1
|
Ptushenko OS, Ptushenko VV, Solovchenko AE. Spectrum of Light as a Determinant of Plant Functioning: A Historical Perspective. Life (Basel) 2020; 10:E25. [PMID: 32192016 PMCID: PMC7151614 DOI: 10.3390/life10030025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
The significance of the spectral composition of light for growth and other physiological functions of plants moved to the focus of "plant science" soon after the discovery of photosynthesis, if not earlier. The research in this field recently intensified due to the explosive development of computer-controlled systems for artificial illumination and documenting photosynthetic activity. The progress is also substantiated by recent insights into the molecular mechanisms of photo-regulation of assorted physiological functions in plants mediated by photoreceptors and other pigment systems. The spectral balance of solar radiation can vary significantly, affecting the functioning and development of plants. Its effects are evident on the macroscale (e.g., in individual plants growing under the forest canopy) as well as on the meso- or microscale (e.g., mutual shading of leaf cell layers and chloroplasts). The diversity of the observable effects of light spectrum variation arises through (i) the triggering of different photoreceptors, (ii) the non-uniform efficiency of spectral components in driving photosynthesis, and (iii) a variable depth of penetration of spectral components into the leaf. We depict the effects of these factors using the spectral dependence of chloroplast photorelocation movements interlinked with the changes in light penetration into (light capture by) the leaf and the photosynthetic capacity. In this review, we unfold the history of the research on the photocontrol effects and put it in the broader context of photosynthesis efficiency and photoprotection under stress caused by a high intensity of light.
Collapse
Affiliation(s)
- Oxana S. Ptushenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexei E. Solovchenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Institute of Medicine and Experimental Biology, Pskov State University, 180000 Pskov, Russia
| |
Collapse
|
2
|
Higa T, Hasegawa S, Hayasaki Y, Kodama Y, Wada M. Temperature-dependent signal transmission in chloroplast accumulation response. JOURNAL OF PLANT RESEARCH 2017; 130:779-789. [PMID: 28421371 DOI: 10.1007/s10265-017-0938-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast photorelocation movement, well-characterized light-induced response found in various plant species from alga to higher plants, is an important phenomenon for plants to increase photosynthesis efficiency and avoid photodamage. The signal for chloroplast accumulation movement connecting the blue light receptor, phototropin, and chloroplasts remains to be identified, although the photoreceptors and the mechanism of movement via chloroplast actin filaments have now been revealed in land plants. The characteristics of the signal have been found; the speed of signal transfer is about 1 µm min-1 and that the signal for the accumulation response has a longer life and is transferred a longer distance than that of the avoidance response. Here, to collect the clues of the unknown signal substances, we studied the effect of temperature on the speed of signal transmission using the fern Adiantum capillus-veneris and found the possibility that the mechanism of signal transfer was not dependent on the simple diffusion of a substance; thus, some chemical reaction must also be involved. We also found new insights of signaling substances, such that microtubules are not involved in the signal transmission, and that the signal could even be transmitted through the narrow space between chloroplasts and the plasma membrane.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Tokyo, 192-0397, Japan
| | - Satoshi Hasegawa
- Center for Optical Research and Education, Utsunomiya University, Tochigi, 321-8585, Japan
| | - Yoshio Hayasaki
- Center for Optical Research and Education, Utsunomiya University, Tochigi, 321-8585, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Masamitsu Wada
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Tokyo, 192-0397, Japan.
| |
Collapse
|
3
|
Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E, Vidali L. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:106-19. [PMID: 25351786 DOI: 10.1111/jipb.12303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/23/2014] [Indexed: 05/15/2023]
Abstract
In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA
| | | | | | | | | | | |
Collapse
|
4
|
Ryu J, Nam H, Kim HK, Joo Y, Lee SJ, Kim KH. In vivo monitoring of intracellular chloroplast movements in intact leaves of C4 plants using two-photon microscopy. Microsc Res Tech 2014; 77:806-13. [PMID: 25044459 DOI: 10.1002/jemt.22403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 04/08/2014] [Accepted: 06/25/2014] [Indexed: 11/12/2022]
Abstract
Dynamic changes in the spatial distribution of chloroplasts are essential for optimizing photosynthetic capacity under changing light conditions. Light-induced movement of chloroplasts has been widely investigated, but most studies were conducted on isolated tissues or protoplasts. In this study, a two-photon microscopy (TPM) system was adapted to monitor the intracellular 3-dimensional (3D) movements of chloroplasts in intact leaves of plants during dark to light transitions. The TPM imaging was based on autofluorescence of chlorophyll generated by a femto-second Ti:Sapphire laser. All chloroplasts did not exhibit the same motion in response to irradiation variation. In the sub-epidermal mesophyll cells, chloroplasts generally moved away from the surface following blue light treatment, however many chloroplasts did not show any movement. Such spatial heterogeneity in chloroplast motility underlines the importance of monitoring intracellular orientation and movement of individual chloroplasts across intact leaves. Our investigation shows that the 3D imaging of chloroplasts using TPM can help to understand the changes in local photosynthetic capacity in intact leaves under changing environmental conditions.
Collapse
Affiliation(s)
- Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea; Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), San 31, Hyoja Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. PLANTA 2012; 236:1889-97. [PMID: 22932845 DOI: 10.1007/s00425-012-1735-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/02/2012] [Indexed: 05/15/2023]
Abstract
Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.
Collapse
Affiliation(s)
- Hiroka Usami
- Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Maai E, Miyake H, Taniguchi M. Differential positioning of chloroplasts in C4 mesophyll and bundle sheath cells. PLANT SIGNALING & BEHAVIOR 2011; 6:1111-3. [PMID: 21757999 PMCID: PMC3260704 DOI: 10.4161/psb.6.8.15809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have 2 types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C 4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. In this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.
Collapse
Affiliation(s)
- Eri Maai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | | | | |
Collapse
|
7
|
Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M. The avoidance and aggregative movements of mesophyll chloroplasts in C(4) monocots in response to blue light and abscisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3213-21. [PMID: 21339388 DOI: 10.1093/jxb/err008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, whereas bundle sheath chloroplasts are located in either a centripetal or centrifugal position. It was reported previously that only M chloroplasts aggregatively redistribute to the bundle sheath side in response to extremely strong light or environmental stresses. The aggregative movement of M chloroplasts is also induced in a light-dependent fashion upon incubation with abscisic acid (ABA). The involvement of reactive oxygen species (ROS) and red/blue light in the aggregative movement of M chloroplasts are examined here in two distinct subtypes of C(4) plants, finger millet and maize. Exogenously applied hydrogen peroxide or ROS scavengers could not change the response patterns of M chloroplast movement to light and ABA. Blue light irradiation essentially induced the rearrangement of M chloroplasts along the sides of anticlinal walls, parallel to the direction of the incident light, which is analogous to the avoidance movement of C(3) chloroplasts. In the presence of ABA, most of the M chloroplasts showed the aggregative movement in response to blue light but not red light. Together these results suggest that ROS are not involved in signal transduction for the aggregative movement, and ABA can shift the blue light-induced avoidance movement of C(4)-M chloroplasts to the aggregative movement.
Collapse
Affiliation(s)
- Eri Maai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kodama Y, Suetsugu N, Wada M. Novel protein-protein interaction family proteins involved in chloroplast movement response. PLANT SIGNALING & BEHAVIOR 2011; 6:483-90. [PMID: 21389774 PMCID: PMC3142374 DOI: 10.4161/psb.6.4.14784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.
Collapse
Affiliation(s)
- Yutaka Kodama
- Plant Functional Genomics Research Group; RIKEN Plant Science; Yokohama
| | - Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
9
|
Abstract
Chloroplast photorelocation movement is essential for the sessile plant survival and plays a role for efficient photosynthesis and avoiding photodamage of chloroplasts. There are several ways to observe or detect chloroplast movement directly or indirectly. Here, techniques for the induction of chloroplast movement and how to detect the responses, as well as various points of attention and advice for the experiments, are described.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biology, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | |
Collapse
|
10
|
Suetsugu N, Takano A, Kohda D, Wada M. Structure and activity of JAC1 J-domain implicate the involvement of the cochaperone activity with HSC70 in chloroplast photorelocation movement. PLANT SIGNALING & BEHAVIOR 2010; 5:1602-6. [PMID: 21139434 PMCID: PMC3115112 DOI: 10.4161/psb.5.12.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 05/20/2023]
Abstract
Chloroplast photorelocation movement towards weak light and away from strong light is essential for plants to adapt to the fluctuation of ambient light conditions. In the previous study, we showed that blue light receptor phototropins mediated blue light-induced chloroplast movement in Arabidopsis by regulating short actin filaments localized at the chloroplast periphery (cp-actin filaments) rather than actin cables in the cytoplasm. However, the signaling pathway for the chloroplast photorelocation movement is still unclear. We also identified JAC1 (J-domain protein required for chloroplast accumulation response 1) as an essential component for the accumulation response and dark positioning in Arabidopsis. We recently determined the crystal structure of the J-domain of JAC1. The JAC1 J-domain has a positively charged surface, which forms a putative interface with the Hsc70 chaperone by analogy to that of bovine auxilin. Furthermore, the mutation of the highly conserved HPD motif in the JAC1 J-domain impaired the in vivo activity of JAC1. These data suggest that JAC1 cochaperone activity with HSC70 is essential for chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Akira Takano
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
11
|
Suetsugu N, Dolja VV, Wada M. Why have chloroplasts developed a unique motility system? PLANT SIGNALING & BEHAVIOR 2010; 5:1190-6. [PMID: 20855973 PMCID: PMC3115347 DOI: 10.4161/psb.5.10.12802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 05/17/2023]
Abstract
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Valerian V Dolja
- Department of Botany and Plant Pathology; Center for Genome Research and Biocomputing; Oregon State University; Corvallis, OR USA
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|