1
|
Curley SM, Putnam D. Biological Nanoparticles in Vaccine Development. Front Bioeng Biotechnol 2022; 10:867119. [PMID: 35402394 PMCID: PMC8984165 DOI: 10.3389/fbioe.2022.867119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.
Collapse
Affiliation(s)
- Stephanie M. Curley
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. NANOSCALE 2021; 13:11932-11942. [PMID: 34195748 DOI: 10.1039/d1nr01632f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.
Collapse
Affiliation(s)
- Mantu Kumar
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27749-27773. [PMID: 34110790 DOI: 10.1021/acsami.1c06818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving controlled and accurate delivery of photosensitizers (PSs) into tumor sites is a major challenge in conventional photodynamic therapy (PDT). Aptamer is a short oligonucleotide sequence (DNA or RNA) with a folded three-dimensional structure, which can selectively bind to specific small molecules, proteins, or the whole cells. Aptamers could act as ligands and be modified onto PSs or nanocarriers, enabling specific recognition and binding to tumor cells or their membrane proteins. The resultant aptamer-modified PSs or PSs-containing nanocarriers generate amounts of reactive oxygen species with light irradiation and obtain superior photodynamic therapeutic efficiency in tumors. Herein, we overview the recent progress in the designs and applications of aptamer-targeted photodynamic platforms for tumor therapy. First, we focus on the progress on the rational selection of aptamers and summarize the applications of aptamers which have been applied for targeted tumor diagnosis and therapy. Then, aptamer-targeted photodynamic therapies including various aptamer-PSs, aptamer-nanocarriers containing PSs, and aptamer-nano-photosensitizers are highlighted. The aptamer-targeted synergistically therapeutic platforms including PDT, photothermal therapy, and chemotherapy, as well as the imaging-guided theranostics, are also discussed. Finally, we offer an insight into the development trends and future perspectives of aptamer-targeted photodynamic platforms for tumor therapy.
Collapse
Affiliation(s)
- Jincong Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China
| |
Collapse
|
4
|
Kalathiya U, Padariya M, Fahraeus R, Chakraborti S, Hupp TR. Multivalent Display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to Nanomaterial, Protein Ferritin Nanocages. Biomolecules 2021; 11:297. [PMID: 33671255 PMCID: PMC7923090 DOI: 10.3390/biom11020297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2, or COVID-19, has a devastating effect on our society, both in terms of quality of life and death rates; hence, there is an urgent need for developing safe and effective therapeutics against SARS-CoV-2. The most promising strategy to fight against this deadly virus is to develop an effective vaccine. Internalization of SARS-CoV-2 into the human host cell mainly occurs through the binding of the coronavirus spike protein (a trimeric surface glycoprotein) to the human angiotensin-converting enzyme 2 (ACE2) receptor. The spike-ACE2 protein-protein interaction is mediated through the receptor-binding domain (RBD) of the spike protein. Mutations in the spike RBD can significantly alter interactions with the ACE2 host receptor. Due to its important role in virus transmission, the spike RBD is considered to be one of the key molecular targets for vaccine development. In this study, a spike RBD-based subunit vaccine was designed by utilizing a ferritin protein nanocage as a scaffold. Several fusion protein constructs were designed in silico by connecting the spike RBD via a synthetic linker (different sizes) to different ferritin subunits (H-ferritin and L-ferritin). The stability and the dynamics of the engineered nanocage constructs were tested by extensive molecular dynamics simulation (MDS). Based on our MDS analysis, a five amino acid-based short linker (S-Linker) was the most effective for displaying the spike RBD over the surface of ferritin. The behavior of the spike RBD binding regions from the designed chimeric nanocages with the ACE2 receptor was highlighted. These data propose an effective multivalent synthetic nanocage, which might form the basis for new vaccine therapeutics designed against viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Umesh Kalathiya
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | - Monikaben Padariya
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | - Robin Fahraeus
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | | | - Ted R. Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| |
Collapse
|
5
|
Chakraborti S, Korpi A, Kumar M, Stępień P, Kostiainen MA, Heddle JG. Three-Dimensional Protein Cage Array Capable of Active Enzyme Capture and Artificial Chaperone Activity. NANO LETTERS 2019; 19:3918-3924. [PMID: 31117758 DOI: 10.1021/acs.nanolett.9b01148] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Development of protein cages for encapsulation of active enzyme cargoes and their subsequent arrangement into a controllable three-dimensional array is highly desirable. However, cargo capture is typically challenging because of difficulties in achieving reversible assembly/disassembly of protein cages in mild conditions. Herein we show that by using an unusual ferritin cage protein that undergoes triggerable assembly under mild conditions, we can achieve reversible filling with protein cargoes including an active enzyme. We demonstrate that these filled cages can be arrayed in three-dimensional crystal lattices and have an additional chaperone-like effect, increasing both thermostability and enzymatic activity of the encapsulated enzyme.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| | - Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 Aalto , Finland
| | - Mantu Kumar
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
- Postgraduate School of Molecular Medicine ; Żwirki i Wigury 61 , 02-091 Warsaw , Poland
| | - Piotr Stępień
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 Aalto , Finland
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology , Jagiellonian University , Gronostajowa 7A , 30-387 Krakow , Poland
| |
Collapse
|
6
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
7
|
Cannon KA, Ochoa JM, Yeates TO. High-symmetry protein assemblies: patterns and emerging applications. Curr Opin Struct Biol 2019; 55:77-84. [PMID: 31005680 DOI: 10.1016/j.sbi.2019.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
The accelerated elucidation of three-dimensional structures of protein complexes, both natural and designed, is providing new examples of large supramolecular assemblies with intriguing shapes. Those with high symmetry - based on the geometries of the Platonic solids - are particularly notable as their innately closed forms create interior spaces with varying degrees of enclosure. We survey known protein assemblies of this type and discuss their geometric features. The results bear on issues of protein function and evolution, while also guiding novel bioengineering applications. Recent successes using high-symmetry protein assemblies for applications in interior encapsulation and exterior display are highlighted.
Collapse
Affiliation(s)
- Kevin A Cannon
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States
| | - Jessica M Ochoa
- UCLA Department of Chemistry and Biochemistry, United States; UCLA Molecular Biology Institute, United States
| | - Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, United States; UCLA-DOE Institute for Genomics and Proteomics, United States; UCLA Molecular Biology Institute, United States.
| |
Collapse
|
8
|
Hagen AR, Plegaria JS, Sloan N, Ferlez B, Aussignargues C, Kerfeld CA. In Vitro Assembly of Diverse Bacterial Microcompartment Shell Architectures. NANO LETTERS 2018; 18:7030-7037. [PMID: 30346795 PMCID: PMC6309364 DOI: 10.1021/acs.nanolett.8b02991] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial microcompartments (BMCs) are organelles composed of a selectively permeable protein shell that encapsulates enzymes involved in CO2 fixation (carboxysomes) or carbon catabolism (metabolosomes). Confinement of sequential reactions by the BMC shell presumably increases the efficiency of the pathway by reducing the crosstalk of metabolites, release of toxic intermediates, and accumulation of inhibitory products. Because BMCs are composed entirely of protein and self-assemble, they are an emerging platform for engineering nanoreactors and molecular scaffolds. However, testing designs for assembly and function through in vivo expression is labor-intensive and has limited the potential of BMCs in bioengineering. Here, we developed a new method for in vitro assembly of defined nanoscale BMC architectures: shells and nanotubes. By inserting a "protecting group", a short ubiquitin-like modifier (SUMO) domain, self-assembly of shell proteins in vivo was thwarted, enabling preparation of concentrates of shell building blocks. Addition of the cognate protease removes the SUMO domain and subsequent mixing of the constituent shell proteins in vitro results in the self-assembly of three types of supramolecular architectures: a metabolosome shell, a carboxysome shell, and a BMC protein-based nanotube. We next applied our method to generate a metabolosome shell engineered with a hyper-basic luminal surface, allowing for the encapsulation of biotic or abiotic cargos functionalized with an acidic accessory group. This is the first demonstration of using charge complementarity to encapsulate diverse cargos in BMC shells. Collectively, our work provides a generally applicable method for in vitro assembly of natural and engineered BMC-based architectures.
Collapse
Affiliation(s)
- Andrew R. Hagen
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
| | - Jefferson S. Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Nancy Sloan
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
| | - Bryan Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Lin CY, Yang SJ, Peng CL, Shieh MJ. Panitumumab-Conjugated and Platinum-Cored pH-Sensitive Apoferritin Nanocages for Colorectal Cancer-Targeted Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6096-6106. [PMID: 29368506 DOI: 10.1021/acsami.7b13431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Apoferritin (AF) is a natural nontoxic iron carrier and has a natural hollow structure that can be used to deliver small molecules. The surface of AF has many amine functional groups that can be modified to create targeted ligands. We loaded oxaliplatin onto AF, which was then used as a template to conjugate with panitumumab via a polyethylene glycol linker. The oxaliplatin-loaded AF conjugated with panitumumab (AFPO) was designed to specifically target cell lines expressing epidermal growth factor receptor (EGFR). AFPO efficiently released oxaliplatin and suppressed tumor cell growth. Furthermore, the novel AFPO nanocages showed significant inhibition and greater accumulation in tumor models with high EGFR expression in vivo. Our study revealed that combining panitumumab and oxaliplatin into one formulation (AFPO nanocage) could be a promising shortcut in clinical applications.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road, Zhonghe Dist., New Taipei City 235, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Taoyuan City 32546, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine , #7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
10
|
Deci MB, Liu M, Dinh QT, Nguyen J. Precision engineering of targeted nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1511. [PMID: 29436157 DOI: 10.1002/wnan.1511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Since their introduction in 1980, the number of advanced targeted nanocarrier systems has grown considerably. Nanocarriers capable of targeting single receptors, multiple receptors, or multiple epitopes have all been used to enhance delivery efficiency and selectivity. Despite tremendous progress, preclinical studies and clinically translatable nanotechnology remain disconnected. The disconnect in targeting efficacy may stem from poorly-understood factors such as receptor clustering, spatial control of targeting ligands, ligand mobility, and ligand architecture. Further, the relationship between receptor distribution and ligand architecture remains elusive. Traditionally, targeted nanocarriers were engineered assuming a "static" target. However, it is becoming increasingly clear that receptor expression patterns change in response to external stimuli and disease progression. Here, we discuss how cutting-edge technologies will enable a better characterization of the spatiotemporal distribution of membrane receptors and their clustering. We further describe how this will enable the design of new nanocarriers that selectively target the site of disease. Ultimately, we explore how the precision engineering of targeted nanocarriers that adapt to receptor dynamics will have the potential to drive nanotechnology to the forefront of therapy and make targeted nanomedicine a clinical reality. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Maixian Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| | - Quoc Thai Dinh
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
11
|
Heirbaut M, Lermyte F, Martin EM, Beelen S, Sobott F, Strelkov SV, Weeks SD. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1. J Biol Chem 2017; 292:9944-9957. [PMID: 28487364 DOI: 10.1074/jbc.m116.773515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
Small heat-shock proteins (sHSPs) are a conserved group of molecular chaperones with important roles in cellular proteostasis. Although sHSPs are characterized by their small monomeric weight, they typically assemble into large polydisperse oligomers that vary in both size and shape but are principally composed of dimeric building blocks. These assemblies can include different sHSP orthologues, creating additional complexity that may affect chaperone activity. However, the structural and functional properties of such hetero-oligomers are poorly understood. We became interested in hetero-oligomer formation between human heat-shock protein family B (small) member 1 (HSPB1) and HSPB6, which are both highly expressed in skeletal muscle. When mixed in vitro, these two sHSPs form a polydisperse oligomer array composed solely of heterodimers, suggesting preferential association that is determined at the monomer level. Previously, we have shown that the sHSP N-terminal domains (NTDs), which have a high degree of intrinsic disorder, are essential for the biased formation. Here we employed iterative deletion mapping to elucidate how the NTD of HSPB6 influences its preferential association with HSPB1 and show that this region has multiple roles in this process. First, the highly conserved motif RLFDQXFG is necessary for subunit exchange among oligomers. Second, a site ∼20 residues downstream of this motif determines the size of the resultant hetero-oligomers. Third, a region unique to HSPB6 dictates the preferential formation of heterodimers. In conclusion, the disordered NTD of HSPB6 helps regulate the size and stability of hetero-oligomeric complexes, indicating that terminal sHSP regions define the assembly properties of these proteins.
Collapse
Affiliation(s)
- Michelle Heirbaut
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Frederik Lermyte
- the Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and
| | - Esther M Martin
- the Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and.,the Astbury Centre for Structural Molecular Biology and
| | - Steven Beelen
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Frank Sobott
- the Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium, and.,the Astbury Centre for Structural Molecular Biology and.,School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Sergei V Strelkov
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium,
| | - Stephen D Weeks
- From the Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
12
|
San BH, Ravichandran S, Park KS, Subramani VK, Kim KK. Bioinorganic Nanohybrid Catalyst for Multistep Synthesis of Acetaminophen, an Analgesic. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30058-30065. [PMID: 27797174 DOI: 10.1021/acsami.6b12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bioinorganic nanohybrid catalyst was synthesized by combining esterase with a platinum nanoparticle (PtNP). The combination of two catalysts resulted in enhanced catalytic activities, esterase hydrolysis, and hydrogenation in PtNPs, as compared to each catalyst alone. This hybrid catalyst can be successfully used in the multistep synthesis of acetaminophen (paracetamol), an analgesic and antipyretic drug, in a one-pot reaction with high yield and efficacy within a short time, demonstrating that the nanobiohybrid catalyst offers advantages in the synthesis of fine chemicals in industrial applications.
Collapse
Affiliation(s)
- Boi Hoa San
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon 440-746, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Subramaniyam Ravichandran
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Kwang-Su Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Vinod Kumar Subramani
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon 440-746, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine , Suwon 440-746, Korea
| |
Collapse
|
13
|
Harprecht C, Okifo O, Robbins KJ, Motwani T, Alexandrescu AT, Teschke CM. Contextual Role of a Salt Bridge in the Phage P22 Coat Protein I-Domain. J Biol Chem 2016; 291:11359-72. [PMID: 27006399 DOI: 10.1074/jbc.m116.716910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 12/30/2022] Open
Abstract
The I-domain is a genetic insertion in the phage P22 coat protein that chaperones its folding and stability. Of 11 acidic residues in the I-domain, seven participate in stabilizing electrostatic interactions with basic residues across elements of secondary structure, fastening the β-barrel fold. A hydrogen-bonded salt bridge between Asp-302 and His-305 is particularly interesting as Asp-302 is the site of a temperature-sensitive-folding mutation. The pKa of His-305 is raised to 9.0, indicating the salt bridge stabilizes the I-domain by ∼4 kcal/mol. Consistently, urea denaturation experiments indicate the stability of the WT I-domain decreases by 4 kcal/mol between neutral and basic pH. The mutants D302A and H305A remove the pH dependence of stability. The D302A substitution destabilizes the I-domain by 4 kcal/mol, whereas H305A had smaller effects, on the order of 1-2 kcal/mol. The destabilizing effects of D302A are perpetuated in the full-length coat protein as shown by a higher sensitivity to protease digestion, decreased procapsid assembly rates, and impaired phage production in vivo By contrast, the mutants have only minor effects on capsid expansion or stability in vitro The effects of the Asp-302-His-305 salt bridge are thus complex and context-dependent. Substitutions that abolish the salt bridge destabilize coat protein monomers and impair capsid self-assembly, but once capsids are formed the effects of the substitutions are overcome by new quaternary interactions between subunits.
Collapse
Affiliation(s)
- Christina Harprecht
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Oghenefejiro Okifo
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Kevin J Robbins
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Tina Motwani
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Andrei T Alexandrescu
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Carolyn M Teschke
- From the Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
14
|
Zschoche R, Hilvert D. Diffusion-Limited Cargo Loading of an Engineered Protein Container. J Am Chem Soc 2015; 137:16121-32. [PMID: 26637019 DOI: 10.1021/jacs.5b10588] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host-guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid-cargo complexes generated by other encapsulation systems.
Collapse
Affiliation(s)
- Reinhard Zschoche
- Laboratory of Organic Chemistry, ETH Zürich , 8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Abstract
Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.
Collapse
|
16
|
Putri RM, Cornelissen JJLM, Koay MST. Self-Assembled Cage-Like Protein Structures. Chemphyschem 2015; 16:911-8. [DOI: 10.1002/cphc.201402722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 12/20/2022]
|
17
|
Mikhailov VA, Mize TH, Benesch JLP, Robinson CV. Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal Chem 2014; 86:8321-8. [PMID: 25026391 DOI: 10.1021/ac5018327] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selection and soft-landing of bionanoparticles in vacuum is potentially a preparative approach to separate heterogeneous mixtures for high-resolution structural study or to deposit homogeneous materials for nanotechnological applications. Soft-landing of intact protein assemblies however remains challenging, due to the difficulties of manipulating these heavy species in mass-selective devices and retaining their structure during the experiment. We have developed a tandem mass spectrometer with the capability for controlled ion soft-landing and ex situ visualization of the soft-landed particles by means of transmission electron microscopy. The deposition conditions can be controlled by adjusting the kinetic energies of the ions by applying accelerating or decelerating voltages to a set of ion-steering optics. To validate this approach, we have examined two cage-like protein complexes, GroEL and ferritin, and studied the effect of soft-landing conditions on the method's throughput and the preservation of protein structure. Separation, based on mass-to-charge ratio, of holo- and apo-ferritin complexes after electrospray ionization enabled us to soft-land independently the separated complexes on a grid suitable for downstream transmission electron microscopy analysis. Following negative staining, images of the soft-landed complexes reveal that their structural integrity is largely conserved, with the characteristic central cavity of apoferritin, and iron core of holoferritin, surviving the phase transition from liquid to gas, soft-landing, and dehydration in vacuum.
Collapse
Affiliation(s)
- Victor A Mikhailov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | | | | | | |
Collapse
|
18
|
McNamara DE, Cascio D, Jorda J, Bustos C, Wang TC, Rasche ME, Yeates TO, Bobik TA. Structure of dihydromethanopterin reductase, a cubic protein cage for redox transfer. J Biol Chem 2014; 289:8852-64. [PMID: 24523405 DOI: 10.1074/jbc.m113.522342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dihydromethanopterin reductase (Dmr) is a redox enzyme that plays a key role in generating tetrahydromethanopterin (H4MPT) for use in one-carbon metabolism by archaea and some bacteria. DmrB is a bacterial enzyme understood to reduce dihydromethanopterin (H2MPT) to H4MPT using flavins as the source of reducing equivalents, but the mechanistic details have not been elucidated previously. Here we report the crystal structure of DmrB from Burkholderia xenovorans at a resolution of 1.9 Å. Unexpectedly, the biological unit is a 24-mer composed of eight homotrimers located at the corners of a cubic cage-like structure. Within a homotrimer, each monomer-monomer interface exhibits an active site with two adjacently bound flavin mononucleotide (FMN) ligands, one deeply buried and tightly bound and one more peripheral, for a total of 48 ligands in the biological unit. Computational docking suggested that the peripheral site could bind either the observed FMN (the electron donor for the overall reaction) or the pterin, H2MPT (the electron acceptor for the overall reaction), in configurations ideal for electron transfer to and from the tightly bound FMN. On this basis, we propose that DmrB uses a ping-pong mechanism to transfer reducing equivalents from FMN to the pterin substrate. Sequence comparisons suggested that the catalytic mechanism is conserved among the bacterial homologs of DmrB and partially conserved in archaeal homologs, where an alternate electron donor is likely used. In addition to the mechanistic revelations, the structure of DmrB could help guide the development of anti-obesity drugs based on modification of the ecology of the human gut.
Collapse
|
19
|
Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci U S A 2014; 111:2897-902. [PMID: 24516140 DOI: 10.1073/pnas.1319866111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The designed assembly of proteins into well-defined supramolecular architectures not only tests our understanding of protein-protein interactions, but it also provides an opportunity to tailor materials with new physical and chemical properties. Previously, we described that RIDC3, a designed variant of the monomeric electron transfer protein cytochrome cb562, could self-assemble through Zn(2+) coordination into uniform 1D nanotubes or 2D arrays with crystalline order. Here we show that these 1D and 2D RIDC3 assemblies display very high chemical stabilities owing to their metal-mediated frameworks, maintaining their structural order in ≥90% (vol/vol) of several polar organic solvents including tetrahydrofuran (THF) and isopropanol (iPrOH). In contrast, the unassembled RIDC3 monomers denature in ∼30% THF and 50% iPrOH, indicating that metal-mediated self-assembly also leads to considerable stabilization of the individual building blocks. The 1D and 2D RIDC3 assemblies are highly thermostable as well, remaining intact at up to ∼70 °C and ∼90 °C, respectively. The 1D nanotubes cleanly convert into the 2D arrays on heating above 70 °C, a rare example of a thermal crystalline-to-crystalline conversion in a biomolecular assembly. Finally, we demonstrate that the Zn-directed RIDC3 assemblies can be used to spatiotemporally control the templated growth of small Pt(0) nanocrystals. This emergent function is enabled by and absolutely dependent on both the supramolecular assembly of RIDC3 molecules (to form a periodically organized structural template) and their innate redox activities (to direct Pt(2+) reduction).
Collapse
|
20
|
Dedeo MT, Finley DT, Francis MB. Viral capsids as self-assembling templates for new materials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 103:353-92. [PMID: 22000000 DOI: 10.1016/b978-0-12-415906-8.00002-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembling protein shells of viruses have provided convenient scaffolds for the construction of many new materials with well-defined nanoscale architectures. In some cases, the native amino acid functional groups have served as nucleation sites for the deposition of metals and semiconductors, leading to organic-inorganic composites with interesting electronic, magnetic, optical, and catalytic properties. Other approaches have involved the covalent modification of the protein monomers, typically with the goal of generating targeting delivery vehicles for drug and imaging cargo. Covalently modified capsid proteins have also been used to generate periodic arrays of chromophores for use in light harvesting and photocatalytic applications. All of these research areas have taken advantage of the low polydispersity, high chemical stability, and intrinsically multivalent properties that are uniquely offered by these biological building blocks.
Collapse
Affiliation(s)
- Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
21
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 854] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| | | | | |
Collapse
|
23
|
San BH, Lee S, Moh SH, Park JG, Lee JH, Hwang HY, Kim KK. Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells. J Mater Chem B 2013; 1:1453-1460. [DOI: 10.1039/c2tb00290f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Sochor J, Babula P, Adam V, Krska B, Kizek R. Sharka: the past, the present and the future. Viruses 2012; 4:2853-901. [PMID: 23202508 PMCID: PMC3509676 DOI: 10.3390/v4112853] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic;
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
25
|
Zhang W, Liu X, Walsh D, Yao S, Kou Y, Ma D. Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2948-2953. [PMID: 22778042 DOI: 10.1002/smll.201102480] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/01/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Wei Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
26
|
Ren D, Dalmau M, Randall A, Shindel MM, Baldi P, Wang SW. Biomimetic Design of Protein Nanomaterials for Hydrophobic Molecular Transport. ADVANCED FUNCTIONAL MATERIALS 2012; 22:3170-3180. [PMID: 23526705 PMCID: PMC3603581 DOI: 10.1002/adfm.201200052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biomaterials such as self-assembling biological complexes have demonstrated a variety of applications in materials science and nanotechnology. The functionality of protein-based materials, however, is often limited by the absence or locations of specific chemical conjugation sites. In this investigation, we developed a new strategy for loading organic molecules into the hollow cavity of a protein nanoparticle that relies only on non-covalent interactions, and we demonstrated its applicability in drug delivery. Based on a biomimetic model that incorporates multiple phenylalanines to create a generalized binding site, we retained and delivered the antitumor compound doxorubicin by redesigning a caged protein scaffold. Through an iterative combination of structural modeling and protein engineering, we obtained new variants of the E2 subunit of pyruvate dehydrogenase with varying levels of drug-carrying capabilities. We found that an increasing number of introduced phenylalanines within the scaffold cavity generally resulted in greater drug loading capacities. Drug loading levels could be achieved that were greater than conventional nanoparticle delivery systems. These protein nanoparticles containing doxorubicin were taken up by breast cancer cells and induced significant cell death. Our novel approach demonstrates a universal strategy to design de novo hydrophobic binding domains within protein-based scaffolds for molecular encapsulation and transport, and it broadens the ability to attach guest molecules to this class of materials.
Collapse
Affiliation(s)
- Dongmei Ren
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
| | - Mercè Dalmau
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
| | - Arlo Randall
- School of Information and Computer Sciences, University of California, Irvine
- Institute for Genomics and Bioinformatics, University of California, Irvine
| | - Matthew M. Shindel
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
- Department of Chemical Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, DE, 19716-3110
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine
- Institute for Genomics and Bioinformatics, University of California, Irvine
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, 916 Engineering Tower, Irvine, CA 92697-2575
- Corresponding author Phone: 949-824-2383 Fax: 949-824-2541
| |
Collapse
|
27
|
Rhee JK, Baksh M, Nycholat C, Paulson JC, Kitagishi H, Finn MG. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules 2012; 13:2333-8. [PMID: 22827531 DOI: 10.1021/bm300578p] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) have proven to be versatile platforms for chemical and genetic functionalization for a variety of purposes in biomedicine, catalysis, and materials science. We describe here the simultaneous modification of the bacteriophage Qβ VLP with a metalloporphyrin derivative for photodynamic therapy and a glycan ligand for specific targeting of cells bearing the CD22 receptor. This application benefits from the presence of the targeting function and the delivery of a high local concentration of singlet oxygen-generating payload.
Collapse
Affiliation(s)
- Jin-Kyu Rhee
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
28
|
Clark JR. Bacteriophages: a biological library of Babel. Future Virol 2012. [DOI: 10.2217/fvl.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jason R Clark
- BigDNA Ltd, Roslin BioCentre, Edinburgh, EH25 9PP, UK
| |
Collapse
|
29
|
San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK. Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. Angew Chem Int Ed Engl 2011; 50:11924-11929. [PMID: 21882302 DOI: 10.1002/anie.201101833] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/16/2011] [Indexed: 02/09/2025]
Affiliation(s)
- Boi Hoa San
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
San BH, Kim S, Moh SH, Lee H, Jung DY, Kim KK. Platinum Nanoparticles Encapsulated by Aminopeptidase: A Multifunctional Bioinorganic Nanohybrid Catalyst. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Uetrecht C, Heck AJR. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew Chem Int Ed Engl 2011; 50:8248-62. [PMID: 21793131 PMCID: PMC7159578 DOI: 10.1002/anie.201008120] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 01/04/2023]
Abstract
Over a century since its development, the analytical technique of mass spectrometry is blooming more than ever, and applied in nearly all aspects of the natural and life sciences. In the last two decades mass spectrometry has also become amenable to the analysis of proteins and even intact protein complexes, and thus begun to make a significant impact in the field of structural biology. In this Review, we describe the emerging role of mass spectrometry, with its different technical facets, in structural biology, focusing especially on structural virology. We describe how mass spectrometry has evolved into a tool that can provide unique structural and functional information about viral-protein and protein-complex structure, conformation, assembly, and topology, extending to the direct analysis of intact virus capsids of several million Dalton in mass. Mass spectrometry is now used to address important questions in virology ranging from how viruses assemble to how they interact with their host.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
- Present address: Molecular Biophysics, Uppsala University, Uppsala (Sweden)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
| |
Collapse
|
32
|
Uetrecht C, Heck AJR. Moderne biomolekulare Massenspektrometrie und ihre Bedeutung für die Erforschung der Struktur, der Dynamik und des Aufbaus von Viren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Shen L, Bao N, Zhou Z, Prevelige PE, Gupta A. Materials design using genetically engineered proteins. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12238j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Mateu MG. Virus engineering: functionalization and stabilization. Protein Eng Des Sel 2010; 24:53-63. [PMID: 20923881 DOI: 10.1093/protein/gzq069] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemically and/or genetically engineered viruses, viral capsids and viral-like particles carry the promise of important and diverse applications in biomedicine, biotechnology and nanotechnology. Potential uses include new vaccines, vectors for gene therapy and targeted drug delivery, contrast agents for molecular imaging and building blocks for the construction of nanostructured materials and electronic nanodevices. For many of the contemplated applications, the improvement of the physical stability of viral particles may be critical to adequately meet the demanding physicochemical conditions they may encounter during production, storage and/or medical or industrial use. The first part of this review attempts to provide an updated general overview of the fast-moving, interdisciplinary virus engineering field; the second part focuses specifically on the modification of the physical stability of viral particles by protein engineering, an emerging subject that has not been reviewed before.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Stephanopoulos N, Liu M, Tong GJ, Li Z, Liu Y, Yan H, Francis MB. Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. NANO LETTERS 2010; 10:2714-20. [PMID: 20575574 PMCID: PMC3083853 DOI: 10.1021/nl1018468] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (approximately 100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.
Collapse
Affiliation(s)
- Nicholas Stephanopoulos
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Minghui Liu
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Gary J. Tong
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Zhe Li
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Yan Liu
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Hao Yan
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe AZ 85287
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| |
Collapse
|
36
|
Haikarainen T, Papageorgiou AC. Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 2010; 67:341-51. [PMID: 19826764 PMCID: PMC11115558 DOI: 10.1007/s00018-009-0168-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/08/2009] [Accepted: 09/18/2009] [Indexed: 01/29/2023]
Abstract
Dps-like proteins are key factors involved in the protection of prokaryotic cells from oxidative damage. They act by either oxidizing iron to prevent the formation of oxidative radicals or by forming Dps-DNA complexes to physically protect DNA. All Dps-like proteins are characterized by a common three-dimensional architecture and are found as spherical dodecamers with a hollow central cavity. Despite their structural similarities, recent biochemical and structural data have suggested different functions among members of the family that range from protection inside the cells in response to various stress signals to adhesion and virulence during bacterial infections. Moreover, the Dps-like proteins have lately attracted considerable interest in the field of nanotechnology owing to their ability to act as protein cages for iron and various other metals. A better understanding of their function and mechanism could therefore lead to novel applications in biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Teemu Haikarainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Biocity, P.O. Box 123, Turku, 20521 Finland
| | - Anastassios C. Papageorgiou
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Biocity, P.O. Box 123, Turku, 20521 Finland
| |
Collapse
|
37
|
NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin. Proc Natl Acad Sci U S A 2009; 107:545-50. [PMID: 20018746 DOI: 10.1073/pnas.0908082106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferritin is a multimeric nanocage protein that directs the reversible biomineralization of iron. At the catalytic ferroxidase site two iron(II) ions react with dioxygen to form diferric species. In order to study the pathway of iron(III) from the ferroxidase site to the central cavity a new NMR strategy was developed to manage the investigation of a system composed of 24 monomers of 20 kDa each. The strategy is based on (13)C-(13)C solution NOESY experiments combined with solid-state proton-driven (13)C-(13)C spin diffusion and 3D coherence transfer experiments. In this way, 75% of amino acids were recognized and 35% sequence-specific assigned. Paramagnetic broadening, induced by iron(III) species in solution (13)C-(13)C NOESY spectra, localized the iron within each subunit and traced the progression to the central cavity. Eight iron ions fill the 20-A-long iron channel from the ferrous/dioxygen oxidoreductase site to the exit into the cavity, inside the four-helix bundle of each subunit, contrasting with short paths in models. Magnetic susceptibility data support the formation of ferric multimers in the iron channels. Multiple iron channel exits are near enough to facilitate high concentration of iron that can mineralize in the ferritin cavity, illustrating advantages of the multisubunit cage structure.
Collapse
|
38
|
Tong GJ, Hsiao SC, Carrico ZM, Francis MB. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 2009; 131:11174-8. [PMID: 19603808 PMCID: PMC2737063 DOI: 10.1021/ja903857f] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to those of control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification.
Collapse
Affiliation(s)
- Gary J. Tong
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Sonny C. Hsiao
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Zachary M. Carrico
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Labs, Berkeley, California 94720-1460
| |
Collapse
|