that there is reduced BMPR2 expression in patients with other, more common, non-hereditary form of PAH, and that restoration of BMPR2 expression reverses established disease in experimental models of pulmonary hypertension. In this paper, we focus on the effects on endothelial function. We discuss some of the controversies and challenges that have faced investigators exploring the role of BMPR2 mutations in HPAH, focusing specifically on the effects different BMPR2 mutation have on endothelial function, and whether there are qualitative differences between different BMPR2 mutations. We discuss evidence that BMPR2 signaling regulates a number of responses that may account for endothelial abnormalities in HPAH and summarize limitations of the models that are used to study these effects. Finally, we discuss evidence that BMPR2-dependent effects on endothelial metabolism provides a unifying explanation for the many of the BMPR2 mutation-dependent effects that have been described in patients with HPAH.
Collapse
Affiliation(s)
- Andrea Frump
- Division
of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University
School of Medicine, Indianapolis, IN,
USA
| | | | - Mark P. de Caestecker
- Division
of Nephrology and Hypertension, Department of Medicine, Vanderbilt University
Medical center, Nashville, TN, USA
| |
Collapse
|