1
|
Dahm T, Adams O, Boettcher S, Diedrich S, Morozov V, Hansman G, Fallier-Becker P, Schädler S, Burkhardt CJ, Weiss C, Stump-Guthier C, Ishikawa H, Schroten H, Schwerk C, Tenenbaum T, Rudolph H. Strain-dependent effects of clinical echovirus 30 outbreak isolates at the blood-CSF barrier. J Neuroinflammation 2018; 15:50. [PMID: 29463289 PMCID: PMC5819246 DOI: 10.1186/s12974-018-1061-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology. METHODS We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. RESULTS We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible. CONCLUSION The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route.
Collapse
Affiliation(s)
- Tobias Dahm
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sindy Boettcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Berlin, Germany
| | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Berlin, Germany
| | - Vasily Morozov
- Schaller Research Group, University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Grant Hansman
- Schaller Research Group, University of Heidelberg and the DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | | | - Claus J. Burkhardt
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of life Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Jeong SY, Ahn J, Cho YJ, Kim YJ, Kim DS, Jee Y, Lee H, Nam JH. Production of Cross-Reactive Peptide Antibodies against Viral Capsid Proteins of Human Enterovirus B to Apply Diagnostic Reagent. Microbiol Immunol 2013; 51:1091-8. [DOI: 10.1111/j.1348-0421.2007.tb04004.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soo-Young Jeong
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok-Dong Wonmi-Ku Bucheon 420-743 Korea
| | - Jeonghyun Ahn
- Department of Microbiology; University of Ulsan, College of Medicine; Seoul 138-736 Korea
| | - Young-Joo Cho
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok-Dong Wonmi-Ku Bucheon 420-743 Korea
| | - Yeun-Jung Kim
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok-Dong Wonmi-Ku Bucheon 420-743 Korea
| | - Dae-Sun Kim
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok-Dong Wonmi-Ku Bucheon 420-743 Korea
| | - Youngmee Jee
- Department of Virology National Institute of Health; 5 Nokbun Dong, Eunpyung-Ku; Seoul 122-701 Korea
| | - Heuiran Lee
- Department of Microbiology; University of Ulsan, College of Medicine; Seoul 138-736 Korea
| | - Jae-Hwan Nam
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok-Dong Wonmi-Ku Bucheon 420-743 Korea
| |
Collapse
|
3
|
Wang T, Yu B, Lin L, Zhai X, Han Y, Qin Y, Guo Z, Wu S, Zhong X, Wang Y, Tong L, Zhang F, Si X, Zhao W, Zhong Z. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3. Virology 2012; 433:513-21. [PMID: 23010168 PMCID: PMC7111942 DOI: 10.1016/j.virol.2012.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/07/2023]
Abstract
The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Two papers report the structure of the virion of emerging pathogen EV71, providing a three-dimensional context for understanding many of its biological functions.
Collapse
|
5
|
Carragher DM, Kaminski DA, Moquin A, Hartson L, Randall TD. A novel role for non-neutralizing antibodies against nucleoprotein in facilitating resistance to influenza virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4168-76. [PMID: 18768874 PMCID: PMC2590646 DOI: 10.4049/jimmunol.181.6.4168] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current influenza vaccines elicit Abs to the hemagglutinin and neuraminidase envelope proteins. Due to antigenic drift, these vaccines must be reformulated annually to include the envelope proteins predicted to dominate in the following season. By contrast, vaccination with the conserved nucleoprotein (NP) elicits immunity against multiple serotypes (heterosubtypic immunity). NP vaccination is generally thought to convey protection primarily via CD8 effector mechanisms. However, significant titers of anti-NP Abs are also induced, yet the involvement of Abs in protection has largely been disregarded. To investigate how Ab responses might contribute to heterosubtypic immunity, we vaccinated C57BL/6 mice with soluble rNP. This approach induced high titers of NP-specific serum Ab, but only poorly detectable NP-specific T cell responses. Nevertheless, rNP immunization significantly reduced morbidity and viral titers after influenza challenge. Importantly, Ab-deficient mice were not protected by this vaccination strategy. Furthermore, rNP-immune serum could transfer protection to naive hosts in an Ab-dependent manner. Therefore, Ab to conserved, internal viral proteins, such as NP, provides an unexpected, yet important mechanism of protection against influenza. These results suggest that vaccines designed to elicit optimal heterosubtypic immunity to influenza should promote both Ab and T cell responses to conserved internal proteins.
Collapse
Affiliation(s)
| | | | - Amy Moquin
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, U.S.A., Phone 518-891-3080, Fax 518-891-5126
| | - Louise Hartson
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, U.S.A., Phone 518-891-3080, Fax 518-891-5126
| | - Troy D. Randall
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, U.S.A., Phone 518-891-3080, Fax 518-891-5126
| |
Collapse
|
6
|
Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005; 79:9285-95. [PMID: 15994822 PMCID: PMC1168767 DOI: 10.1128/jvi.79.14.9285-9295.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- M Dan
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z4H4
| | | |
Collapse
|
7
|
Brown B, Oberste MS, Maher K, Pallansch MA. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 2003; 77:8973-84. [PMID: 12885914 PMCID: PMC167246 DOI: 10.1128/jvi.77.16.8973-8984.2003] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 65 human enterovirus serotypes are currently classified into five species: Poliovirus (3 serotypes), Human enterovirus A (HEV-A) (12 serotypes), HEV-B (37 serotypes), HEV-C (11 serotypes), and HEV-D (2 serotypes). Coxsackie A virus (CAV) serotypes 1, 11, 13, 15, 17, 18, 19, 20, 21, 22, and 24 constitute HEV-C. We have determined the complete genome sequences for the remaining nine HEV-C serotypes and compared them with the complete sequences of CAV21, CAV24, and the polioviruses. The viruses were most diverse in the capsid region (4 to 36% amino acid difference). A high degree of capsid sequence conservation (96% amino acid identity) suggests that CAV15 and CAV18 should be classified as strains of CAV11 and CAV13, respectively. In the 3CD region, CAV1, CAV19, and CAV22 differed from one another by only 1.2 to 1.4% and CAV11, CAV13, CAV17, CAV20, CAV21, CAV24, and the polioviruses differed from one another by only 1.2 to 3.6%. The two groups, however, differed from one another by 14.6 to 16.2%. The polioviruses as a group were monophyletic only in the capsid region. Only one group of serotypes (CAV1, CAV19, and CAV22) was consistently monophyletic in multiple genome regions. Incongruities among phylogenetic trees based on different genome regions strongly suggest that recombination has occurred between the polioviruses, CAV11, CAV13, CAV17, and CAV20. The close relationship among the polioviruses and CAV11, CAV13, CAV17, CAV20, CAV21, and CAV24 and the uniqueness of CAV1, CAV19, and CAV22 suggest that revisions should be made to the classification of these viruses.
Collapse
Affiliation(s)
- Betty Brown
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The six serotypes of the group B coxsackieviruses (CVB) are common human enteroviruses linked etiologically to inflammatory cardiomyopathies. This has been demonstrated by molecular detection of enteroviral RNA in human heart tissue, serologic associations with disease, and virus isolation from cases of fulminant myocarditis. The murine model of CVB-associated myocarditis has demonstrated that CVB can be attenuated through mutations at different genomic sites. Human CVB3 isolates demonstrate varying degrees of cardiovirulence in the murine model; one site of virulence determination has been mapped to domain II of the 5' non-translated region. The interplay of CVB replication and the immune response to that replication in the heart is a complex interaction determining the extent to which the virus replication is limited and the degree to which a pathogenic inflammation of cardiac muscle occurs. Studies of CVB3-induced myocarditis in murine strains lacking subsets of the immune system or genes regulating the immune response have demonstrated a pivotal role of the T cell response to the generation of myocarditis. While CVB are associated with 20-25% of cases of myocarditis or cardiomyopathy, the severity of the disease and the existence of attenuated strains shown to generate protective immunity in animal models indicates that vaccination against the CVBs would be valuable.
Collapse
Affiliation(s)
- K S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | |
Collapse
|
9
|
Höfling K, Tracy S, Chapman N, Kim KS, Smith Leser J. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol 2000; 74:4570-8. [PMID: 10775593 PMCID: PMC111977 DOI: 10.1128/jvi.74.10.4570-4578.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause human myocarditis, while human adenovirus type 2 (Ad2) is implicated as an agent of this disease. The L1 loop of the Ad2 hexon protein has been demonstrated to be antigenic in rabbits. To evaluate the feasibility of a multivalent vaccine strain against the CVB and Ad2, we cloned the sequence encoding the Ad2 hexon L1 loop, flanked by dissimilar sequences encoding the protease 2A (2Apro) recognition sites, into the genome of an attenuated strain of CVB type 3 (CVB3/0) at the junction of 2Apro and the capsid protein 1D. Progeny virus (CVB3-PL2-Ad2L1) was obtained following transfection of the construct into HeLa cells. Replication of CVB3-PL2-Ad2L1 in diverse cell cultures demonstrated that the yield of the chimeric virus was between 0.5 to 2 log units less than the parental strain. Western blot analyses of the CVB3 capsid protein 1D in CVB3-PL2-Ad2L1-infected HeLa cells demonstrated production of the expected capsid protein. Viral proteins were detected earlier and in approximately fourfold greater amounts in CVB3-PL2-Ad2L1-infected HeLa cells than in CVB3/0-infected cells. Cleavage of the CVB3-PL2-Ad2L1 polyprotein by 2Apro was slowed, accompanied by an accumulation of the fusion 1D-L1 loop protein. Reverse transcription-PCR sequence analysis of CVB3-PL2-Ad2L1 RNA demonstrated that the Ad2 hexon polypeptide coding sequence was maintained in the chimeric viral genome through at least 10 passages in HeLa cells. Mice inoculated with CVB3-PL2-Ad2L1 demonstrated a brief viremia with no replication detectable in the heart but prolonged replication of virus in the pancreas in the absence of pathologic changes in either organ. CVB3-PL2-Ad2L1 induced binding and neutralizing anti-Ad2 antibodies, in addition to antibodies against CVB3 in mice. CVB3-PL2-Ad2L1 was used to challenge mice previously inoculated with CVB3/0 and with preexisting anti-CVB3 neutralizing-antibody titers; anti-Ad2 neutralizing and binding antibodies were induced in these mice at higher levels than in mice without anti-CVB3 immunity. The data demonstrate that a CVB vector can stably express an antigenic polypeptide of Ad2 from within the CVB open reading frame that results in the induction of protective immune responses against both viruses.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Base Sequence
- Blotting, Western
- Capsid/chemistry
- Capsid/genetics
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins
- Cells, Cultured
- Enterovirus B, Human/genetics
- Enterovirus B, Human/immunology
- Enterovirus B, Human/metabolism
- Epitopes/genetics
- Epitopes/metabolism
- Genetic Vectors
- Genome, Viral
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neutralization Tests
- Rabbits
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- K Höfling
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA
| | | | | | | | | |
Collapse
|
10
|
Huber SA, Gauntt CJ, Sakkinen P. Enteroviruses and myocarditis: viral pathogenesis through replication, cytokine induction, and immunopathogenicity. Adv Virus Res 1999; 51:35-80. [PMID: 9891585 DOI: 10.1016/s0065-3527(08)60783-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S A Huber
- Department of Pathology, University of Vermont College of Medicine, Colchester 05446, USA
| | | | | |
Collapse
|