1
|
Gola C, Licenziato L, Accornero P, Iussich S, Morello E, Buracco P, Modesto P, Aresu L, De Maria R. The mitotic regulator polo-like kinase 1 as a potential therapeutic target for c-Myc-overexpressing canine osteosarcomas. Vet Comp Oncol 2022; 20:890-900. [PMID: 36054794 PMCID: PMC9804590 DOI: 10.1111/vco.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in dogs, characterized by a locally aggressive and highly metastatic behaviour. Despite the current standards of care, most dogs succumb to the disease, indicating the need for novel treatment strategies. Polo-like kinase 1 (PLK1) is dysregulated in a variety of human cancer types, including osteosarcoma, and induces c-Myc accumulation. The crosstalk between the two molecules coordinates cell proliferation, differentiation, self-renewal and apoptosis. Therefore, PLK1 has recently emerged as a potential therapeutic target, mainly in tumours overexpressing c-Myc. BI 2536 is a selective PLK1 inhibitor promoting mitotic arrest and apoptosis in a variety of cancer cells. This research aimed at evaluating PLK1 and c-Myc protein expression in 53 appendicular canine osteosarcoma (cOSA) samples and the in vitro effects of BI 2536 on a c-Myc and PLK1-overexpressing cOSA cell line (D17). PLK1 and c-Myc expression in cOSA samples showed no correlation with clinicopathological data. However, c-Myc overexpression was associated with a significantly reduced overall survival (p = .003). Western Blot and RT-qPCR assays revealed that D17 expressed high protein and transcript levels of both PLK1 and MYC. When treated with BI 2536 (range 2.5-15 nM) for 24 h, D17 showed a substantial decrease in cell growth, inducing apoptosis and G2 /M cell cycle arrest. Interestingly, under BI 2536 treatment, D17 showed decreased c-Myc protein levels. Consistent with human OSA, these preliminary data outline the prognostic value of c-Myc expression in cOSA and highlight the potential role of PLK1 as an antiproliferative therapeutic target for tumours overexpressing c-Myc.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Luca Licenziato
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Accornero
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Selina Iussich
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Emanuela Morello
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paolo Buracco
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | - Paola Modesto
- SC Diagnostica SpecialisticaIstituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'AostaTurinTOItaly
| | - Luca Aresu
- Department of Veterinary SciencesUniversity of TurinGrugliascoTOItaly
| | | |
Collapse
|
2
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
3
|
Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun 2019; 10:3779. [PMID: 31439829 PMCID: PMC6706577 DOI: 10.1038/s41467-019-11560-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Evolution is proposed to result, in part, from acquisition of new developmental programs. One such example is the appearance of the micromeres in a sea urchin that form by an asymmetric cell division at the 4th embryonic cleavage and function as a major signaling center in the embryo. Micromeres are not present in other echinoderms and thus are considered as a derived feature, yet its acquisition mechanism is unknown. Here, we report that the polarity factor AGS and its associated proteins are responsible for micromere formation. Evolutionary modifications of AGS protein seem to have provided the cortical recruitment and binding of AGS to the vegetal cortex, contributing to formation of micromeres in the sea urchins. Indeed, introduction of sea urchin AGS into the sea star embryo induces asymmetric cell divisions, suggesting that the molecular evolution of AGS protein is key in the transition of echinoderms to micromere formation and the current developmental style of sea urchins not seen in other echinoderms.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Shakil S, Baig MH, Tabrez S, Rizvi SMD, Zaidi SK, Ashraf GM, Ansari SA, Khan AAP, Al-Qahtani MH, Abuzenadah AM, Chaudhary AG. Molecular and enzoinformatics perspectives of targeting Polo-like kinase 1 in cancer therapy. Semin Cancer Biol 2019; 56:47-55. [PMID: 29122685 DOI: 10.1016/j.semcancer.2017.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/22/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a disease that has been the focus of scientific research and discovery and continues to remain so. Polo-like kinases (PLKs) are basically serine/threonine kinase enzymes that control cell cycle from yeast to humans. PLK-1 stands for 'Polo-like kinase-1'. It is the most investigated protein among PLKs. It is crucial for intracellular processes, hence a 'hot' anticancer drug-target. Accelerating innovations in Enzoinformatics and associated molecular visualization tools have made it possible to literally perform a 'molecular level walk' traversing through and observing the minutest contours of the active site of relevant enzymes. PLK-1 as a protein consists of a kinase domain at the protein N-terminal and a Polo Box Domain (PBD) at the C-terminal connected by a short inter-domain linking region. PBD has two Polo-Boxes. PBD of PLK-1 gives the impression of "a small clamp sandwiched between two clips", where the two Polo Boxes are the 'clips' and the 'phosphopeptide' is the small 'clamp'. Broadly, two major sites of PLK-1 can be potential targets: one is the adenosine-5'-triphosphate (ATP)-binding site in the kinase domain and the other is PBD (more preferred due to specificity). Targeting PLK-1 RNA and the interaction of PLK-1 with a key binding partner can also be approached. However, the list of potent small molecule inhibitors targeting the PBD site of PLK-1 is still not long enough and needs due input from the scientific community. Recently, eminent scientists have proposed targeting the 'Y'-shaped pocket of PLK-1-PBD and encouraged design of ligands that should be able to concurrently bind to two or more modules of the 'Y' pocket. Hence, it is suggested that during molecular interaction analyses, particular focus should be kept on the moiety in each ligand/drug candidate which directly interacts with the amino acid residue(s) that belong(s) to one of the three binding modules which together create this Y-shaped cavity. This obviously includes (but it is not limited to) the 'shallow cleft'-forming residues i.e. Trp414, H538 and K540, as significance of these binding residues has been consistently highlighted by many studies. The present article attempts to give a concise yet critically updated overview of targeting PLK-1 for cancer therapy.
Collapse
Affiliation(s)
- Shazi Shakil
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed M Danish Rizvi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Syed K Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shakeel A Ansari
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Schnerch D, Schüler J, Follo M, Felthaus J, Wider D, Klingner K, Greil C, Duyster J, Engelhardt M, Wäsch R. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo. Oncotarget 2017; 8:21153-21166. [PMID: 28416751 PMCID: PMC5400573 DOI: 10.18632/oncotarget.15503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.
Collapse
Affiliation(s)
- Dominik Schnerch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Felthaus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dagmar Wider
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Christine Greil
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier-Hayes L, Green DR, Dorstyn L, Kumar S. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene 2016; 36:2704-2714. [PMID: 27991927 PMCID: PMC5442422 DOI: 10.1038/onc.2016.423] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Caspase-2, one of the most evolutionarily conserved of the caspase family, has been implicated in maintenance of chromosomal stability and tumour suppression. Caspase-2 deficient (Casp2−/−) mice develop normally but show premature ageing-related traits and when challenged by certain stressors, succumb to enhanced tumour development and aneuploidy. To test how caspase-2 protects against chromosomal instability, we utilized an ex vivo system for aneuploidy where primary splenocytes from Casp2−/− mice were exposed to anti-mitotic drugs and followed up by live cell imaging. Our data show that caspase-2 is required for deleting mitotically aberrant cells. Acute silencing of caspase-2 in cultured human cells recapitulated these results. We further generated Casp2C320S mutant mice to demonstrate that caspase-2 catalytic activity is essential for its function in limiting aneuploidy. Our results provide direct evidence that the apoptotic activity of caspase-2 is necessary for deleting cells with mitotic aberrations to limit aneuploidy.
Collapse
Affiliation(s)
- S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Y Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia.,Departments of Biochemistry and Molecular Pharmacology and Medicine, New York University, New York City, NY, USA
| | - M White
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - P Thomas
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - L Bouchier-Hayes
- Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, TX, USA
| | - D R Green
- Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
7
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Münch C, Dragoi D, Frey AV, Thurig K, Lübbert M, Wäsch R, Bogatyreva L, Hauschke D, Lassmann S, Werner M, May AM. Therapeutic polo-like kinase 1 inhibition results in mitotic arrest and subsequent cell death of blasts in the bone marrow of AML patients and has similar effects in non-neoplastic cell lines. Leuk Res 2015; 39:462-70. [PMID: 25697066 DOI: 10.1016/j.leukres.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 12/14/2022]
Abstract
Polo-like kinase 1 (PLK1) is an important regulator of the cell cycle and is overexpressed in various solid and hematological malignancies. Small molecule inhibitors targeting PLK1, such as BI2536 or BI6727 (Volasertib) are a promising therapeutic approach in such malignancies. Here, we show a loss of specifically localized PLK1 in AML blasts in vivo, accompanied by mitotic arrest with transition into apoptosis, in bone marrow biopsies of AML patients after treatment with BI2536. We verify these results in live cell imaging experiments with the AML cell line HL-60, and demonstrate that non-neoplastic, immortalized lymphoblastoid cells are also sensitive to PLK1 inhibition. It is demonstrated that normal granulopoietic precursors have similar PLK1 expression levels as leukemic blasts. These results are in line with the adverse effects of PLK1 inhibition and underline the great potential of PLK1 inhibitors in the treatment of AML.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antimitotic Agents/pharmacology
- Apoptosis/drug effects
- Blast Crisis/drug therapy
- Blast Crisis/enzymology
- Blast Crisis/pathology
- Blotting, Western
- Bone Marrow/drug effects
- Bone Marrow/enzymology
- Bone Marrow/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Male
- Mitosis/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pteridines/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Claudia Münch
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Diana Dragoi
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Anna-Verena Frey
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Katja Thurig
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology and Oncology, University Medical Center, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Lioudmila Bogatyreva
- Institute of Medical Biometry and Medical Informatics, University Medical Center, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Dieter Hauschke
- Institute of Medical Biometry and Medical Informatics, University Medical Center, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Silke Lassmann
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Martin Werner
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annette M May
- Institute of Clinical Pathology, Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106 Freiburg, Germany.
| |
Collapse
|
9
|
Wang NN, Li ZH, Zhao H, Tao YF, Xu LX, Lu J, Cao L, Du XJ, Sun LC, Zhao WL, Xiao PF, Fang F, Su GH, Li YH, Li G, Li YP, Xu YY, Zhou HT, Wu Y, Jin MF, Liu L, Ni J, Wang J, Hu SY, Zhu XM, Feng X, Pan J. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci 2015; 16:1266-1292. [PMID: 25574601 PMCID: PMC4307303 DOI: 10.3390/ijms16011266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Fang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lan Cao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese People's Liberation Army (PLA), Yinchuan 750000, China.
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Guang-Hao Su
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Hong Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Gang Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi-Ping Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yun-Yun Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Hui-Ting Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi Wu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Mei-Fang Jin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lin Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing 210000, China.
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xue-Ming Zhu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xing Feng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| |
Collapse
|
10
|
STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells. PLoS One 2014; 9:e93303. [PMID: 24667656 PMCID: PMC3965560 DOI: 10.1371/journal.pone.0093303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
Serine/threonine kinase 31 (STK31) is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.
Collapse
|
11
|
“Omics” in the study of the major parasitic diseases malaria and schistosomiasis. INFECTION GENETICS AND EVOLUTION 2013; 19:258-73. [DOI: 10.1016/j.meegid.2013.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/21/2023]
|
12
|
Pezuk JA, Brassesco MS, Morales AG, de Oliveira JC, de Paula Queiroz RG, Machado HR, Carlotti CG, Neder L, Scrideli CA, Tone LG. Polo-like kinase 1 inhibition causes decreased proliferation by cell cycle arrest, leading to cell death in glioblastoma. Cancer Gene Ther 2013; 20:499-506. [PMID: 23887645 DOI: 10.1038/cgt.2013.46] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 02/02/2023]
Abstract
Glioblastoma (GBM) is one of the most aggressive central nervous system tumors with a patient's median survival of <1 year. Polo-like kinases (PLKs) are a family of serine/threonine kinases that have key roles in cell cycle control and DNA-damage response. We evaluated PLK1, 2, 3 and 4 gene expression in 8 GBM cell lines and 17 tumor samples, and analyzed the effect of the PLK1 inhibition on SF188 and T98G GBM cell lines and 13 primary cultures. Our data showed PLK1 overexpression and a variable altered expression of PLK2, 3 and 4 genes in GBM tumor samples and cell lines. Treatments with nanomolar concentrations of BI 2536, BI 6727, GW843682X or GSK461364 caused a significant decrease in GBM cells proliferation. Colony formation was also found to be inhibited (P<0.05), whereas apoptosis rate and mitotic index were significantly increased (P<0.05) after PLK1 inhibition in both GBM cell lines. Cell cycle analysis showed an arrest at G2 (P<0.05) and cell invasion was also decreased after PLK1 inhibition. Furthermore, simultaneous combinations of BI 2536 and temozolomide produced synergistic effects for both the cell lines after 48 h of treatment. Our findings suggest that PLK1 might be a promising target for the treatment of GBMs.
Collapse
Affiliation(s)
- J A Pezuk
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei. Toxicol Appl Pharmacol 2013; 269:1-7. [DOI: 10.1016/j.taap.2013.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/18/2022]
|
14
|
Triscott J, Lee C, Hu K, Fotovati A, Berns R, Pambid M, Luk M, Kast RE, Kong E, Toyota E, Yip S, Toyota B, Dunn SE. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget 2013; 3:1112-23. [PMID: 23047041 PMCID: PMC3717961 DOI: 10.18632/oncotarget.604] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors. These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM.
Collapse
Affiliation(s)
- Joanna Triscott
- Department of Pediatrics, University of British Columbia, Vancouver, BC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang YC, Wu CH, Yen TC, Ouyang P. Centrosomal protein 55 (Cep55) stability is negatively regulated by p53 protein through Polo-like kinase 1 (Plk1). J Biol Chem 2012; 287:4376-85. [PMID: 22184120 PMCID: PMC3281710 DOI: 10.1074/jbc.m111.289108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 12/06/2011] [Indexed: 01/31/2023] Open
Abstract
Centrosomal protein 55 (Cep55), which is localized to the centrosome in interphase cells and recruited to the midbody during cytokinesis, is a regulator required for the completion of cell abscission. Up-regulation of Cep55 and inactivation of p53 occur in the majority of human cancers, raising the possibility of a link between these two genes. In this study we evaluated the role of p53 in Cep55 regulation. We demonstrated that Cep55 expression levels are well correlated with cancer cell growth rate and that p53 is able to negatively regulate Cep55 protein and promoter activity. Down-regulation of expression of Cep55 was accompanied by repression of polo-like kinase 1 (Plk1) levels due to p53 induction. Overexpression of Plk1 and knockdown of p53 expression both enhanced the post-translational protein stability of Cep55. BI 2356, a selective Plk1 inhibitor, however, prevented Cep55 accumulation in p53 knockdown cells while persistently keeping Plk1 levels elevated. Our results, therefore, indicate the existence of a p53-Plk1-Cep55 axis in which p53 negatively regulates expression of Cep55, through Plk1 which, in turn, is a positive regulator of Cep55 protein stability.
Collapse
Affiliation(s)
- Yu-Chen Chang
- From the Graduate Institute of Clinical Medical Sciences, College of Medicine
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, and
| | - Chu-Hen Wu
- the Department of Anatomy
- Molecular Medicine Research Center, and
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, and
| | - Pin Ouyang
- the Department of Anatomy
- Molecular Medicine Research Center, and
- Transgenic Mouse Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan 333
| |
Collapse
|
16
|
Abstract
The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
17
|
Jalili A, Moser A, Pashenkov M, Wagner C, Pathria G, Borgdorff V, Gschaider M, Stingl G, Ramaswamy S, Wagner SN. Polo-like kinase 1 is a potential therapeutic target in human melanoma. J Invest Dermatol 2011; 131:1886-95. [PMID: 21654832 DOI: 10.1038/jid.2011.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exploration of the human melanoma cell-cycle pathway can lead to identification of new therapeutic targets. By gene set enrichment analysis, we identified the cell-cycle pathway and its member polo-like kinase 1 (Plk-1) to be significantly overexpressed in primary melanomas and in melanoma metastases. In vitro expression of Plk-1 was peaked at the G2/M phase of the cell cycle. Plk-1 knockdown/inhibition led to induction of apoptosis, which was caspase-3/8-dependent and p53-independent, and involved BID and Bcl-2 proteins. Comparative genomic hybridization/single-nucleotide polymorphism arrays showed no genetic alteration in the Plk-1 locus. Previous suggestions and significant enrichment of the mitogen-activated protein kinase (MAPK) signaling pathway pointed to potential regulation of Plk-1 by MAPK signaling. Inhibition of this pathway resulted in decreased Plk-1 expression as a consequence of G1 cell-cycle arrest rather than direct regulation of Plk-1. Inhibition of MAPK and Plk-1 had an additive effect on reduced cell viability. This study shows that in human melanoma, Plk-1 expression is dynamically regulated during the cell cycle, knockdown of Plk-1 leads to apoptotic cell death, and that a combination of Plk-1 and MAPK inhibition has an additive effect on melanoma cell viability. We conclude that combined inhibition of Plk-1 and MAPK could be a potentially attractive strategy in melanoma therapy.
Collapse
Affiliation(s)
- Ahmad Jalili
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND, Decarolis PL, Khanin R, O'Connor R, Mihailovic A, Taylor BS, Sheridan R, Gimble JM, Viale A, Crago A, Antonescu CR, Sander C, Tuschl T, Singer S. Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 2011; 71:5659-69. [PMID: 21693658 DOI: 10.1158/0008-5472.can-11-0890] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Liposarcoma remains the most common mesenchymal cancer, with a mortality rate of 60% among patients with this disease. To address the present lack of therapeutic options, we embarked upon a study of microRNA (miRNA) expression alterations associated with liposarcomagenesis with the goal of exploiting differentially expressed miRNAs and the gene products they regulate as potential therapeutic targets. MicroRNA expression was profiled in samples of normal adipose tissue, well-differentiated liposarcoma, and dedifferentiated liposarcoma by both deep sequencing of small RNA libraries and hybridization-based Agilent microarrays. The expression profiles discriminated liposarcoma from normal adipose tissue and well differentiated from dedifferentiated disease. We defined over 40 miRNAs that were dysregulated in dedifferentiated liposarcomas in both the sequencing and the microarray analysis. The upregulated miRNAs included two cancer-associated species (miR-21 and miR-26a), and the downregulated miRNAs included two species that were highly abundant in adipose tissue (miR-143 and miR-145). Restoring miR-143 expression in dedifferentiated liposarcoma cells inhibited proliferation, induced apoptosis, and decreased expression of BCL2, topoisomerase 2A, protein regulator of cytokinesis 1 (PRC1), and polo-like kinase 1 (PLK1). The downregulation of PRC1 and its docking partner PLK1 suggests that miR-143 inhibits cytokinesis in these cells. In support of this idea, treatment with a PLK1 inhibitor potently induced G(2)-M growth arrest and apoptosis in liposarcoma cells. Taken together, our findings suggest that miR-143 re-expression vectors or selective agents directed at miR-143 or its targets may have therapeutic value in dedifferentiated liposarcoma.
Collapse
Affiliation(s)
- Stacy Ugras
- Department of Surgery, Sarcoma Biology Laboratory, Sarcoma Disease Management Program, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ackermann S, Goeser F, Schulte JH, Schramm A, Ehemann V, Hero B, Eggert A, Berthold F, Fischer M. Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma. Clin Cancer Res 2011; 17:731-41. [PMID: 21169242 DOI: 10.1158/1078-0432.ccr-10-1129] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE High-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. The Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and is a target of the novel small-molecule inhibitor BI 2536, which has shown promising anticancer activity in adult malignancies. Here, we investigated the effect of BI 2536 on neuroblastoma cells in vitro and in vivo to explore PLK1 as a potential target in high-risk neuroblastoma therapy. EXPERIMENTAL DESIGN PLK1 transcript levels were analyzed by microarrays in 476 primary neuroblastoma specimens, and correlation with prognostic markers and patient outcome was examined. To explore the effect of PLK1 inhibition on neuroblastoma cells, 7 cell lines were treated with BI 2536 and changes in growth properties were determined. Furthermore, nude mice with IMR-32 and SK-N-AS xenografts were treated with BI 2536. RESULTS PLK1 is highly expressed in unfavorable neuroblastoma and in neuroblastoma cell lines. Expression of PLK1 is associated with unfavorable prognostic markers such as stage 4, age >18 months, MYCN amplification, unfavorable gene expression-based classification, and adverse patient outcome (P < 0.001 each). On treatment with nanomolar doses of BI 2536, all neuroblastoma cell lines analyzed showed significantly reduced proliferation, cell cycle arrest, and cell death. Moreover, BI 2536 abrogated growth of neuroblastoma xenografts in nude mice. CONCLUSIONS Elevated PLK1 expression is significantly associated with high-risk neuroblastoma and unfavorable patient outcome. Inhibition of PLK1 using BI 2536 exhibits strong antitumor activity on human neuroblastoma cells in vitro and in vivo, opening encouraging new perspectives for the treatment of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Sandra Ackermann
- Children's Hospital, Department of Pediatric Oncology and Hematology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dissous C, Grevelding CG. Piggy-backing the concept of cancer drugs for schistosomiasis treatment: a tangible perspective? Trends Parasitol 2011; 27:59-66. [DOI: 10.1016/j.pt.2010.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|