1
|
Elman I. Treatments for weight gain in schizophrenia. Curr Opin Psychiatry 2025; 38:159-168. [PMID: 40009761 DOI: 10.1097/yco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Obesity and related metabolic disorders are extremely common in psychiatric patients, particularly in those with schizophrenia. Elucidating this link's neurobiology may inform clinicians and researchers of rational therapeutic approaches necessary to optimize clinical outcomes. RECENT FINDINGS Current literature highlights the pivotal role of the inflammation-oxidative stress-insulin resistance loop in the pathophysiology of both metabolic and neuropsychiatric disorders. The concept of 'diabetophrenia' is put forward to highlight the overlapping neurobiological mechanisms underlying metabolic dysfunction and schizophrenia symptoms. Innovative treatments, including the combination of xanomeline with trospium and incretin-based medicines, demonstrate encouraging potential in addressing such complex health challenges. SUMMARY The nuanced dynamics of chronic inflammation and psychiatric symptomatology underscore the significance of addressing both metabolic and mental health factors in a cohesive fashion while considering unique psychosocial contexts, dietary preferences, and lifestyle choices. A multidisciplinary strategy is essential for incorporating counseling, dietary interventions, behavioral therapies, and pharmacotherapy into the management of schizophrenia. The ensuing enhanced collaboration among healthcare professionals may render obsolete the prevailing siloed conceptualizations of mental disorders, opening new vistas for generating synergistic insights into the mind-body systems and leading to improved health and quality of life for patients with schizophrenia and other psychiatric conditions.
Collapse
Affiliation(s)
- Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Sedghi Aminabad N, Saeedi Y, Adiban J, Nemati M, Shaterabadi D, Najafi F, Rahbarghazi R, Talebi M, Zarebkohan A. Discovery of a Novel Dual Targeting Peptide for Human Glioma: From In Silico Simulation to Acting as Targeting Ligand. Adv Pharm Bull 2024; 14:453-468. [PMID: 39206396 PMCID: PMC11347739 DOI: 10.34172/apb.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/14/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Receptor-mediated transcytosis (RMT) is a more specific, highly efficient, and reliable approach to crossing the blood-brain-barrier (BBB) and releasing the therapeutic cargos into the brain parenchyma. Methods Here, we introduced and characterized a human/mouse-specific novel leptin-derived peptide using in silico, in vitro and in vivo experiments. Results Based on the bioinformatics analysis and molecular dynamics (MD) simulation, a 14 amino acid peptide sequence (LDP 14) was introduced and its interaction with leptin-receptor (ObR) was analyzed in comparison with an well known leptin-derived peptide, Lep 30. MD simulation data revealed a significant stable interaction between ligand binding domains (LBD) of ObR with LDP 14. Analyses demonstrated suitable cellular uptake of LDP 14 alone and its derivatives (LDP 14-modified G4 PAMAM dendrimer and LDP 14-modified G4 PAMAM/pEGFP-N1 plasmid complexes) via ObR, energy and species dependent manner (preferred uptake by human/mouse cell lines compared to rat cell line). Importantly, our findings illustrated that the entry of LDP 14-modified dendrimers in hBCEC-D3 cells not only is not affected by protein corona (PC) formation, as the main reason for diminishing the cellular uptake, but also PC per se can enhance uptake rate. Finally, fluorescein labeled LDP 14-modified G4 PAMAM dendrimers efficiently accumulated in the mice brain with lower biodistribution in other organs, in our in vivo study. Conclusion LDP 14 introduced as a novel and highly efficient ligand, which can be used for drugs/genes delivery to brain tissue in different central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Saeedi
- Department of Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Jamal Adiban
- Ministry of Health and Medical Education, Tehran, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Gameiro A, Nascimento C, Urbano AC, Correia J, Ferreira F. Serum and Tissue Expression Levels of Leptin and Leptin Receptor Are Putative Markers of Specific Feline Mammary Carcinoma Subtypes. Front Vet Sci 2021; 8:625147. [PMID: 33644151 PMCID: PMC7902695 DOI: 10.3389/fvets.2021.625147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Obesity is an established risk factor for breast cancer in post-menopausal women, being associated with elevated serum levels of leptin. Although overweight is a common condition in cat, the role of leptin and its receptor in feline mammary carcinoma remains unsettled. In this study, serum leptin and leptin receptor (ObR) levels were investigated in 58 cats with mammary carcinoma and compared with those of healthy animals, as were the expression levels of leptin and ObR in tumor tissues. The results showed that the Free Leptin Index is significantly decreased in cats with mammary carcinoma (p = 0.0006), particularly in those with luminal B and HER2-positive tumors, and that these animals also present significantly lower serum leptin levels (p < 0.0001 and p < 0.005, respectively). Interestingly, ulcerating tumors (p = 0.0005) and shorter disease-free survival (p = 0.0217) were associated to serum leptin levels above 4.17 pg/mL. In contrast, elevated serum ObR levels were found in all cats with mammary carcinoma (p < 0.0001), with levels above 16.89 ng/mL being associated with smaller tumors (p = 0.0118), estrogen receptor negative status (p = 0.0291) and increased serum levels of CTLA-4 (p = 0.0056), TNF-α (p = 0.0025), PD-1 (p = 0.0023), and PD-L1 (p = 0.0002). In tumor samples, leptin is overexpressed in luminal B and triple-negative carcinomas (p = 0.0046), whereas ObR is found to be overexpressed in luminal B tumors (p = 0.0425). Altogether, our results support the hypothesis that serum levels of leptin and ObR can be used as biomarkers of specific feline mammary carcinoma subtypes, and suggests the use of leptin antagonists as a therapeutic tool, reinforcing the utility of the cat as a cancer model.
Collapse
Affiliation(s)
- Andreia Gameiro
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária da Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Nascimento
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Urbano
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária da Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Correia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária da Universidade de Lisboa, Lisbon, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Martins KR, Haas CS, Rovani MT, Moreira F, Goetten ALF, Ferst JG, Portela VM, Duggavathi R, Bordignon V, Gonçalves PBD, Gasperin BG, Lucia T. Regulation and function of leptin during ovarian follicular development in cows. Anim Reprod Sci 2021; 227:106689. [PMID: 33667875 DOI: 10.1016/j.anireprosci.2021.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Although it is well documented that leptin signals the body nutritional status to the brain, mechanisms of leptin regulation at the ovary are not well understood. This study was conducted to determine whether there was leptin and the receptor for leptin (LEPR) in cattle ovarian follicles and to investigate potential actions of leptin on follicular growth in vivo and on regulation of granulosa cell functions in vitro. There was leptin and LEPR in granulosa and theca cells of dominant and subordinate follicles, with greater immunostaining for leptin in granulosa cells of subordinate follicles. There was a lesser relative abundance of leptin receptor gene-related protein (LEPROT) and of the adiponectin receptors 1 (ADIPOR1) and 2 (ADIPOR2) mRNA transcripts in granulosa cells of subordinate than dominant follicles (P < 0.05). Intrafollicular injection of either 100 or 1000 ng/mL leptin did not affect the diameter and the growth of dominant follicles (P> 0.05). Supplementation of in vitro culture medium with different leptin concentations did not affect (P > 0.05) the relative abundance of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), signal transducer and activator of transcription 3 (STAT3) and X-linked inhibitor of apoptosis protein (XIAP) mRNA transcripts in granulosa cells. These findings indicate that leptin and LEPR are present in the follicular cells of cattle ovaries, but leptin apparently does not have essential functions in steroidogenesis and growth of dominant follicles.
Collapse
Affiliation(s)
- Kauê R Martins
- Centro de Desenvolvimento Tecnológico, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil; ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Cristina S Haas
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Monique T Rovani
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
| | - Fabiana Moreira
- Instituto Federal Catarinense, Araquari, SC, 89245-000, Brazil
| | - André L F Goetten
- Universidade Federal de Santa Catarina, Curitibanos, SC, 89520-000, Brazil
| | - Juliana G Ferst
- Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Valério M Portela
- Universidade Federal de Santa Catarina, Curitibanos, SC, 89520-000, Brazil; Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Paulo B D Gonçalves
- Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, 97501-970, Brazil
| | - Bernardo G Gasperin
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Thomaz Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
6
|
Na ES, Lam DD, Yokosawa E, Adams JM, Olson DP, Low MJ. Decreased sensitivity to the anorectic effects of leptin in mice that lack a Pomc-specific neural enhancer. PLoS One 2021; 15:e0244793. [PMID: 33382813 PMCID: PMC7775064 DOI: 10.1371/journal.pone.0244793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Enhancer redundancy has been postulated to provide a buffer for gene expression against genetic and environmental perturbations. While work in Drosophila has identified functionally overlapping enhancers, work in mammalian models has been limited. Recently, we have identified two partially redundant enhancers, nPE1 and nPE2, that drive proopiomelanocortin gene expression in the hypothalamus. Here we demonstrate that deletion of nPE1 produces mild obesity while knockout of nPE2 has no discernible metabolic phenotypes. Additionally, we show that acute leptin administration has significant effects on nPE1 knockout mice, with food intake and body weight change significantly impacted by peripheral leptin treatment. nPE1 knockout mice became less responsive to leptin treatment over time as percent body weight change increased over 2 week exposure to peripheral leptin. Both Pomc and Agrp mRNA were not differentially affected by chronic leptin treatment however we did see a decrease in Pomc and Agrp mRNA in both nPE1 and nPE2 knockout calorie restricted mice as compared to calorie restricted PBS-treated WT mice. Collectively, these data suggest dynamic regulation of Pomc by nPE1 such that mice with nPE1 knockout become less responsive to the anorectic effects of leptin treatment over time. Our results also support our earlier findings in which nPE2 may only be critical in adult mice that lack nPE1, indicating that these neural enhancers work synergistically to influence metabolism.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy Texas Woman’s University, Denton, Texas, United States of America
- * E-mail: (ESN); (DDL)
| | - Daniel D. Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Neurogenetics, Neurological Clinic and Polyclinic, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- * E-mail: (ESN); (DDL)
| | - Eva Yokosawa
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jessica M. Adams
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David P. Olson
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Malcolm J. Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Mednova IA, Boiko AS, Kornetova EG, Parshukova DA, Semke AV, Bokhan NA, Loonen AJM, Ivanova SA. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020; 10:E410. [PMID: 33066473 PMCID: PMC7602179 DOI: 10.3390/metabo10100410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
The adipokines leptin, adiponectin, tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) might be associated with metabolic syndrome (MetS) in patients with schizophrenia. In the present study, we attempted to confirm the results of previous reports and assessed their MetS-related correlation with body fat composition and biochemical parameters. We measured in 46 patients with schizophrenia and MetS serum levels of adiponectin insulin, leptin, TNF-α and IL-6 and compared these levels to those of patients with schizophrenia without MetS. The MetS patients had significantly increased leptin levels and leptin/adiponectin ratios, as well as decreased adiponectin levels. Leptin levels correlated with several metabolic parameters, both in patients with and without MetS, including body fat percentage, total fat fold, and body mass index (BMI). Patients without abnormal MetS components had lower levels of leptin and leptin/adiponectin ratios compared with patients who had one or two MetS components. Leptin/adiponectin ratios were higher in patients who had four rather than three MetS components. Multiple regression analysis revealed multiple associations for leptin but only one for adiponectin, TNF-α, and IL-6. Our results support an important pathophysiological role for leptin more than adiponectin in patients with schizophrenia with MetS.
Collapse
Affiliation(s)
- Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
- University Hospital, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| | - Daria A. Parshukova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| | - Anton J. M. Loonen
- Unit of PharmacoTherapy, Epidemiology, and Economics, Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, The Netherlands;
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (E.G.K.); (D.A.P.); (A.V.S.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Selvaraj S, Oh JH, Borlak J. An adverse outcome pathway for immune-mediated and allergic hepatitis: a case study with the NSAID diclofenac. Arch Toxicol 2020; 94:2733-2748. [PMID: 32372211 PMCID: PMC7395045 DOI: 10.1007/s00204-020-02767-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022]
Abstract
Many drugs have the potential to cause drug-induced liver injury (DILI); however, underlying mechanisms are diverse. The concept of adverse outcome pathways (AOPs) has become instrumental for risk assessment of drug class effects. We report AOPs specific for immune-mediated and drug hypersensitivity/allergic hepatitis by considering genomic, histo- and clinical pathology data of mice and dogs treated with diclofenac. The findings are relevant for other NSAIDs and drugs undergoing iminoquinone and quinone reactive metabolite formation. We define reactive metabolites catalyzed by CYP monooxygenase and myeloperoxidases of neutrophils and Kupffer cells as well as acyl glucuronides produced by uridine diphosphoglucuronosyl transferase as molecular initiating events (MIE). The reactive metabolites bind to proteins and act as neo-antigen and involve antigen-presenting cells to elicit B- and T-cell responses. Given the diverse immune systems between mice and dogs, six different key events (KEs) at the cellular and up to four KEs at the organ level are defined with mechanistic plausibility for the onset and progression of liver inflammation. With mice, cellular stress response, interferon gamma-, adipocytokine- and chemokine signaling provided a rationale for the AOP of immune-mediated hepatitis. With dogs, an erroneous programming of the innate and adaptive immune response resulted in mast cell activation; their infiltration into liver parenchyma and the shift to M2-polarized Kupffer cells signify allergic hepatitis and the occurrence of granulomas of the liver. Taken together, diclofenac induces divergent immune responses among two important preclinical animal species, and the injury pattern seen among clinical cases confirms the relevance of the developed AOP for immune-mediated hepatitis.
Collapse
Affiliation(s)
- Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Jung-Hwa Oh
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625, Hannover, Germany.,Department of Predictive Toxicology, Korea Institute of Toxicology, Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Endomba FT, Tankeu AT, Nkeck JR, Tochie JN. Leptin and psychiatric illnesses: does leptin play a role in antipsychotic-induced weight gain? Lipids Health Dis 2020; 19:22. [PMID: 32033608 PMCID: PMC7006414 DOI: 10.1186/s12944-020-01203-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is the most prevalent somatic adverse event occurring in patients treated by antipsychotics, especially atypical antipsychotics. It is of particular interest because of its repercussion on cardiovascular morbidity and mortality especially now that the use of second-generation antipsychotics has been extended to other mental health illnesses such as bipolar disorders and major depressive disorder. The mechanism underlying antipsychotics-induced weight gain is still poorly understood despite a significant amount of work on the topic. Recently, there has been an on-going debate of tremendous research interest on the relationship between antipsychotic-induced weight gain and body weight regulatory hormones such as leptin. Given that, researchers have brought to light the question of leptin's role in antipsychotic-induced weight gain. Here we summarize and discuss the existing evidence on the link between leptin and weight gain related to antipsychotic drugs, especially atypical antipsychotics.
Collapse
Affiliation(s)
- Francky Teddy Endomba
- Psychiatry Internship Program, University of Bourgogne, 21000, Dijon, France.,Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurel T Tankeu
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,Aging and Metabolism Laboratory, Department of physiology, University of Lausanne, Lausanne, Switzerland
| | - Jan René Nkeck
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joel Noutakdie Tochie
- Department of Anaesthesiology and Critical Care Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. .,Human Research Education and Networking, Yaoundé, Cameroon.
| |
Collapse
|
10
|
Xu Y, Tan M, Tian X, Zhang J, Zhang J, Chen J, Xu W, Sheng H. Leptin receptor mediates the proliferation and glucose metabolism of pancreatic cancer cells via AKT pathway activation. Mol Med Rep 2019; 21:945-952. [PMID: 31789415 DOI: 10.3892/mmr.2019.10855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/04/2019] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer‑related mortality worldwide. Leptin is an adipokine that is significantly increased in obese patients and that functions in various biological processes of cancer, such as tumor growth and metastasis. However, its role in PC cell proliferation and glucose metabolism and the underlying mechanisms remain unclear. In the present study, in vitro leptin treatment significantly promoted cell proliferation and increased glucose uptake and lactate production of human PC and healthy pancreas cells in a dose‑dependent manner, accompanied by increased expression of the glycolytic enzymes hexokinase II and glucose transporter 1. Furthermore, leptin receptor‑specific short hairpin RNAs were used to silence leptin receptor expression in PC cells, which had the opposite effect to leptin stimulation and decreased AKT phosphorylation. In addition, the effects of leptin stimulation were significantly counteracted by the AKT inhibitor LY294002, whereas the effects of leptin silencing were counteracted by AKT activator insulin‑like growth factor 1. The results of the present study suggested that leptin may contribute to cell proliferation and glucose metabolism of human PC cells, which may be through activation of the AKT pathway.
Collapse
Affiliation(s)
- Yingjie Xu
- Department of Surgery, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Meiyu Tan
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Xiaoyu Tian
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Jun Zhang
- Digestive Disease Research Institute, Shanghai Huashan Hospital, Shanghai 200041, P.R. China
| | - Jie Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Jiajie Chen
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Weihong Xu
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| | - Huiming Sheng
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai 200336, P.R. China
| |
Collapse
|
11
|
Catalina MOS, Redondo PC, Granados MP, Cantonero C, Sanchez-Collado J, Albarran L, Lopez JJ. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem 2019; 26:4119-4144. [PMID: 29210636 DOI: 10.2174/0929867325666171205162248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.
Collapse
Affiliation(s)
| | - Pedro C Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Maria P Granados
- Aldea Moret's Medical Center, Extremadura Health Service, 10195-Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
12
|
Menezes VG, Monte APO, Gouveia BB, Lins TLBG, Donfack NJ, Macedo TJS, Barberino RS, Santos JM, Matos MHT, Batista AM, Wischral A. Effects of leptin on the follicular development and mitochondrial activity of ovine isolated early antral follicles cultured in vitro. Theriogenology 2019; 138:77-83. [PMID: 31302434 DOI: 10.1016/j.theriogenology.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
This study evaluated the effect of leptin on the in vitro culture of isolated sheep early antral follicles. Early antral follicles (300-450 μm) were isolated and cultured for 12 days in tissue culture medium 199 (TCM 199) supplemented with glutamine, hypoxanthine, transferrin, insulin, selenium, ascorbic acid, bovine serum albumin (BSA) and recombinant follicle stimulating hormone (rFSH) (TCM 199+: control medium) or TCM 199+ supplemented with 2 or 10 ng/mL leptin. After culture, oocytes were subjected to in vitro maturation (IVM). The parameters analyzed were morphology, extrusion rate, follicular diameter, growth and fully-grown oocytes (oocytes ≥110 μm) rates. After IVM, reactive oxygen species (ROS) levels, mitochondrial activity, meiotic stages and meiotic resumption rates were also analyzed. After 12 days of culture, the concentration of 2 ng/mL of leptin showed a higher percentage of morphologically normal follicles, fully-grown oocytes (≥110 μm), active mitochondria and meiotic resumption compared to the control medium (TCM 199+; P < 0.05) but did not differ when compared to leptin concentration of 10 ng/mL (P > 0.05). After culturing, no significant differences existed among treatments in terms of the follicle diameter and ROS levels. In conclusion, the addition of 2 ng/mL leptin to the base culture medium is capable of improving follicular survival, oocyte growth, mitochondrial activity and meiotic resumption after the in vitro culture of isolated sheep early antral follicles.
Collapse
Affiliation(s)
- V G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil.
| | - A P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - B B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - T L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - N J Donfack
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - T J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - R S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - J M Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - M H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - A M Batista
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - A Wischral
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
13
|
Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm 2018; 15:597-606. [DOI: 10.1016/j.hrthm.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 12/22/2022]
|
14
|
A meta-analysis of associations of LEPR Q223R and K109R polymorphisms with Type 2 diabetes risk. PLoS One 2018; 13:e0189366. [PMID: 29293570 PMCID: PMC5749718 DOI: 10.1371/journal.pone.0189366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/26/2017] [Indexed: 12/17/2022] Open
Abstract
Background Leptin receptor (LEPR) plays a pivotal role in the control of body weight, energy metabolism, and insulin sensitivity. Various genetic association studies were performed to evaluate associations of LEPR genetic variants with type 2 diabetes (T2D) susceptibility. Methods A comprehensive search was conducted to identify all eligible case-control studies for examining the associations of LEPR single nucleotide polymorphisms (SNPs) Q223R (rs1137101) and K109R (rs1137100) with T2D risk. Odds ratios (OR) and corresponding 95% confidence intervals (CIs) were used to measure the magnitudes of association. Results For Q223R, 13 studies (11 articles) consisting of a total of 4030 cases and 2844 controls, and for K109R 7 studies (7 articles) consisting of 3319 cases and 2465 controls were available. Under an allele model, Q223R was not significantly associated with T2D risk (OR = 1.09, 95% CI: 0.80–1.48, P-value = 0.5989), which was consistent with results obtained under four genotypic models (ranges: ORs 1.08–1.20, 95% CIs: 0.58–2.02 to 0.64–2.26; P-values, 0.3650–0.8177, which all exceeded multiplicity-adjusted α = 0.05/5 = 0.01). In addition, no significant association was found between K109R and T2D risk based on either an allele model (OR = 0.93, 95% CI: 0.85–1.03, P-value = 0.1868) or four genotypic models (ranges: ORs 0.81–0.99, 95% CIs: 0.67–0.86 to 0.97–1.26, P-values, 0.0207–0.8804 which all exceeded multiplicity-adjusted α of 0.01). The magnitudes of association for these two SNPs were not dramatically changed in subgroup analyses by ethnicity or sensitivity analyses. Funnel plot inspections as well as Begg and Mazumdar adjusted rank correlation test and Egger linear regression test did not reveal significant publication biases in main and subgroup analyses. Bioinformatics analysis predicted that both missense SNPs were functionally neutral and benign. Conclusions The present meta-analysis did not detect significant genetic associations between LEPR Q223R and K109R polymorphisms and T2D risk.
Collapse
|
15
|
Lee EH, Oh JH, Selvaraj S, Park SM, Choi MS, Spanel R, Yoon S, Borlak J. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget 2017; 7:14983-5017. [PMID: 26934552 PMCID: PMC4924767 DOI: 10.18632/oncotarget.7698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Diclofenac is a non-steroidal anti-inflammatory drug and its use can be associated with severe adverse reactions, notably myocardial infarction, stroke and drug-induced liver injury (DILI). In pursue of immune-mediated DILI mechanisms an immunogenomic study was carried out. Diclofenac treatment of mice at 30 mg/kg for 3 days caused significant serum ALT and AST elevations, hepatomegaly and degenerative changes including hepatic glycogen depletion, hydropic swelling, cholesterolosis and eosinophilic hepatocytes with one animal presenting subsegmental infarction due to portal vein thrombosis. Furthermore, portal/periportal induction of the rate limiting enzyme in ammonia detoxification, i.e. carbamoyl phosphate synthetase 1 was observed. The performed microarray studies informed on > 600 differential expressed genes of which 35, 37 and 50 coded for inflammation, 51, 44 and 61 for immune and 116, 129 and 169 for stress response, respectively after single and repeated dosing for 3 and 14 days. Bioinformatic analysis defined molecular circuits of hepatic inflammation with the growth hormone (Ghr)− and leptin receptor, the protein-tyrosine-phosphatase, selectin and the suppressor-of-cytokine-signaling (Socs) to function as key nodes in gene regulatory networks. Western blotting confirmed induction of fibronectin and M-CSF to hallmark tissue repair and differentiation of monocytes and macrophages. Transcript expression of the macrophage receptor with collagenous structure increased > 7-fold and immunohistochemistry of CD68 evidenced activation of tissue-resident macrophages. Importantly, diclofenac treatment prompted strong expression of phosphorylated Stat3 amongst individual animals and the associated 8- and 4-fold Soc3 and Il-6 induction reinforced Ghr degradation as evidenced by immunoblotting. Moreover, immunohistochemistry confirmed regulation of master regulatory proteins of diclofenac treated mice to suggest complex pro-and anti-inflammatory reactions in immune-mediated hepatic injury. The findings encourage translational research.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea.,Department of Human and Environmental Toxicology, School of Engineering, Korea University of Science and Technology, Daejeon, 305-343, Republic of Korea
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute for Clinical Pathology, 41747 Viersen, Germany
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea.,Department of Human and Environmental Toxicology, School of Engineering, Korea University of Science and Technology, Daejeon, 305-343, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
16
|
Selvaraj S, Oh JH, Spanel R, Länger F, Han HY, Lee EH, Yoon S, Borlak J. The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury. Oncotarget 2017; 8:107763-107824. [PMID: 29296203 PMCID: PMC5746105 DOI: 10.18632/oncotarget.21201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system.
Collapse
Affiliation(s)
- Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
17
|
Droz BA, Sneed BL, Jackson CV, Zimmerman KM, Michael MD, Emmerson PJ, Coskun T, Peterson RG. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse. PLoS One 2017. [PMID: 28640904 PMCID: PMC5480996 DOI: 10.1371/journal.pone.0179808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity in many current pre-clinical animal models of obesity and diabetes is mediated by monogenic mutations; these are rarely associated with the development of human obesity. A new mouse model, the FATZO mouse, has been developed to provide polygenic obesity and a metabolic pattern of hyperglycemia and hyperinsulinemia, that support the presence of insulin resistance similar to metabolic disease in patients with insulin resistance/type 2 diabetes. The FATZO mouse resulted from a cross of C57BL/6J and AKR/J mice followed by selective inbreeding for obesity, increased insulin and hyperglycemia. Since many clinical studies have established a close link between higher body weight and the development of type 2 diabetes, we investigated whether time to progression to type 2 diabetes or disease severity in FATZO mice was dependent on weight gain in young animals. Our results indicate that lighter animals developed metabolic disturbances much slower and to a lesser magnitude than their heavier counterparts. Consumption of a diet containing high fat, accelerated weight gain in parallel with disease progression. A naturally occurring and significant variation in the body weight of FATZO offspring enables these mice to be identified as low, mid and high body weight groups at a young age. These weight groups remain into adulthood and correspond to slow, medium and accelerated development of type 2 diabetes. Thus, body weight inclusion criteria can optimize the FATZO model for studies of prevention, stabilization or treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Brian A. Droz
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Bria L. Sneed
- Ball State University, Muncie, Indiana, United States of America
| | - Charles V. Jackson
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
| | - Karen M. Zimmerman
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
| | - M. Dodson Michael
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Paul J. Emmerson
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Richard G. Peterson
- Crown Bioscience - Indiana, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide. CONCLUSION Male FATZO mice spontaneously develop significant metabolic disease when compared to normal controls while maintaining hyperglycemia in the presence of high leptin levels and hyperinsulinemia. The disease condition responds to commonly used antidiabetic agents.
Collapse
|
19
|
Wasim M, Awan FR, Najam SS, Khan AR, Khan HN. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem Genet 2016; 54:565-72. [PMID: 27313173 DOI: 10.1007/s10528-016-9751-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/27/2016] [Indexed: 11/25/2022]
Abstract
Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity.
Collapse
Affiliation(s)
- Muhammad Wasim
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Syeda Sadia Najam
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Abdul Rehman Khan
- Obesity and Diabetes Research Laboratory, Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Haq Nawaz Khan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
20
|
Lipsey CC, Harbuzariu A, Daley-Brown D, Gonzalez-Perez RR. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J Methodol 2016; 6:43-55. [PMID: 27019796 PMCID: PMC4804251 DOI: 10.5662/wjm.v6.i1.43] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/11/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers.
Collapse
|
21
|
Wen R, Hu S, Xiao Q, Han C, Gan C, Gou H, Liu H, Li L, Xu H, He H, Wang J. Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol 2015; 149:70-9. [PMID: 25576904 DOI: 10.1016/j.jsbmb.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 01/30/2023]
Abstract
Leptin was known as a pivotal regulator for the control of food intake and energy expenditure. However, leptin has also been found to be involved in the regulation of female reproductive system through interactions with pathways in the hypothalamic-hypophyseal axis and direct action at the ovarian level. In the present study, granulosa cells from goose ovarian preovulatory (F1-F3) follicles were cultured with leptin (0, 1, 10 or 100ng/ml). The proliferative and anti-apoptotic actions of leptin in granulosa cells were revealed by CCK-8, BrdU and TUNEL assays. Quantitative real-time PCR and Western blot analyses further indicated that leptin treatment led to increased expression of cyclin D1, cyclin D2, cyclin D3 and bcl-2, and decreased expression of p21 and caspase-3. The effects were involved in the activation of the PI3K/Akt/mTOR signaling pathway, as leptin treatment enhanced the expression of PI3K, Akt1, Akt2, Raptor, mTOR, S6K and p-S6K. Moreover, blockade of the PI3K/Akt/mTOR pathway attenuated the influences of leptin on proliferation and apoptosis of granulosa cells, considering that activated factors by leptin were inhibited in the presence of either 20μM LY294002 (a PI3K inhibitor) or 10μM rapamycin (an mTOR inhibitor). In addition, leptin had a modulatory effect on the expression of its receptor at the transcriptional and translational levels, and blockade of PI3K/Akt/mTOR inhibited both basal and leptin-induced Lepr gene and protein expression. These findings suggest that leptin exerts its proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway via interaction with its receptor.
Collapse
Affiliation(s)
- Rui Wen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qihai Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chao Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua Gou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| |
Collapse
|
22
|
Mendonsa AM, Chalfant MC, Gorden LD, VanSaun MN. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS One 2015; 10:e0126686. [PMID: 25919692 PMCID: PMC4412670 DOI: 10.1371/journal.pone.0126686] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/07/2015] [Indexed: 01/03/2023] Open
Abstract
Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.
Collapse
Affiliation(s)
- Alisha M. Mendonsa
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Madeleine C. Chalfant
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lee D. Gorden
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael N. VanSaun
- Department of Surgery, Division of Surgical Oncology, University of Miami, Sylvester Cancer Center, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hu X, Wu R, Jiang Z, Wang L, Chen P, Zhang L, Yang L, Wu Y, Chen H, Chen H, Xu Y, Zhou Y, Huang X, Webster KA, Yu H, Wang J. Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells 2014; 32:2702-13. [PMID: 24989835 PMCID: PMC5096299 DOI: 10.1002/stem.1784] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/27/2014] [Accepted: 05/10/2014] [Indexed: 12/22/2022]
Abstract
Hypoxia preconditioning enhances the therapeutic effect of mesenchymal stem cells (MSCs). However, the mechanism underlying hypoxia-induced augmentation of the protective effect of MSCs on myocardial infarction (MI) is poorly understood. We show that hypoxia-enhanced survival, mobility, and protection of cocultured cardiomyocytes were paralleled by increased expression of leptin and cell surface receptor CXCR4. The enhanced activities were abolished by either knockdown of leptin with a selective shRNA or by genetic deficiency of leptin or its receptor in MSCs derived, respectively, from ob/ob or db/db mice. To characterize the role of leptin in the regulation of MSC functions by hypoxia and its possible contribution to enhanced therapeutic efficacy, cell therapy using MSCs derived from wild-type, ob/ob, or db/db mice was implemented in mouse models of acute MI. Augmented protection by hypoxia pretreatment was only seen with MSCs from wild-type mice. Parameters that were differentially affected by hypoxia pretreatment included MSC engraftment, c-Kit(+) cell recruitment to the infarct, vascular density, infarct size, and long-term contractile function. These data show that leptin signaling is an early and essential step for the enhanced survival, chemotaxis, and therapeutic properties of MSCs conferred by preculture under hypoxia. Leptin may play a physiological role in priming MSCs resident in the bone marrow endosteum for optimal response to systemic signaling molecules and subsequent tissue repair.
Collapse
Affiliation(s)
- Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhi Jiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Panpan Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Lu Yang
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Huiqiang Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yu Zhou
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xin Huang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Keith A. Webster
- Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
24
|
Yoshino S, Satoh T, Yamada M, Hashimoto K, Tomaru T, Katano-Toki A, Kakizaki S, Okada S, Shimizu H, Ozawa A, Tuchiya T, Ikota H, Nakazato Y, Mori M, Matozaki T, Sasaki T, Kitamura T, Mori M. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor. Endocrinology 2014; 155:3459-3472. [PMID: 25004093 DOI: 10.1210/en.2013-2160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.
Collapse
Affiliation(s)
- Satoshi Yoshino
- Departments of Medicine and Molecular Science (S.Y., T.Sat., M.Y., K.H., T.To., A.K.-T., S.K., S.O., H.S., A.O., T.Tu., Ma.Mori) and Human Pathology (H.I., Y.N.), Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan; Laboratory of Biosignal Sciences (Mu.Mori, T.Ma.) and Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation (T.Sas., T.K.), Gunma University, Maebashi, 371-8512 Japan; and Kitakanto Molecular Novel Research Institute for Obesity and Metabolism (Ma.Mori), Midori, 379-2311 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hu S, Gan C, Wen R, Xiao Q, Gou H, Liu H, Zhang Y, Li L, Wang J. Role of leptin in the regulation of sterol/steroid biosynthesis in goose granulosa cells. Theriogenology 2014; 82:677-85. [DOI: 10.1016/j.theriogenology.2014.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 01/08/2023]
|
26
|
Catli G, Anik A, Tuhan HÜ, Kume T, Bober E, Abaci A. The relation of leptin and soluble leptin receptor levels with metabolic and clinical parameters in obese and healthy children. Peptides 2014; 56:72-6. [PMID: 24703965 DOI: 10.1016/j.peptides.2014.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 11/21/2022]
Abstract
We investigated the relation of serum leptin, soluble leptin receptor (sLR) and free leptin index (FLI) with metabolic and anthropometric parameters in obese and healthy children. Height, weight, waist circumference (WC), fasting serum glucose, insulin, lipid profile, leptin and sLR levels of 35 obese children and 36 healthy children were measured and FLI was calculated as the ratio of leptin to sLR. In obese children, serum leptin and FLI were found significantly higher, while sLR level was significantly lower than the healthy children. Comparison of obese children regarding the insulin resistance showed significantly higher serum leptin and FLI in the insulin resistant group; however sLR level was not different between the insulin resistant and non-resistant obese children. In obese children, sLR was not correlated with any of the metabolic parameters except total cholesterol, while FLI was significantly and positively correlated with BMI, WC, TC, fasting insulin, and HOMA-IR. However, regression analysis confirmed that the HOMA-IR was the only independent variable significantly correlated with FLI in obese children. Findings of this study suggest that in obese children and adolescents (i) serum leptin and FLI were found significantly higher, while sLR level was significantly lower than the healthy children, (ii) increased FLI might be a compensatory mechanism for increasing leptin effect in peripheral tissue, (iii) FLI is a more accurate marker to evaluate leptin resistance than leptin or sLR alone, and (iv) increased FLI may contribute toward the development of hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Gonul Catli
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ahmet Anik
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Hale Ünver Tuhan
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Tuncay Kume
- Department of Biochemistry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ece Bober
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ayhan Abaci
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| |
Collapse
|
27
|
Dupuis L, Schuermann Y, Cohen T, Siddappa D, Kalaiselvanraja A, Pansera M, Bordignon V, Duggavathi R. Role of leptin receptors in granulosa cells during ovulation. Reproduction 2014; 147:221-9. [DOI: 10.1530/rep-13-0356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptin is an important hormone influencing reproductive function. However, the mechanisms underpinning the role of leptin in the regulation of reproduction remain to be completely deciphered. In this study, our objective is to understand the mechanisms regulating the expression of leptin receptor (Lepr) and its role in ovarian granulosa cells during ovulation. First, granulosa cells were collected from superovulated mice to profile mRNA expression of Lepr isoforms (LeprA and LeprB) throughout follicular development. Expression of LeprA and LeprB was dramatically induced in the granulosa cells of ovulating follicles at 4 h after human chorionic gonadotropin (hCG) treatment. Relative abundance of both mRNA and protein of CCAAT/enhancer-binding protein β (Cebpβ) increased in granulosa cells from 1 to 7 h post-hCG. Furthermore, chromatin immunoprecipitation assay confirmed the recruitment of Cebpβ to Lepr promoter. Thus, hCG-induced transcription of Lepr appears to be regulated by Cebpβ, which led us to hypothesise that Lepr may play a role during ovulation. To test this hypothesis, we used a recently developed pegylated superactive mouse leptin antagonist (PEG-SMLA) to inhibit Lepr signalling during ovulation. I.p. administration of PEG-SMLA (10 μg/g) to superovulated mice reduced ovulation rate by 65% compared with control treatment. Although the maturation stage of the ovulated oocytes remained unaltered, ovulation genes Ptgs2 and Has2 were downregulated in PEG-SMLA-treated mice compared with control mice. These results demonstrate that Lepr is dramatically induced in the granulosa cells of ovulating follicles and this induction of Lepr expression requires the transcription factor Cebpβ. Lepr plays a critical role in the process of ovulation by regulating, at least in part, the expression of the important genes involved in the preovulatory maturation of follicles.
Collapse
|
28
|
Abstract
Metreleptin is an analogue of the human hormone leptin being developed by Amylin Pharmaceuticals (a subsidiary of Bristol-Myers Squibb) for the subcutaneous treatment of metabolic disorders including lipodystrophy. The compound is expected to improve insulin sensitivity, hypertriglyceridaemia and hyperglycaemia in patients with lipodystrophy who are unresponsive to conventional treatment. Metreleptin has been approved in Japan as a leptin therapy for the treatment of lipodystrophy. Amylin has also completed a submission for regulatory approval to the US FDA for metreleptin in the treatment of diabetes mellitus and/or hypertriglyceridaemia in patients with rare forms of lipodystrophy. Clinical development of the drug is also underway in the USA for the treatment of type 1 diabetes. Amgen was previously assessing the use of metreleptin as a treatment for amenorrhoea; however, it appears that development in this indication has been discontinued. This article summarizes the milestones in the development of metreleptin leading to this first approval for lipodystrophy.
Collapse
Affiliation(s)
- Ken Chou
- Adis R & D Insight, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore, 0754 Auckland, New Zealand.
| | | |
Collapse
|
29
|
Rochford JJ. Mouse Models of Lipodystrophy and Their Significance in Understanding Fat Regulation. Curr Top Dev Biol 2014; 109:53-96. [DOI: 10.1016/b978-0-12-397920-9.00005-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Dunham-Snary KJ, Ballinger SW. Mitochondrial genetics and obesity: evolutionary adaptation and contemporary disease susceptibility. Free Radic Biol Med 2013; 65:1229-1237. [PMID: 24075923 PMCID: PMC3859699 DOI: 10.1016/j.freeradbiomed.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
Obesity is a leading risk factor for a variety of metabolic diseases including cardiovascular disease, diabetes, and cancer. Although in its simplest terms, obesity may be thought of as a consequence of excessive caloric intake and sedentary lifestyle, it is also evident that individual propensity for weight gain can vary. The etiology of individual susceptibility to obesity seems to be complex-involving a combination of environmental-genetic interactions. Herein, we suggest that the mitochondrion plays a major role in influencing individual susceptibility to this disease via mitochondrial-nuclear interaction processes and that environmentally influenced selection events for mitochondrial function that conveyed increased reproductive and survival success during the global establishment of human populations during prehistoric times can influence individual susceptibility to weight gain and obesity.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Báez-Ruiz A, Luna-Moreno D, Carmona-Castro A, Cárdenas-Vázquez R, Díaz-Muñoz M, Carmona-Alcocer V, Fuentes-Granados C, Manuel MA. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese femalesNeotomodon alstoni:Effect of fasting. Nutr Neurosci 2013; 17:31-6. [DOI: 10.1179/1476830513y.0000000063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Ghrelins, obestatin, nesfatin-1 and leptin levels in pregnant women with and without hyperemesis gravidarum. Clin Biochem 2013; 46:828-30. [PMID: 23380589 DOI: 10.1016/j.clinbiochem.2013.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 11/19/2022]
|
33
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J Orthop Res 2013; 31:847-57. [PMID: 23335226 PMCID: PMC3664408 DOI: 10.1002/jor.22308] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/12/2012] [Indexed: 02/04/2023]
Abstract
Obesity is an important risk factor for intervertebral disc degeneration and leptin is a biomarker of obesity. However, the expression of leptin receptors has not been determined in disc tissue. It is not known whether leptin has a direct effect on the nucleus pulposus (NP) cells. To determine whether the NP tissues and cells express leptin receptors (OBRa and OBRb) and whether leptin affects the organization and the expression of major cytoskeletal elements in NP cells. Messenger RNA (mRNA) and protein levels of OBRa and OBRb were measured by real-time PCR and Western blot, respectively, in NP tissues and cells. Immunofluorescence and real-time PCR and Western blot were performed to investigate the effect of leptin on cytoskeleton reorganization and expression. Results show that mRNA and proteins of OBRa and OBRb were expressed in all NP tissues and cells, and that OBRb expression was correlated with patients' body weight. Increased expression of β-actin and reorganization of F-actin were evident in leptin-stimulated NP cells. Leptin also induced vimentin expression but had no effect on β-tubulin in NP cells. These findings provide novel evidence supporting the possible involvement of leptin in the pathogenesis of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong KongHong Kong, China
| | - Xin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| | - Jiaming Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical CollegeBeijing, China
| |
Collapse
|
34
|
Li Z, Shen J, Wu WKK, Yu X, Liang J, Qiu G, Liu J. Leptin induces cyclin D1 expression and proliferation of human nucleus pulposus cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PLoS One 2012; 7:e53176. [PMID: 23300886 PMCID: PMC3534060 DOI: 10.1371/journal.pone.0053176] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- * E-mail:
| | - William Ka Kei Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jinqian Liang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jiaming Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Macedo IC, Medeiros LF, Oliveira C, Oliveira CM, Rozisky JR, Scarabelot VL, Souza A, Silva FR, Santos VS, Cioato SG, Caumo W, Torres ILS. Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides 2012; 38:189-96. [PMID: 22940203 DOI: 10.1016/j.peptides.2012.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/19/2022]
Abstract
Obesity is a disease that has become a serious public health issue worldwide, and chronic stressors, which are a problem for modern society, cause neuroendocrine changes with alterations in food intake. Obesity and chronic stress are associated with the development of cardiovascular diseases and metabolic disorders. In this study, a rat model was used to evaluate the effects of a hypercaloric diet plus chronic restraint stress on the serum leptin and lipids levels and on the weight of specific adipose tissue (mesenteric, MAT; subcutaneous, SAT and visceral, VAT). Wistar rats were divided into the following 4 groups: standard chow (C), hypercaloric diet (HD), stress plus standard chow (S), and stress plus hypercaloric diet (SHD). The animals in the stress groups were subjected to chronic stress (placed inside a 25 cm × 7 cm plastic tube for 1h per day, 5 days per week for 6 weeks). The following parameters were evaluated: the weight of the liver, adrenal glands and specific adipose tissue; the delta weight; the Lee index; and the serum levels of leptin, corticosterone, glucose, total cholesterol, and triglycerides. The hypercaloric diet induced obesity in rats, increasing the Lee index, weight, leptin, triglycerides, and cholesterol levels. The stress decreased weight gain even in animals fed a hypercaloric diet but did not prevent a significant increase in the Lee index. However, an interaction between the independent factors (hypercaloric diet and stress) was observed, which is demonstrated by the increased serum leptin levels in the animals exposed to both protocols.
Collapse
Affiliation(s)
- I C Macedo
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul Institute of Basic Health Sciences, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang R, Duan YL. Progress in understanding the role of leptin in the pathogenesis and treatment of chronic hepatitis C. Shijie Huaren Xiaohua Zazhi 2012; 20:831-836. [DOI: 10.11569/wcjd.v20.i10.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leptin is an adipokine that is abundantly expressed in adipose tissue and has multiple biological effects related to the development of human diseases, such as diabetes mellitus, obesity, metabolism syndrome, and cancer. Pegylated interferon plus ribavirin has been considered as fist-line therapy in patients with chronic hepatitis C (CHC). Because this therapy is associated with many side effects, further studies on the mechanism and treatment of CHC are needed. More and more studies have demonstrated that leptin plays an important role in the pathogenesis of CHC and provides a new target for the treatment of this disease. This paper reviews the recent advances in understanding the role of leptin in the pathogenesis and treatment of CHC.
Collapse
|