1
|
Rathakrishnan P, McShan AC. In silico identification and characterization of small molecule binding to the CD1d immunoreceptor. J Biomol Struct Dyn 2025; 43:2929-2947. [PMID: 38109194 DOI: 10.1080/07391102.2023.2294388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
CD1 immunoreceptors are a non-classical major histocompatibility complex (MHC) that present antigens to T cells to elucidate immune responses against disease. The antigen repertoire of CD1 has been composed primarily of lipids until recently when CD1d-restricted T cells were shown to be activated by non-lipidic small molecules, such as phenyl pentamethyl dihydrobenzofuran sulfonate (PPBF) and related benzofuran sulfonates. To date structural insights into PPBF/CD1d interactions are lacking, so it is unknown whether small molecule and lipid antigens are presented and recognized through similar mechanisms. Furthermore, it is unknown whether CD1d can bind to and present a broader range of small molecule metabolites to T cells, acting out functions analogous to the MHC class I related protein MR1. Here, we perform in silico docking and molecular dynamics simulations to structurally characterize small molecule interactions with CD1d. PPBF was supported to be presented to T cell receptors through the CD1d F' pocket. Virtual screening of CD1d against more than 17,000 small molecules with diverse geometry and chemistry identified several novel scaffolds, including phytosterols, cholesterols, triterpenes, and carbazole alkaloids, that serve as candidate CD1d antigens. Protein-ligand interaction profiling revealed conserved residues in the CD1d F' pocket that similarly anchor small molecules and lipids. Our results suggest that CD1d could have the intrinsic ability to bind and present a broad range of small molecule metabolites to T cells to carry out its function beyond lipid antigen presentation.
Collapse
Affiliation(s)
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Liu Q, Liu H, Hu Z, Zhou X, Jin K, Huang Y, Huang W, Yang Y. Mendelian Randomization and Transcriptomic Analysis Reveal the Protective Role of NKT Cells in Sepsis. J Inflamm Res 2024; 17:3159-3171. [PMID: 38774448 PMCID: PMC11107935 DOI: 10.2147/jir.s459706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Background Sepsis is a life-threatening clinical syndrome caused by dysregulated host response to infection. The mechanism underlying sepsis-induced immune dysfunction remains poorly understood. Natural killer T (NKT) cells are cytotoxic lymphocytes that bridge the innate and adaptive immune systems, the role of NKT cells in sepsis is not entirely understood, and NKT cell cluster differences in sepsis remain unexplored. Methods Mendelian randomization (MR) analyses were first conducted to investigate the causal relationship between side scatter area (SSC-A) on NKT cells and 28-day mortality of septic patients. A prospective and observational study was conducted to validate the relationship between the percentage of NKT cells and 28-day mortality of sepsis. Then, the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from healthy controls and septic patients were profiled. Results MR analyses first revealed the protective roles of NKT cells in the 28-day mortality of sepsis. Then, 115 septic patients were enrolled. NKT percentage was significantly higher in survivors (n = 84) compared to non-survivors (n = 31) (%, 5.00 ± 3.46 vs 2.18 ± 1.93, P < 0.0001). Patients with lower levels of NKT cells exhibited a significantly increased risk of 28-day mortality. According to scRNA-seq analysis, NKT cell clusters exhibited multiple distinctive characteristics, including a distinguishing cluster defined as FOS+NKT cells, which showed a significant decrease in sepsis. Pseudo-time analysis showed that FOS+NKT cells were characterized by upregulated expression of crucial functional genes such as GZMA and CCL4. CellChat revealed that interactions between FOS+NKT cells and adaptive immune cells including B cells and T cells were decreased in sepsis compared to healthy controls. Conclusion Our findings indicate that NKT cells may protect against sepsis, and their percentage can predict 28-day mortality. Additionally, we discovered a unique FOS+NKT subtype crucial in sepsis immune response, offering novel insights into its immunopathogenesis.
Collapse
Affiliation(s)
- Qingxiang Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Haitao Liu
- School of Life Science, Fudan University, Shanghai, 200000, People’s Republic of China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xing Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Kai Jin
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yingzi Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
3
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Zhao L, Yang X. Cross Talk Between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections. Front Immunol 2022; 13:837767. [PMID: 35185930 PMCID: PMC8850912 DOI: 10.3389/fimmu.2022.837767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Both innate and adaptive immunity is vital for host defense against infections. Dendritic cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell responses. Natural killer T (NKT) cells are a small population of innate-like T cells distributed in multiple organs. Many studies have suggested that the cross-talk between these two immune cells is critical for immunobiology and host defense mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT cells can feedback on DCs also, thus modulating the phenotype and function of DCs and DC subsets. This functional feedback of NKT cells on DCs, especially the preferential promoting effect on CD8α+ and CD103+ DC subsets in lymphoid and non-lymphoid tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell responses in infections. This review focuses on the two-way interaction between NKT cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging innate and adaptive immune responses for host defense purposes.
Collapse
Affiliation(s)
- Lei Zhao
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Vγ9Vδ2 T Cells: Can We Re-Purpose a Potent Anti-Infection Mechanism for Cancer Therapy? Cells 2020; 9:cells9040829. [PMID: 32235616 PMCID: PMC7226769 DOI: 10.3390/cells9040829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer therapies based on in vivo stimulation, or on adoptive T cell transfer of Vγ9Vδ2 T cells, have been tested in the past decades but have failed to provide consistent clinical efficacy. New, promising concepts such as γδ Chimeric Antigen Receptor (CAR) -T cells and γδ T-cell engagers are currently under preclinical evaluation. Since the impact of factors, such as the relatively low abundance of γδ T cells within tumor tissue is still under investigation, it remains to be shown whether these effector T cells can provide significant efficacy against solid tumors. Here, we highlight key learnings from the natural role of Vγ9Vδ2 T cells in the elimination of host cells bearing intracellular bacterial agents and we translate these into the setting of tumor therapy. We discuss the availability and relevance of preclinical models as well as currently available tools and knowledge from a drug development perspective. Finally, we compare advantages and disadvantages of existing therapeutic concepts and propose a role for Vγ9Vδ2 T cells in immune-oncology next to Cluster of Differentiation (CD) 3 activating therapies.
Collapse
|
6
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
7
|
DeVault VL, Malagic M, Mei L, Dienz O, Lilley GWJ, Benoit P, Mistri SK, Musial SC, Ather JL, Poynter ME, Boyson JE. Regulation of invariant NKT cell development and function by a 0.14 Mbp locus on chromosome 1: a possible role for Fcgr3. Genes Immun 2018; 20:261-272. [PMID: 29880961 PMCID: PMC6286708 DOI: 10.1038/s41435-018-0031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells are tissue-resident innate-like T cells critical to the host immune response. We previously identified a 6.6 Mbp region on chromosome 1 as a major regulator of iNKT cell number and function in C57BL/6 and 129X1/SvJ mice. Here, we fine-mapped this locus by assessing the iNKT cell response to alpha-galactosylceramide (αGalCer) in a series of B6.129 congenic lines. This analysis revealed the presence of at least two genetic elements that regulate iNKT cell cytokine production in response to αGalCer. While one of these genetic elements mapped to the B6.129c6 interval containing Slam genes, the dominant regulator in this region mapped to the 0.14 Mbp B6.129c3 interval. In addition, we found that numbers of thymic iNKT cells and DP thymocytes were significantly lower in B6.129c3 mice, indicating that this interval also regulates iNKT cell development. Candidate gene analysis revealed a 5-fold increase in Fcgr3 expression in B6.129c3 iNKT cells, and we observed increased expression of FcγR3 protein on B6.129c3 iNKT cells, NK cells, and neutrophils. These data identify the B6.129c3 interval as a novel locus regulating the response of iNKT cells to glycosphingolipid, revealing a link between this phenotype and a polymorphism that regulates Fcgr3 expression.
Collapse
Affiliation(s)
- Victoria L DeVault
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
| | - Murisa Malagic
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Linda Mei
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Oliver Dienz
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Graham W J Lilley
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Patrick Benoit
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Somen K Mistri
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
| | - Shawn C Musial
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jennifer L Ather
- Division of Pulmonary Disease and Critical Care, Department of Medicine, Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew E Poynter
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.,Division of Pulmonary Disease and Critical Care, Department of Medicine, Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jonathan E Boyson
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA. .,Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
8
|
Burrello C, Garavaglia F, Cribiù FM, Ercoli G, Bosari S, Caprioli F, Facciotti F. Short-term Oral Antibiotics Treatment Promotes Inflammatory Activation of Colonic Invariant Natural Killer T and Conventional CD4 + T Cells. Front Med (Lausanne) 2018; 5:21. [PMID: 29468162 PMCID: PMC5808298 DOI: 10.3389/fmed.2018.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
The gut mucosa is continuously exposed to a vast community of microorganisms, collectively defined as microbiota, establishing a mutualistic relationship with the host and contributing to shape the immune system. Gut microbiota is acquired at birth, and its composition is relatively stable during the entire adult life. Intestinal dysbiosis, defined as a microbial imbalance of gut bacterial communities, can be caused by several factors, including bacterial infections and antibiotic use, and has been associated with an increased risk to develop or exacerbate immune-mediated pathologies, such as allergic reactions, asthma, and inflammatory bowel diseases. Still, the mechanisms by which antibiotic-induced gut dysbiosis may lead to development of mucosal inflammation are still matter of debate. To this end, we aimed to evaluate the impact of antibiotic treatment on phenotype and functions of intestinal immune cell populations, including invariant natural killer T (iNKT) cells, a subset of lipid-specific T cells profoundly influenced by alterations on the commensal microbiota. To this aim, a cocktail of broad-spectrum antibiotics was administered for 2 weeks to otherwise healthy mice before re-colonization of the intestinal microbial community with oral gavage of eubiotic or dysbiotic mucosa-associated bacteria and luminal colonic content, followed or not by intestinal inflammation induction. Here. we showed that short-term antibiotic treatment alters frequency and functions of intestinal iNKT cells, even in the absence of intestinal inflammation. The presence of a dysbiotic microbiota after antibiotic treatment imprints colonic iNKT and CD4+ T cells toward a pro-inflammatory phenotype that collectively contributes to aggravate intestinal inflammation. Nonetheless, the inflammatory potential of the dysbiotic microbiota decreases over time opening the possibility to temporally intervene on the microbial composition to re-equilibrate dysbiosis, thus controlling concomitantly mucosal immune T cell activations.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Federica Garavaglia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Policlinico di Milano, Milan, Italy
| | - Giulia Ercoli
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Policlinico di Milano, Milan, Italy
| | - Silvano Bosari
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Policlinico di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
9
|
Yang G, Richt JA, Driver JP. Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective. Int J Mol Sci 2017; 19:68. [PMID: 29280974 PMCID: PMC5796018 DOI: 10.3390/ijms19010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/20/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an "innate-like" T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these cells to enhance human vaccines against a wide range of microbial pathogens. However, long overlooked is the potential to harness iNKT cell antigens as vaccine adjuvants for domestic animal species that express the iNKT cell-CD1d system. In this review, we discuss the prospect of targeting porcine iNKT cells as a strategy to enhance the efficiency of swine influenza vaccines. In addition, we compare the phenotype and tissue distribution of porcine iNKT cells. Finally, we discuss the challenges that must be overcome before iNKT cell agonists can be contemplated for veterinary use in livestock.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS 66502, USA.
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
11
|
Van Kaer L, Parekh VV, Wu L. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products. Front Immunol 2015; 6:226. [PMID: 26029211 PMCID: PMC4429631 DOI: 10.3389/fimmu.2015.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Vrajesh V Parekh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| |
Collapse
|
12
|
Bi J, Wang J, Zhou K, Wang Y, Fang M, Du Y. Synthesis and Biological Activities of 5-Thio-α-GalCers. ACS Med Chem Lett 2015; 6:476-80. [PMID: 25941558 DOI: 10.1021/acsmedchemlett.5b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/22/2023] Open
Abstract
NKT cells, a unique subset of T cells that recognizes glycolipid antigens presented by CD1d molecules, are believed to produce key cytokines of both Th1 and Th2 T cells and are thus involved in the control of several types of immune response. As an active glycolipid antigen having α-galactosyl ceramide core structure, KRN7000 showed promising immunostimulation activity and was selected as an anticancer drug candidate for further clinical application. In this report, three new KRN7000 structural analogues were designed and synthesized, in which the ring oxygen of the galactopyranose residue is replaced by a sulfur atom along with the variation on the lipid chain. Their abilities for stimulating mouse NKT cells to produce IFN-γ and IL-4 were evaluated both in vivo and in vitro.
Collapse
Affiliation(s)
- Jingjing Bi
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Jing Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhou
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuancheng Wang
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Fang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
13
|
Baena A, Gómez-Giraldo L, Carreño LJ. Mecanismos de activación de las células T asesinas naturales invariantes (iNKT). IATREIA 2015. [DOI: 10.17533/udea.iatreia.v29n1a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Carreño LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 2015; 6:309-20. [PMID: 24762075 DOI: 10.2217/imt.13.175] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.
Collapse
Affiliation(s)
- Leandro J Carreño
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
15
|
Bruns H, Stenger S. New insights into the interaction of Mycobacterium tuberculosis and human macrophages. Future Microbiol 2015; 9:327-41. [PMID: 24762307 DOI: 10.2217/fmb.13.164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen. It infects macrophages where it avoids elimination by interfering with host defense mechanisms. Until recently, it was assumed that the acidification of phagosomes is the major strategy of macrophages to eliminate M. tuberculosis. However, there is emerging evidence demonstrating that human macrophages are equipped with additional antimicrobial effector functions. Specifically, autophagy, efferocytosis and antimicrobial peptides have been identified as mechanisms to restrict mycobacterial proliferation. Here we review recent findings on effector functions of human macrophages and mechanisms of the pathogen to interfere with them.
Collapse
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen, Germany
| | | |
Collapse
|
16
|
Singh M, Quispe-Tintaya W, Chandra D, Jahangir A, Venkataswamy MM, Ng TW, Sharma-Kharkwal S, Carreño LJ, Porcelli SA, Gravekamp C. Direct incorporation of the NKT-cell activator α-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. Br J Cancer 2014; 111:1945-54. [PMID: 25314062 PMCID: PMC4229631 DOI: 10.1038/bjc.2014.486] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Background: Immune suppression in the tumour microenvironment remains a major limitation to successful immunotherapy of cancer. In the current study, we analysed whether the natural killer T cell-activating glycolipid α-galactosylceramide could overcome immune suppression and improve vaccination against metastatic breast cancer. Methods: Mice with metastatic breast cancer (4T1 model) were therapeutically treated with a Listeria monocytogenes-based vaccine expressing tumour-associated antigen Mage-b followed by α-galactosylceramide as separate agents, or as a complex of α-galactosylceramide stably incorporated into Listeria-Mage-b. Effects on metastases, tumour weight, toxicity and immune responses were determined. Results: Sequential treatments of mice with established 4T1 breast carcinomas using Listeria-Mage-b followed by α-galactosylceramide as a separate agent was highly effective at reducing metastases, but was accompanied by severe liver toxicity. In contrast, combined therapy using Listeria-Mage-b modified by incorporation of α-galactosylceramide resulted in nearly complete elimination of metastases without toxicity. This was associated with a significant increase in the percentage of natural killer T cells in the spleen, and an increase in natural killer cell activity and in T cell responses to Mage-b. Conclusions: Our results suggest that direct incorporation of α-galactosylceramide into a live bacterial vaccine vector is a promising non-toxic new approach for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- M Singh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - W Quispe-Tintaya
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - D Chandra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - A Jahangir
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - M M Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - T W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - S Sharma-Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - L J Carreño
- 1] Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA [2] Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Avenue Independencia #1027, Santiago 8380453, Chile
| | - S A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - C Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26:559-77. [PMID: 25311810 DOI: 10.1016/j.smim.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.
Collapse
|
18
|
Venkataswamy MM, Ng TW, Kharkwal SS, Carreño LJ, Johnson AJ, Kunnath-Velayudhan S, Liu Z, Bittman R, Jervis PJ, Cox LR, Besra GS, Wen X, Yuan W, Tsuji M, Li X, Ho DD, Chan J, Lee S, Frothingham R, Haynes BF, Panas MW, Gillard GO, Sixsmith JD, Korioth-Schmitz B, Schmitz JE, Larsen MH, Jacobs WR, Porcelli SA. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One 2014; 9:e108383. [PMID: 25255287 PMCID: PMC4177913 DOI: 10.1371/journal.pone.0108383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/13/2023] Open
Abstract
Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.
Collapse
Affiliation(s)
- Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- National Institute of Mental Health and Neuroscience, Bangalore, Karnataka, India
| | - Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shalu S. Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Leandro J. Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alison J. Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunhee Lee
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Frothingham
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael W. Panas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey O. Gillard
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jaimie D. Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Shekhar S, Joyee AG, Yang X. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J Innate Immun 2014; 6:575-84. [PMID: 24903638 DOI: 10.1159/000361048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
20
|
Interleukins 15 and 12 in combination expand the selective loss of natural killer T cells in HIV infection in vitro. Clin Exp Med 2014; 15:205-13. [PMID: 24748538 DOI: 10.1007/s10238-014-0278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
The present study evaluated the frequency and receptor expression pattern of invariant natural killer T (iNKT) cells in human immunodeficiency virus (HIV)-infected individuals. Further, the effect of IL-15 + IL-12 stimulation on iNKT cells was also assessed. The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals, and patients with HIV and tuberculosis coinfection (HIV-TB). The frequency of iNKT cells and the expression of phenotype, cytotoxic and chemokine receptors were studied by flow cytometry. The number of iNKT cells was significantly depleted in HIV and HIV-TB patients, which upon IL-15 + IL-12 stimulation expanded in HIV. The constitutively expressed natural cytotoxicity receptor, NKp46 was increased in HIV and HIV-TB, which might be the host's response to HIV replication. The distinct expression patterns of chemokine and adhesion receptors suggest that iNKT subsets might traffic to different microenvironment and tissues. High expression of chemokine receptor CCR5 by most iNKT cells suggests that these cells might be more favorable targets of HIV infection. Our results show that IL-15 and IL-12 combination has the ability to expand the selective depletion of iNKT cells in vitro in HIV-infected individuals, but of limited value when coinfected with TB.
Collapse
|
21
|
Tarumoto N, Kinjo Y, Kitano N, Sasai D, Ueno K, Okawara A, Izawa Y, Shinozaki M, Watarai H, Taniguchi M, Takeyama H, Maesaki S, Shibuya K, Miyazaki Y. Exacerbation of invasive Candida albicans infection by commensal bacteria or a glycolipid through IFN-γ produced in part by iNKT cells. J Infect Dis 2013; 209:799-810. [PMID: 24096333 DOI: 10.1093/infdis/jit534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The commensal yeast Candida albicans is a major cause of invasive fungal infections. Despite treatment with antifungal agents, the mortality rate attributed to these types of infection is high. Although numerous cases have been reported regarding a poor outcome for patients with bacterial and C. albicans coinfection, the mechanisms by which the coinfecting bacteria exacerbate the C. albicans infection remain elusive. METHODS AND RESULTS We evaluated how glycolipid-mediated activation of invariant natural killer T (iNKT) cells affects the clearance of C. albicans. Surprisingly, C. albicans-infected, glycolipid-treated mice exhibited significantly lower survival rates, increased fungal burden, and higher interleukin (IL)-6 production in the kidneys compared with control mice. Glycolipid-induced exacerbation of C. albicans infection was not observed in interferon-gamma knockout (IFN-γKO) mice. In the C. albicans-infected, glycolipid-treated mice, the number of neutrophils in the blood and bone marrow dramatically decreased in an IFN-γ-dependent manner. Furthermore, mice that were coinfected with C. albicans and nonfermentative gram-negative commensal bacteria exhibited increased fungal burden and inflammatory cytokine production in the kidneys that were dependent on IFN-γ and iNKT cells. CONCLUSIONS Our results indicate that coinfecting commensal bacteria exacerbate C. albicans infection through IFN-γ produced, in part, by iNKT cells.
Collapse
Affiliation(s)
- Norihito Tarumoto
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
O’Konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, Besra GS, Terabe M, Berzofsky JA. β-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 2013; 19:4404-11. [PMID: 23804426 PMCID: PMC3819527 DOI: 10.1158/1078-0432.ccr-12-2169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Most studies characterizing antitumor properties of invariant natural killer T (iNKT) cells have used the agonist, α-galactosylceramide (α-GalCer). However, α-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, β-mannosylceramide (β-ManCer), induces strong antitumor immunity through a mechanism distinct from that of α-GalCer. The objective of this study was to determine whether β-ManCer induces anergy of iNKT cells. EXPERIMENTAL DESIGN Induction of anergy was determined by ex vivo analysis of splenocytes from mice pretreated with iNKT cell agonists as well as in the CT26 lung metastasis in vivo tumor model. RESULTS β-ManCer activated iNKT cells without inducing long-term anergy. The transience of anergy induction correlated with a shortened duration of PD-1 upregulation on iNKT cells activated with β-ManCer, compared with α-GalCer. Moreover, whereas mice pretreated with α-GalCer were unable to respond to a second glycolipid stimulation to induce tumor protection for up to 2 months, mice pretreated with β-ManCer were protected from tumors by a second stimulation equivalently to vehicle-treated mice. CONCLUSIONS The lack of long-term functional anergy induced by β-ManCer, which allows for a second dose to still give therapeutic benefit, suggests the strong potential for this iNKT cell agonist to succeed in settings where α-GalCer has failed.
Collapse
Affiliation(s)
- Jessica J. O’Konek
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Satomi Takao
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Liat Izhak
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Petr Illarionov
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| |
Collapse
|
23
|
Duman M, Chtcheglova LA, Zhu R, Bozna BL, Polzella P, Cerundolo V, Hinterdorfer P. Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging. J Mol Recognit 2013; 26:408-14. [DOI: 10.1002/jmr.2282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Rong Zhu
- Institute for Biophysics; University of Linz; Altenbergerstrasse 69; A-4040; Linz; Austria
| | - Bianca L. Bozna
- Institute for Biophysics; University of Linz; Altenbergerstrasse 69; A-4040; Linz; Austria
| | - Paolo Polzella
- Cancer Research UK Tumor Immunology Group, The Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine; University of Oxford; Oxford; OX3 9DS; UK
| | - Vicenzo Cerundolo
- Cancer Research UK Tumor Immunology Group, The Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine; University of Oxford; Oxford; OX3 9DS; UK
| | | |
Collapse
|
24
|
Sandberg JK, Andersson SK, Bächle SM, Nixon DF, Moll M. HIV-1 Vpu interference with innate cell-mediated immune mechanisms. Curr HIV Res 2013; 10:327-33. [PMID: 22524181 PMCID: PMC3412205 DOI: 10.2174/157016212800792513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/06/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
The HIV-1 accessory protein Vpu is emerging as a viral factor with a range of activities devoted to counteracting host innate immunity. Here, we review recent findings concerning the role of Vpu in hampering activation of cellular immune responses mediated by CD1d-restricted invariant natural killer T (iNKT) cells and natural killer (NK) cells. The two key findings are that Vpu interferes with CD1d expression and antigen presentation, and also with expression of the NK cell activation ligand NK-T and B cell antigen (NTB-A). Both these activities are mechanistically distinct from CD4 and Tetherin (BST-2) down-modulation. We summarize the mechanistic insights gained into Vpu interference with CD1d and NTB-A, as well as important challenges going forward, and discuss these mechanisms in the context of the role that iNKT and NK cells play in HIV-1 immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Huang W, Hu J, August A. Cutting edge: innate memory CD8+ T cells are distinct from homeostatic expanded CD8+ T cells and rapidly respond to primary antigenic stimuli. THE JOURNAL OF IMMUNOLOGY 2013; 190:2490-4. [PMID: 23408840 DOI: 10.4049/jimmunol.1202988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Innate memory phenotype (IMP) CD8(+) T cells are nonconventional αβ T cells exhibiting features of innate immune cells and are significantly increased in the absence of ITK. Their developmental path and function are not clear. In this study, we show hematopoietic MHC class I (MHCI)-dependent generation of Ag-specific IMP CD8(+) T cells using bone marrow chimeras. Wild-type bone marrow gives rise to IMP CD8(+) T cells in MHCI(-/-) recipients, resembling those in Itk(-/-) mice, but distinct from those derived via homeostatic proliferation, and independent of recipient thymus. In contrast, MHCI(-/-) bone marrow does not lead to IMP CD8(+) T cells in wild-type recipients. OTI IMP CD8(+) T cells generated via this method exhibited enhanced early response to Ag without prior primary stimulation. Our findings suggest a method to generate Ag-specific "naive" CD8(+) IMP T cells, as well as demonstrate that they are not homeostatic proliferation cells and can respond promptly in an Ag-specific fashion.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
26
|
Behar SM. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:141-63. [PMID: 23468108 DOI: 10.1007/978-1-4614-6111-1_8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing HIV/AIDS epidemic and the spread of multi-drug resistant Mycobacterium tuberculosis has led to the perpetuation of the worldwide tuberculosis epidemic. While M. bovis BCG is widely used as a vaccine, it lacks efficacy in preventing pulmonary tuberculosis in adults [1]. To combat this ongoing scourge, vaccine development for tuberculosis is a global priority. Most infected individuals develop long-lived protective immunity, which controls and contains M. tuberculosis in a T cell-dependent manner. An effective T cells response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions, and evaluating whether vaccination can elicit these T cells subsets and induce protective immunity. CD4(+) T cells are critical for resistance to M. tuberculosis in both humans and rodent models. CD4(+) T cells are required to control the initial infection as well as to prevent recrudescence in both humans and mice [2]. While it is generally accepted that class II MHC-restricted CD4(+) T cells are essential for immunity to tuberculosis, M. tuberculosis infection elicits CD8(+) T cells responses in both people and in experimental animals. CD8(+) T cells are also recruited to the lung during M. tuberculosis infection and are found in the granulomas of infected people. Thus, how CD8(+) T cells contribute to overall immunity to tuberculosis and whether antigens recognized by CD8(+) T cells would enhance the efficacy of vaccine strategies continue to be important questions.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Bine S, Haziot A, Malikova I, Pelletier J, Charron D, Boucraut J, Mooney N, Gelin C. Alteration of CD1 expression in multiple sclerosis. Clin Exp Immunol 2012; 169:10-6. [PMID: 22670773 DOI: 10.1111/j.1365-2249.2012.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Studies of multiple sclerosis (MS) have concentrated mainly on antigen presentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expression in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells.
Collapse
Affiliation(s)
- S Bine
- INSERM, UMR-S, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis was one of the first human pathogens to be identified as the cause of a specific disease – TB. TB was also one of the first specific diseases for which immunotherapy was attempted. In more than a century since, multiple different immunotherapies have been attempted, alongside vaccination and antibiotic treatment, with varying degrees of success. Despite this, TB remains a major worldwide health problem that causes nearly 2 million deaths annually and has infected an estimated 2 billion people. A major reason for this is that M. tuberculosis is an ancient human pathogen that has evolved complex strategies for persistence in the human host. It has thus been long understood that, to effectively control TB, we will need to address the ability of the pathogen to establish a persistent, latent infection in most infected individuals. This review discusses what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge has been used to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- T Mark Doherty
- Medical Affairs, GlaxoSmithKline, Brøndby, DK-2605, Copenhagen, Denmark
| |
Collapse
|
29
|
Pei B, Vela JL, Zajonc D, Kronenberg M. Interplay between carbohydrate and lipid in recognition of glycolipid antigens by natural killer T cells. Ann N Y Acad Sci 2012; 1253:68-79. [PMID: 22352829 PMCID: PMC3336017 DOI: 10.1111/j.1749-6632.2011.06435.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer T (NKT) cells are a T cell subpopulation that were named originally based on coexpression of receptors found on natural killer (NK) cells, cells of the innate immune system, and by T lymphocytes. The maturation and activation of NKT cells requires presentation of glycolipid antigens by CD1d, a cell surface protein distantly related to the major histocompatibility complex (MHC)-encoded antigen presenting molecules. This specificity distinguishes NKT cells from most CD4(+) and CD8(+) T cells that recognize peptides presented by MHC class I and class II molecules. The rapid secretion of a large amount of both Th1 and Th2 cytokines by activated NKT cells endows them with the ability to play a vital role in the host immune defense against various microbial infections. In this review, we summarize progress on identifying the sources of microbe-derived glycolipid antigens recognized by NKT cells and the biochemical basis for their recognition.
Collapse
Affiliation(s)
- Bo Pei
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Jose Luis Vela
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Dirk Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
30
|
O'Reilly V, Zeng SG, Bricard G, Atzberger A, Hogan AE, Jackson J, Feighery C, Porcelli SA, Doherty DG. Distinct and overlapping effector functions of expanded human CD4+, CD8α+ and CD4-CD8α- invariant natural killer T cells. PLoS One 2011; 6:e28648. [PMID: 22174854 PMCID: PMC3236218 DOI: 10.1371/journal.pone.0028648] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/11/2011] [Indexed: 11/18/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.
Collapse
Affiliation(s)
- Vincent O'Reilly
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shijuan G. Zeng
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ann Atzberger
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Andrew E. Hogan
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - John Jackson
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Conleth Feighery
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Derek G. Doherty
- Department of Immunology and Institute of Molecular Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
- * E-mail:
| |
Collapse
|
31
|
Natural killer cell activation distinguishes Mycobacterium tuberculosis-mediated immune reconstitution syndrome from chronic HIV and HIV/MTB coinfection. J Acquir Immune Defic Syndr 2011; 58:309-18. [PMID: 21826013 DOI: 10.1097/qai.0b013e31822e0d15] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND With increased access to antiretroviral treatment (ART), immune reconstitution inflammatory syndrome (IRIS) in Mycobacterium tuberculosis (MTB)-infected populations remains a clinical challenge. We studied a cross-sectional cohort of HIV-infected subjects in Johannesburg (South Africa) to help define the immune correlates that best distinguish IRIS from ongoing MTB cases. METHODS We studied HIV+ subjects developing MTB-related unmasking tuberculosis-related immune reconstitution inflammatory syndrome (uTB-IRIS) after ART initiation; control groups were subjects with HIV and HIV/tuberculosis-coinfected subjects with comparable ART treatment. Testing was conducted with whole blood-based 4-color flow cytometry and plasma-based Luminex cytokine assessment. RESULTS Natural killer cell activation, C-reactive protein, and interleukin 8 serum concentration were significantly higher in uTB-IRIS subjects compared with both control groups. In addition, all MTB-coinfected subjects, independent of clinical presentation, had higher neutrophils and T-cell activation, together with lower lymphocytes, CD4⁺ T-cell, and myeloid dendritic cell counts. Using conditional inference tree analysis, we show that elevated natural killer cell activation in combination with lymphocyte count characterizes the immunological profile of uTB-IRIS. CONCLUSION Our results support a role for innate immune effectors in the immunopathogenesis of unmasking MTB-related IRIS and identify new immune parameters defining this pathology.
Collapse
|
32
|
Autoreactive CD1b-restricted T cells: a new innate-like T-cell population that contributes to immunity against infection. Blood 2011; 118:3870-8. [PMID: 21860021 DOI: 10.1182/blood-2011-03-341941] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Group 1 CD1 (CD1a, -b, and -c) presents self and foreign lipid antigens to multiple T-cell subsets in humans. However, in the absence of a suitable animal model, the specific functions and developmental requirements of these T cells remain unknown. To study group 1 CD1-restricted T cells in vivo, we generated double transgenic mice (HJ1Tg/hCD1Tg) that express group 1 CD1 molecules in a similar pattern to that observed in humans (hCD1Tg) as well as a TCR derived from a CD1b-autoreactive T-cell line (HJ1Tg). Using this model, we found that similar to CD1d-restricted NKT cells, HJ1 T cells exhibit an activated phenotype (CD44(hi)CD69(+)CD122(+)) and a subset of HJ1 T cells expresses NK1.1 and is selected by CD1b-expressing hematopoietic cells. HJ1 T cells secrete proinflammatory cytokines in response to stimulation with CD1b-expressing dendritic cells derived from humans as well as hCD1Tg mice, suggesting that they recognize species conserved self-lipid antigen(s). Importantly, this basal autoreactivity is enhanced by TLR-mediated signaling and HJ1 T cells can be activated and confer protection against Listeria infection. Taken together, our data indicate that CD1b-autoreactive T cells, unlike mycobacterial lipid antigen-specific T cells, are innate-like T cells that may contribute to early anti-microbial host defense.
Collapse
|
33
|
Torrelles JB, Sieling PA, Arcos J, Knaup R, Bartling C, Rajaram MVS, Stenger S, Modlin RL, Schlesinger LS. Structural differences in lipomannans from pathogenic and nonpathogenic mycobacteria that impact CD1b-restricted T cell responses. J Biol Chem 2011; 286:35438-35446. [PMID: 21859718 DOI: 10.1074/jbc.m111.232587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannosylated molecules on the Mycobacterium tuberculosis surface are important determinants in the immunopathogenesis of tuberculosis. To date, much attention has been paid to mannose-capped lipoarabinomannan, which mediates phagocytosis and intracellular trafficking of M. tuberculosis by engaging the macrophage mannose receptor and subsequently binds to intracellular CD1b molecules for presentation to T cells. Another important mannosylated lipoglycan on the M. tuberculosis surface is lipomannan (LM). Comparative structural detail of the LMs from virulent and avirulent strains is limited as is knowledge regarding their differential capacity to be recognized by the adaptive immune response. Here, we purified LM from the avirulent M. smegmatis and the virulent M. tuberculosis H(37)R(v), performed a comparative structural biochemical analysis, and addressed their ability to stimulate CD1b-restricted T cell clones. We found that M. tuberculosis H(37)R(v) produces a large neutral LM (TB-LM); in contrast, M. smegmatis produces a smaller linear acidic LM (SmegLM) with a high succinate content. Correspondingly, TB-LM was not as efficiently presented to CD1b-restricted T cells as SmegLM. Thus, here we correlate the structure-function relationships for LMs with CD1b-restricted T cell responses and provide evidence that the structural features of TB-LM contribute to its diminished T cell responsiveness.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Peter A Sieling
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Jesús Arcos
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Rose Knaup
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Craig Bartling
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital of Ulm, D-89081 Ulm, Germany
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Larry S Schlesinger
- Center for Microbial Interface Biology and Departments of Microbial Infection and Immunity and Internal Medicine, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
34
|
Batista VG, Moreira-Teixeira L, Leite-de-Moraes MC, Benard G. Analysis of invariant natural killer T cells in human paracoccidioidomycosis. Mycopathologia 2011; 172:357-63. [PMID: 21805204 DOI: 10.1007/s11046-011-9451-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 07/12/2011] [Indexed: 12/28/2022]
Abstract
Invariant natural killer T (iNKT) cells are capable of recognizing lipid antigens and secreting Th1/Th2 cytokines. Deficiency in iNKT cell number or function has been partially implicated in susceptibility to some infectious diseases, such as tuberculosis. We evaluated iNKT cells in paracoccidioidomycosis, another chronic granulomatous disease endemic in Latin America. iNKT cells were detected using PBS57-loaded tetramer staining and flow cytometry. Circulating iNKT cell numbers were similar among healthy individuals who had previously been cured of paracoccidioidomycosis (susceptible individuals, n = 7) and healthy Paracoccidioides brasiliensis-infected (n = 5) and non-infected individuals (n = 5). iNKT from all three groups expanded similarly upon α-GalCer and a synthetic analog (OCH) stimulation. IFN-γ was the dominant cytokine produced both by ex vivo and by expanded iNKT cells, followed by IL-4 and IL-10, in the three groups. No deficit in the monocyte expression of CD1d was detected. In conclusion, individuals who had developed paracoccidioidomycosis in the past have no impairment in iNKT number, expansion capacity, and cytokine secretion.
Collapse
Affiliation(s)
- Vanessa Gomes Batista
- Laboratory of Medical Investigation Unit 53, Tropical Medicine Institute, University of São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 470. IMT-II, Térreo, São Paulo, SP, 05403-907, Brazil.
| | | | | | | |
Collapse
|
35
|
Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S, Innes J, Kon OM, Lammas DA, Minnikin DE, Besra GS, Willcox BE, Lalvani A. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 2011; 121:2493-503. [PMID: 21576820 DOI: 10.1172/jci46216] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/30/2011] [Indexed: 11/17/2022] Open
Abstract
Current tuberculosis (TB) vaccine strategies are largely aimed at activating conventional T cell responses to mycobacterial protein antigens. However, the lipid-rich cell wall of Mycobacterium tuberculosis (M. tuberculosis) is essential for pathogenicity and provides targets for unconventional T cell recognition. Group 1 CD1-restricted T cells recognize mycobacterial lipids, but their function in human TB is unclear and their ability to establish memory is unknown. Here, we characterized T cells specific for mycolic acid (MA), the predominant mycobacterial cell wall lipid and key virulence factor, in patients with active TB infection. MA-specific T cells were predominant in TB patients at diagnosis, but were absent in uninfected bacillus Calmette-Guérin-vaccinated (BCG-vaccinated) controls. These T cells were CD1b restricted, detectable in blood and disease sites, produced both IFN-γ and IL-2, and exhibited effector and central memory phenotypes. MA-specific responses contracted markedly with declining pathogen burden and, in patients followed longitudinally, exhibited recall expansion upon antigen reencounter in vitro long after successful treatment, indicative of lipid-specific immunological memory. T cell recognition of MA is therefore a significant component of the acute adaptive and memory immune response in TB, suggesting that mycobacterial lipids may be promising targets for improved TB vaccines.
Collapse
Affiliation(s)
- Damien J Montamat-Sicotte
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sillé FCM, Martin C, Jayaraman P, Rothchild A, Besra GS, Behar SM, Boes M. Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells. Immunol Lett 2011; 139:33-41. [PMID: 21565221 DOI: 10.1016/j.imlet.2011.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells.
Collapse
Affiliation(s)
- Fenna C M Sillé
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol 2011; 140:196-207. [PMID: 21493160 DOI: 10.1016/j.clim.2011.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/23/2022]
Abstract
Activation of CD1d-restricted invariant NKT (iNKT) cells with the glycolipid α-galactosylceramide (α-GalCer) confers protection against disease in murine models, however, clinical trials in humans have had limited impact. We synthesized a novel thioglycoside analogue of α-GalCer, denoted α-S-GalCer, and tested its efficacy for stimulating human iNKT cells in vitro. α-S-GalCer stimulated cytokine release by iNKT cells in a CD1d-dependent manner and primed CD1d(+) target cells for lysis. α-S-GalCer-stimulated iNKT cells induced maturation of monocyte-derived dendritic cells into antigen-presenting cells that released IL-12 and small amounts of IL-10. The nature and potency of α-S-GalCer and α-GalCer in human iNKT cell activation were similar. However, in contrast to α-GalCer, α-S-GalCer did not activate murine iNKT cells in vivo. Because of its enhanced stability in biological systems, α-S-GalCer may be superior to α-GalCer as a parent compound for developing adjuvant therapies for humans.
Collapse
|
38
|
Komori T, Nakamura T, Matsunaga I, Morita D, Hattori Y, Kuwata H, Fujiwara N, Hiromatsu K, Harashima H, Sugita M. A microbial glycolipid functions as a new class of target antigen for delayed-type hypersensitivity. J Biol Chem 2011; 286:16800-6. [PMID: 21454504 DOI: 10.1074/jbc.m110.217224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Delayed-type hypersensitivity (DTH) is marked by high levels of protein antigen-specific T cell responses in sensitized individuals. Recent evidence has revealed a distinct pathway for T cell immunity directed against glycolipid antigens, but DTH to this class of antigen has been undetermined and difficult to prove due to their insolubility in aqueous solutions. Here, glucose monomycolate (GMM), a highly hydrophobic glycolipid of the cell wall of mycobacteria, was dispersed in aqueous solutions in the form of octaarginine-modified liposomes and tested for its ability to elicit cutaneous DTH responses in bacillus Calmette-Guerin (BCG)-immunized guinea pigs. After an intradermal challenge with the GMM liposome, a significant skin induration was observed in BCG-immunized, but not mock-treated, animals. The skin reaction peaked at around 2 days with local infiltration by mononuclear cells, and therefore, the response shared basic features with the classical DTH to protein antigens. Lymph node T cells from BCG-immunized guinea pigs specifically increased IFN-γ transcription in response to the GMM liposome, and this response was completely blocked by antibodies to CD1 lipid antigen-presenting molecules. Finally, whereas the T cells increased transcription of both T helper (Th) 1-type (IFN-γ and TNF-α) and Th2-type (IL-5 and IL-10) cytokines in response to the purified protein derivative or tuberculin, their GMM-specific response was skewed to Th1-type cytokine production known to be critical for protection against tuberculosis. Thus, our study reveals a novel form of DTH with medical implications.
Collapse
Affiliation(s)
- Takaya Komori
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arora P, Venkataswamy MM, Baena A, Bricard G, Li Q, Veerapen N, Ndonye R, Park JJ, Lee JH, Seo KC, Howell AR, Chang YT, Illarionov PA, Besra GS, Chung SK, Porcelli SA. A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids. J Am Chem Soc 2011; 133:5198-201. [PMID: 21425779 PMCID: PMC3072113 DOI: 10.1021/ja200070u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Structural variants of α-galactosylceramide (αGC) that activate invariant natural killer T cells (iNKT cells) are being developed as potential immunomodulatory agents for a variety of applications. Identification of specific forms of these glycolipids that bias responses to favor production of proinflammatory vs anti-inflammatory cytokines is central to current efforts, but this goal has been hampered by the lack of in vitro screening assays that reliably predict the in vivo biological activity of these compounds. Here we describe a fluorescence-based assay to identify functionally distinct αGC analogues. Our assay is based on recent findings showing that presentation of glycolipid antigens by CD1d molecules localized to plasma membrane detergent-resistant microdomains (lipid rafts) is correlated with induction of interferon-γ secretion and Th1-biased cytokine responses. Using an assay that measures lipid raft residency of CD1d molecules loaded with αGC, we screened a library of ∼200 synthetic αGC analogues and identified 19 agonists with potential Th1-biasing activity. Analysis of a subset of these novel candidate Th1 type agonists in vivo in mice confirmed their ability to induce systemic cytokine responses consistent with a Th1 type bias. These results demonstrate the predictive value of this novel in vitro assay for assessing the in vivo functionality of glycolipid agonists and provide the basis for a relatively simple high-throughput assay for identification and functional classification of iNKT cell activating glycolipids.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karmakar S, Paul J, De T. Leishmania donovani glycosphingolipid facilitates antigen presentation by inducing relocation of CD1d into lipid rafts in infected macrophages. Eur J Immunol 2011; 41:1376-87. [DOI: 10.1002/eji.201040981] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/29/2010] [Accepted: 01/31/2011] [Indexed: 01/13/2023]
|
41
|
O'Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF, Raju R, Khalili M, Kim HY, Howell AR, Besra GS, Porcelli SA, Berzofsky JA, Terabe M. Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 2011; 121:683-94. [PMID: 21245578 DOI: 10.1172/jci42314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/17/2010] [Indexed: 01/07/2023] Open
Abstract
Type 1 or invariant NKT (iNKT) cell agonists, epitomized by α-galactosylceramide, protect against cancer largely by IFN-γ-dependent mechanisms. Here we describe what we believe to be a novel IFN-γ-independent mechanism induced by β-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual β-linked sugar. Like α-galactosylceramide, β-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to α-galactosylceramide, protection by β-mannosylceramide was completely dependent on NOS and TNF-α, neither of which was required to achieve protection with α-galactosylceramide. Moreover, at doses too low for either alone to protect, β-mannosylceramide synergized with α-galactosylceramide to protect mice against tumors. These results suggest that treatment with β-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of β-mannosylceramide to synergize with α-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.
Collapse
|
42
|
Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011; 3:236-51. [PMID: 21196373 DOI: 10.2741/s148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semi-invariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Microbiology and Immunology, Room A-5301, Medical Center North, 1161 21st Avenue South, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
43
|
Stolberg VR, Chiu BC, Martin BE, Shah SA, Sandor M, Chensue SW. Cysteine-cysteinyl chemokine receptor 6 mediates invariant natural killer T cell airway recruitment and innate stage resistance during mycobacterial infection. J Innate Immun 2010; 3:99-108. [PMID: 21042003 DOI: 10.1159/000321156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 12/25/2022] Open
Abstract
This study examined the contribution of cysteine-cysteinyl chemokine receptor 6 (CCR6) to the innate pulmonary antimycobacterial immune response. Using a mouse model of Mycobacterium bovis BCG airway infection, we detected maximal induction of the CCR6 agonist CCL20 in lungs at 1 week after infection. Infected CCR6 knockout (CCR6-/-) mice displayed an early impairment of bacterial clearance, but ultimately eliminated the attenuated organisms with the onset of adaptive immunity. Flow-cytometric analyses of bronchoalveolar lavages and dispersed lungs revealed a 60% reduction in TCR-α/β+ T cells in airways but no compromise of TCR-γ/δ+ T cells. The subset of CD1d-restricted, CD8-TCR-α/β+ natural killer cells, which mediate innate mycobacterial resistance, was profoundly reduced (90%). Analysis of the adaptive response using ovalbumin-specific transgenic TCR T cell (OT-II) transfer combined with infection with recombinant M. bovis BCG producing ovalbumin peptide indicated no impairment of adaptive T cell activation in CCR6-/- mice. There was also no impairment of the induction of cytokine-producing cells in draining lymphoid tissue of CCR6-/- mice. Taken together, our findings indicate that CCR6 is not required for induction of the adaptive antimycobacterial response, but is likely critical to airway compartment mobilization of TCR-α/β+CCR6+ innate and adaptive effector T cells.
Collapse
Affiliation(s)
- Valerie R Stolberg
- Department of Pathology, University of Michigan Medical School Ann Arbor, Ann Arbor, Mich., USA
| | | | | | | | | | | |
Collapse
|
44
|
CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol 2010; 84:11614-23. [PMID: 20810727 DOI: 10.1128/jvi.01053-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD1d and CD1d-restricted natural killer T (NKT) cells serve as a natural bridge between innate and adaptive immune responses to microbes. CD1d downregulation is utilized by a variety of microbes to evade immune detection. We demonstrate here that CD1d is downregulated in human papillomavirus (HPV)-positive cells in vivo and in vitro. CD1d immunoreactivity was strong in HPV-negative normal cervical epithelium but absent in HPV16-positive CIN1 and HPV6-positive condyloma lesions. We used two cell lines for in vitro assay; one was stably CD1d-transfected cells established from an HPV-negative cervical cancer cell line, C33A (C33A/CD1d), and the other was normal human vaginal keratinocyte bearing endogenous CD1d (Vag). Flow cytometry revealed that cell surface CD1d was downregulated in both C33A/CD1d and Vag cells stably transfected with HPV6 E5 and HPV16 E5. Although the steady-state levels of CD1d protein decreased in both E5-expressing cell lines compared to empty retrovirus-infected cells, CD1d mRNA levels were not affected. Confocal microscopy demonstrated that residual CD1d was not trafficked to the E5-expressing cell surface but colocalized with E5 near the endoplasmic reticulum (ER). In the ER, E5 interacted with calnexin, an ER chaperone known to mediate folding of CD1d. CD1d protein levels were rescued by the proteasome inhibitor, MG132, indicating a role for proteasome-mediated degradation in HPV-associated CD1d downregulation. Taken together, our data suggest that E5 targets CD1d to the cytosolic proteolytic pathway by inhibiting calnexin-related CD1d trafficking. Finally, CD1d-mediated production of interleukin-12 from the C33A/CD1d cells was abrogated in both E5-expressing cell lines. Decreased CD1d expression in the presence of HPV E5 may help HPV-infected cells evade protective immunological surveillance.
Collapse
|
45
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
46
|
Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YYL, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 2010; 8:e1000407. [PMID: 20613858 PMCID: PMC2893946 DOI: 10.1371/journal.pbio.1000407] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/18/2010] [Indexed: 12/11/2022] Open
Abstract
A first indication of the biological role of mucosal associated invariant T (MAIT) cells reveals that this discrete T cell subset is broadly reactive to bacterial infection. In particular MAIT cells recognize Mycobacterium tuberculosis-infected lung airway epithelial cells via the most evolutionarily conserved major histocompatibility molecule. Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection. About one-third of the world's population is infected with Mycobacterium tuberculosis (Mtb), yet thanks to a robust immune response most infected people remain healthy. CD8 T cells are unique in detecting intracellular infections. Surprisingly, Mtb-reactive CD8 T cells are found in humans with no prior exposure to Mtb. We show that mucosal associated invariant T (MAIT) cells, which have no previously known in vivo function, make up a proportion of these Mtb-reactive CD8 T cells and detect Mtb-infected cells via a specific major histocompatibility molecule called MHC-related molecule 1, which is evolutionarily conserved among mammals. Mtb-reactive MAIT cells are enriched in lung and detect primary Mtb-infected lung epithelial cells from the airway where initial exposure to Mtb occurs. We go on to show that MAIT cells are not specific for Mtb since they can detect cells infected with a variety of other bacteria. Curiously, Mtb-reactive MAIT cells are absent in the blood of individuals with active tuberculosis. We postulate that MAIT cells are innate detectors of bacterial infection poised to play a role in control of intracellular infection.
Collapse
Affiliation(s)
- Marielle C. Gold
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- * E-mail: (MCG), (DML)
| | - Stefania Cerri
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Susan Smyk-Pearson
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Todd M. Vogt
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jacob Delepine
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Ervina Winata
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gwendolyn M. Swarbrick
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wei-Jen Chua
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yik Y. L. Yu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Olivier Lantz
- Laboratoire d'Immunologie et Unité, Inserm 932, Institut Curie Paris, France
| | - Matthew S. Cook
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Megan D. Null
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melanie J. Harriff
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Deborah A. Lewinsohn
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (MCG), (DML)
| |
Collapse
|
47
|
Kiran B, Cagatay T, Clark P, Kosar F, Cagatay P, Yurt S, Suzergoz F, Gurol AO. Can immune parameters be used as predictors to distinguish between pulmonary multidrug-resistant and drug-sensitive tuberculosis? Arch Med Sci 2010; 6:77-82. [PMID: 22371724 PMCID: PMC3278947 DOI: 10.5114/aoms.2010.13511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/15/2009] [Accepted: 07/01/2009] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Despite the development and wide implementation of Directly Observed Therapy Strategies (DOTS), multidrug-resistant tuberculosis (MDR-TB) remains a serious global health threat. In this study, the role of host immune response in patients with MDR-TB is investigated and compared with that of patients with smear-positive drug-sensitive tuberculosis (SP-TB). MATERIAL AND METHODS 27 patients with SP-TB, 20 patients with MDR-TB, and 20 healthy controls were included in the study. Immune parameters were determined by flow cytometry using monoclonal antibodies in order to compare the percentage values of these markers in the two study groups and the control group. RESULTS The levels of lymphocyte subgroups in the gate of CD45(+)/CD14(-) lymphocyte: CD45(+), CD3(+), CD4(+), NK, CD3/HLA-DR, CD 95(+) cells were significantly lower; by contrast CD23(+), CD25(+), CD19(+), CD4(+)/CD8(+), HLA-DR cells were found to be lower, but not significantly so in patients with MDR-TB, compared to levels in patients in the SP-TB and control groups. Besides these findings, the levels of NKT cells and (γ)δ TCR(+) cells were significantly higher in the MDR-TB than in the healthy control and SP-TB group. CONCLUSIONS The lower levels of CD3/ HLA-DR, CD4 (+), Fas (+), and NK, and the higher level of NKT together with (γ)δ T cells in patients with MDR-TB compared to those in SP-TB may indicate a profound immune suppression in MDR-TB patients and thereby may denote an accumulation in the bacterial load. Our findings may shed light on the pathogenesis and prognosis of MDR tuberculosis, and may point towards the use of flow cytometry findings as an aid to early diagnosis in MDR-TB patients.
Collapse
Affiliation(s)
- Bayram Kiran
- Department of Microbiology, Virology and Basic Immunology Division, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Tulin Cagatay
- Department of Pulmonary Diseases, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Philip Clark
- Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Filiz Kosar
- Yedikule Chest Diseases and Chest Surgery Education and Research Hospital, Istanbul, Turkey
| | - Penbe Cagatay
- Cerrahpasa Medical Faculty, Department of Biostatistics, Istanbul University, Istanbul, Turkey
| | - Sibel Yurt
- Yedikule Chest Diseases and Chest Surgery Education and Research Hospital, Istanbul, Turkey
| | - Faruk Suzergoz
- Division of Biology, Science-Art Faculty, Harran University, Sanliurfa, Turkey
| | - Ali Osman Gurol
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
48
|
Driver JP, Scheuplein F, Chen YG, Grier AE, Wilson SB, Serreze DV. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 2010; 59:423-32. [PMID: 19903740 PMCID: PMC2809954 DOI: 10.2337/db09-1116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. RESEARCH DESIGN AND METHODS We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. RESULTS Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. CONCLUSIONS This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.
Collapse
Affiliation(s)
| | | | | | | | - S. Brian Wilson
- Diabetes Research Laboratories, Massachusetts General Hospital, Cambridge, Massachusetts
| | - David V. Serreze
- The Jackson Laboratory, Bar Harbor, Maine
- Corresponding author: David V. Serreze,
| |
Collapse
|
49
|
Yue SC, Nowak M, Shaulov-Kask A, Wang R, Yue D, Balk SP, Exley MA. Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 184:268-76. [PMID: 19949077 DOI: 10.4049/jimmunol.0800924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD1d-restricted NKT cells rapidly stimulate innate and adaptive immunity through production of Th1 and/or Th2 cytokines and induction of CD1d(+) APC maturation. However, therapeutic exploitation of NKT cells has been hampered by their paucity and defects in human disease. NKT cell-APC interactions can be modeled by direct stimulation of human APCs through CD1d in vitro. We have now found that direct ligation with multiple CD1d mAbs also stimulated bioactive IL-12 release from CD1d(+) but not CD1d knockout murine splenocytes in vitro. Moreover, all of the CD1d mAbs tested also induced IL-12 as well as both IFN-gamma and IFN-alpha in vivo from CD1d(+) but not CD1d-deficient recipients. Unlike IFN-gamma, CD1d-induced IFN-alpha was at least partially dependent on invariant NKT cells. Optimal resistance to infection with picornavirus encephalomyocarditis virus is known to require CD1d-dependent APC IL-12-induced IFN-gamma as well as IFN-alpha. CD1d ligation in vivo enhanced systemic IL-12, IFN-gamma, and IFN-alpha and was protective against infection by encephalomyocarditis virus, suggesting an alternative interpretation for previous results involving CD1d "blocking" in other systems. Such protective responses, including elevations in Th1 cytokines, were also seen with CD1d F(ab')(2)s in vivo, whereas an IgM mAb (with presumably minimal tissue penetration) was comparably effective at protection in vivo as well as cytokine induction both in vivo and in vitro. Although presumably acting immediately "downstream," CD1d mAbs were protective later during infection than the invariant NKT cell agonist alpha-galactosylceramide. These data indicate that NKT cells can be bypassed with CD1d-mediated induction of robust Th1 immunity, which may have therapeutic potential both directly and as an adjuvant.
Collapse
Affiliation(s)
- Simon C Yue
- Cancer Biology Program, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 2009; 22:79-86. [PMID: 19948416 DOI: 10.1016/j.smim.2009.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, gammadelta T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.
Collapse
|