1
|
Soto M, Reviejo M, Al-Abdulla R, Romero MR, Macias RIR, Boix L, Bruix J, Serrano MA, Marin JJG. Relationship between changes in the exon-recognition machinery and SLC22A1 alternative splicing in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165687. [PMID: 31953214 DOI: 10.1016/j.bbadis.2020.165687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/22/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Changes in the phenotype that characterizes cancer cells are partly due to altered processing of pre-mRNA by the spliceosome. We have previously reported that aberrant splicing plays an essential role in the impaired response of hepatocellular carcinoma (HCC) to sorafenib by reducing the expression of functional organic cation transporter type 1 (OCT1, gene SLC22A1) that constitutes the primary way for HCC cells to take up this and other drugs. The present study includes an in silico analysis of publicly available databases to investigate the relationship between alternative splicing of SLC22A1 pre-mRNA and the expression of genes involved in the exon-recognition machinery in HCC and adjacent non-tumor tissue. Using Taqman Low-Density Arrays, the findings were validated in 25 tumors that were resected without neoadjuvant chemotherapy. The results supported previous reports showing that there was a considerable degree of alternative splicing of SLC22A1 in adjacent non-tumor tissue, which was further increased in the tumor in a stage-unrelated manner. Splicing perturbation was associated with changes in the profile of proteins determining exon recognition. The results revealed the importance of using paired samples for splicing analysis in HCC and confirmed that aberrant splicing plays an essential role in the expression of functional OCT1. Changes in the exon recognition machinery may also affect the expression of other proteins in HCC. Moreover, these results pave the way to further investigations on the mechanistic bases of the relationship between the expression of spliceosome-associated genes and its repercussion on the appearance of alternative and aberrant splicing in HCC.
Collapse
Affiliation(s)
- Meraris Soto
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Reviejo
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain
| | - Ruba Al-Abdulla
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain
| | - Marta R Romero
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Loreto Boix
- BCLC Group, Hospital Clinic-IDIBAPS, Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jordi Bruix
- BCLC Group, Hospital Clinic-IDIBAPS, Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria A Serrano
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J G Marin
- HEVEFARM Group, University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| |
Collapse
|
2
|
Agafonov DE, van Santen M, Kastner B, Dube P, Will CL, Urlaub H, Lührmann R. ATPγS stalls splicing after B complex formation but prior to spliceosome activation. RNA (NEW YORK, N.Y.) 2016; 22:1329-1337. [PMID: 27411562 PMCID: PMC4986889 DOI: 10.1261/rna.057810.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The ATP analog ATPγS inhibits pre-mRNA splicing in vitro, but there have been conflicting reports as to which step of splicing is inhibited by this small molecule and its inhibitory mechanism remains unclear. Here we have dissected the effect of ATPγS on pre-mRNA splicing in vitro. Addition of ATPγS to splicing extracts depleted of ATP inhibited both catalytic steps of splicing. At ATPγS concentrations ≥0.5 mM, precatalytic B complexes accumulate, demonstrating a block prior to or during the spliceosome activation stage. Affinity purification of the ATPγS-stalled B complexes (B(ATPγS)) and subsequent characterization of their abundant protein components by 2D gel electrophoresis revealed that B(ATPγS) complexes are compositionally more homogeneous than B complexes previously isolated in the presence of ATP. In particular, they contain little or no Prp19/CDC5L complex proteins, indicating that these proteins are recruited after assembly of the precatalytic spliceosome. Under the electron microscope, B(ATPγS) complexes exhibit a morphology highly similar to B complexes, indicating that the ATPγS-induced block in the transformation of the B to B(act) complex is not due to a major structural defect. Likely mechanisms whereby ATPγS blocks spliceosome assembly at the activation stage, including inhibition of the RNA helicase Brr2, are discussed. Given their more homogeneous composition, B complexes stalled by ATPγS may prove highly useful for both functional and structural analyses of the precatalytic spliceosome and its conversion into an activated B(act) spliceosomal complex.
Collapse
Affiliation(s)
- Dmitry E Agafonov
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Marieke van Santen
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Prakash Dube
- 3D Electron Cryomicroscopy Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
3
|
Even Y, Escande ML, Fayet C, Genevière AM. CDK13, a Kinase Involved in Pre-mRNA Splicing, Is a Component of the Perinucleolar Compartment. PLoS One 2016; 11:e0149184. [PMID: 26886422 PMCID: PMC4757566 DOI: 10.1371/journal.pone.0149184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
The perinucleolar compartment (PNC) is a subnuclear stucture forming predominantly in cancer cells; its prevalence positively correlates with metastatic capacity. Although several RNA-binding proteins have been characterized in PNC, the molecular function of this compartment remains unclear. Here we demonstrate that the cyclin-dependent kinase 13 (CDK13) is a newly identified constituent of PNC. CDK13 is a kinase involved in the regulation of gene expression and whose overexpression was found to alter pre-mRNA processing. In this study we show that CDK13 is enriched in PNC and co-localizes all along the cell cycle with the PNC component PTB. In contrast, neither the cyclins K and L, known to associate with CDK13, nor the potential kinase substrates accumulate in PNC. We further show that CDK13 overexpression increases PNC prevalence suggesting that CDK13 may be determinant for PNC formation. This result linked to the finding that CDK13 gene is amplified in different types of cancer indicate that this kinase can contribute to cancer development in human.
Collapse
Affiliation(s)
- Yasmine Even
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Marie-Line Escande
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Claire Fayet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Anne-Marie Genevière
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| |
Collapse
|
4
|
Lopez-Mejia IC, Vautrot V, De Toledo M, Behm-Ansmant I, Bourgeois CF, Navarro CL, Osorio FG, Freije JMP, Stévenin J, De Sandre-Giovannoli A, Lopez-Otin C, Lévy N, Branlant C, Tazi J. A conserved splicing mechanism of the LMNA gene controls premature aging. Hum Mol Genet 2011; 20:4540-55. [PMID: 21875900 DOI: 10.1093/hmg/ddr385] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder phenotypically characterized by many features of premature aging. Most cases of HGPS are due to a heterozygous silent mutation (c.1824C>T; p.Gly608Gly) that enhances the use of an internal 5' splice site (5'SS) in exon 11 of the LMNA pre-mRNA and leads to the production of a truncated protein (progerin) with a dominant negative effect. Here we show that HGPS mutation changes the accessibility of the 5'SS of LMNA exon 11 which is sequestered in a conserved RNA structure. Our results also reveal a regulatory role of a subset of serine-arginine (SR)-rich proteins, including serine-arginine rich splicing factor 1 (SRSF1) and SRSF6, on utilization of the 5'SS leading to lamin A or progerin production and a modulation of this regulation in the presence of the c.1824C>T mutation is shown directly on HGPS patient cells. Mutant mice carrying the equivalent mutation in the LMNA gene (c.1827C>T) also accumulate progerin and phenocopy the main cellular alterations and clinical defects of HGPS patients. RNAi-induced depletion of SRSF1 in the HGPS-like mouse embryonic fibroblasts (MEFs) allowed progerin reduction and dysmorphic nuclei phenotype correction, whereas SRSF6 depletion aggravated the HGPS-like MEF's phenotype. We demonstrate that changes in the splicing ratio between lamin A and progerin are key factors for lifespan since heterozygous mice harboring the mutation lived longer than homozygous littermates but less than the wild-type. Genetic and biochemical data together favor the view that physiological progerin production is under tight control of a conserved splicing mechanism to avoid precocious aging.
Collapse
Affiliation(s)
- Isabel C Lopez-Mejia
- CNRS, UMR 5535, University of Montpellier, Institut de Génétique Moléculaire de Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.
Collapse
Affiliation(s)
- Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
6
|
Holland C, Schmid M, Zimny-Arndt U, Rohloff J, Stein R, Jungblut PR, Meyer TF. Quantitative phosphoproteomics reveals link between Helicobacter pylori infection and RNA splicing modulation in host cells. Proteomics 2011; 11:2798-811. [DOI: 10.1002/pmic.201000793] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol Cell Biol 2011; 31:2667-82. [PMID: 21536652 DOI: 10.1128/mcb.05266-11] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, B(act), and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, B(act), and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.
Collapse
|
8
|
Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H, Lührmann R. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA (NEW YORK, N.Y.) 2010; 16:2384-403. [PMID: 20980672 PMCID: PMC2995400 DOI: 10.1261/rna.2456210] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To better understand the compositional and structural dynamics of the human spliceosome during its activation, we set out to isolate spliceosomal complexes formed after precatalytic B but prior to catalytically active C complexes. By shortening the polypyrimidine tract of the PM5 pre-mRNA, which lacks a 3' splice site and 3' exon, we stalled spliceosome assembly at the activation stage. We subsequently affinity purified human B(act) complexes under the same conditions previously used to isolate B and C complexes, and analyzed their protein composition by mass spectrometry. A comparison of the protein composition of these complexes allowed a fine dissection of compositional changes during the B to B(act) and B(act) to C transitions, and comparisons with the Saccharomyces cerevisiae B(act) complex revealed that the compositional dynamics of the spliceosome during activation are largely conserved between lower and higher eukaryotes. Human SF3b155 and CDC5L were shown to be phosphorylated specifically during the B to B(act) and B(act) to C transition, respectively, suggesting these modifications function at these stages of splicing. The two-dimensional structure of the human B(act) complex was determined by electron microscopy, and a comparison with the B complex revealed that the morphology of the human spliceosome changes significantly during its activation. The overall architecture of the human and S. cerevisiae B(act) complex is similar, suggesting that many of the higher order interactions among spliceosomal components, as well as their dynamics, are also largely conserved.
Collapse
Affiliation(s)
- Sergey Bessonov
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet 2010; 6:e1001124. [PMID: 20862310 PMCID: PMC2940736 DOI: 10.1371/journal.pgen.1001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression. DNA Topoisomerase I (Topo I) is a very well known enzyme capable of removing DNA topological constrains during transcription. In mammals, Topo I also harbours an intrinsic protein kinase activity required to achieve specific phosphorylation of factors in charge of maturating the transcript and exporting it from the transcription site in the nucleus to the cytoplasm. In this report, we have used Drosophila genetics to describe the surprising finding that Topo I is not directly recruited to active transcription sites by DNA but rather by an indirect interaction with its protein target of phosphorylation which in turn is bound to nascent transcripts at gene loci. Furthermore, we demonstrate that the delivery of Topo I to an activated heat shock gene is essential for efficient release of the mRNA from its transcription site and functions to turn off transcription of the gene. This study brings a new model for the long unanswered question of how genes are turned off and provides evidence that Topo I is at the heart of the mechanism by which DNA and RNA processes are coordinately regulated during development to avoid genomic instability.
Collapse
|
10
|
Abstract
The SR proteins are not only involved in pre-mRNA splicing but in mRNA export and the initiation of translation. Summary The processing of pre-mRNAs is a fundamental step required for the expression of most metazoan genes. Members of the family of serine/arginine (SR)-rich proteins are critical components of the machineries carrying out these essential processing events, highlighting their importance in maintaining efficient gene expression. SR proteins are characterized by their ability to interact simultaneously with RNA and other protein components via an RNA recognition motif (RRM) and through a domain rich in arginine and serine residues, the RS domain. Their functional roles in gene expression are surprisingly diverse, ranging from their classical involvement in constitutive and alternative pre-mRNA splicing to various post-splicing activities, including mRNA nuclear export, nonsense-mediated decay, and mRNA translation. These activities point up the importance of SR proteins during the regulation of mRNA metabolism.
Collapse
Affiliation(s)
- Peter J Shepard
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
11
|
Keriel A, Mahuteau-Betzer F, Jacquet C, Plays M, Grierson D, Sitbon M, Tazi J. Protection against retrovirus pathogenesis by SR protein inhibitors. PLoS One 2009; 4:e4533. [PMID: 19225570 PMCID: PMC2640060 DOI: 10.1371/journal.pone.0004533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
Indole derivatives compounds (IDC) are a new class of splicing inhibitors that have a selective action on exonic splicing enhancers (ESE)-dependent activity of individual serine-arginine-rich (SR) proteins. Some of these molecules have been shown to compromise assembly of HIV infectious particles in cell cultures by interfering with the activity of the SR protein SF2/ASF and by subsequently suppressing production of splicing-dependent retroviral accessory proteins. For all replication-competent retroviruses, a limiting requirement for infection and pathogenesis is the expression of the envelope glycoprotein which strictly depends on the host splicing machinery. Here, we have evaluated the efficiency of IDC on an animal model of retroviral pathogenesis using a fully replication-competent retrovirus. In this model, all newborn mice infected with a fully replicative murine leukemia virus (MLV) develop erythroleukemia within 6 to 8 weeks of age. We tested several IDC for their ability to interfere ex vivo with MLV splicing and virus spreading as well as for their protective effect in vivo. We show here that two of these IDC, IDC13 and IDC78, selectively altered splicing-dependent production of the retroviral envelope gene, thus inhibiting early viral replication in vivo, sufficiently to protect mice from MLV-induced pathogenesis. The apparent specificity and clinical safety observed here for both IDC13 and IDC78 strongly support further assessment of inhibitors of SR protein splicing factors as a new class of antiretroviral therapeutic agents.
Collapse
Affiliation(s)
- Anne Keriel
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - Florence Mahuteau-Betzer
- Laboratoire de Pharmaco-chimie, CNRS-Institut Curie, UMR 176 Bat 110 Centre Universitaire, Orsay, France
| | - Chantal Jacquet
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - Marc Plays
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
| | - David Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc Sitbon
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
- * E-mail: (MS); (JT)
| | - Jamal Tazi
- Université Montpellier 2 Université Montpellier 1 CNRS, Institut de Génétique Moléculaire de Montpellier (IGMM), UMR5535, IFR122, Montpellier, France
- * E-mail: (MS); (JT)
| |
Collapse
|
12
|
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M, Nakano I, Oda T, Tsuchiya K, Akiyama H. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 2008; 64:60-70. [PMID: 18546284 PMCID: PMC2674108 DOI: 10.1002/ana.21425] [Citation(s) in RCA: 606] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE TAR DNA-binding protein of 43kDa (TDP-43) is deposited as cytoplasmic and intranuclear inclusions in brains of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Previous studies reported that abnormal phosphorylation takes place in deposited TDP-43. The aim of this study was to identify the phosphorylation sites and responsible kinases, and to clarify the pathological significance of phosphorylation of TDP-43. METHODS We generated multiple antibodies specific to phosphorylated TDP-43 by immunizing phosphopeptides of TDP-43, and analyzed FTLD-U and ALS brains by immunohistochemistry, immunoelectron microscopy, and immunoblots. In addition, we performed investigations aimed at identifying the responsible kinases, and we assessed the effects of phosphorylation on TDP-43 oligomerization and fibrillization. RESULTS We identified multiple phosphorylation sites in carboxyl-terminal regions of deposited TDP-43. Phosphorylation-specific antibodies stained more inclusions than antibodies to ubiquitin and, unlike existing commercially available anti-TDP-43 antibodies, did not stain normal nuclei. Ultrastructurally, these antibodies labeled abnormal fibers of 15nm diameter and on immunoblots recognized hyperphosphorylated TDP-43 at 45kDa, with additional 18 to 26kDa fragments in sarkosyl-insoluble fractions from FTLD-U and ALS brains. The phosphorylated epitopes were generated by casein kinase-1 and -2, and phosphorylation led to increased oligomerization and fibrillization of TDP-43. INTERPRETATION These results suggest that phosphorylated TDP-43 is a major component of the inclusions, and that abnormal phosphorylation of TDP-43 is a critical step in the pathogenesis of FTLD-U and ALS. Phosphorylation-specific antibodies will be powerful tools for the investigation of these disorders.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gräub R, Lancero H, Pedersen A, Chu M, Padmanabhan K, Xu XQ, Spitz P, Chalkley R, Burlingame AL, Stokoe D, Bernstein HS. Cell cycle-dependent phosphorylation of human CDC5 regulates RNA processing. Cell Cycle 2008; 7:1795-803. [PMID: 18583928 PMCID: PMC2940709 DOI: 10.4161/cc.7.12.6017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CDC5 proteins are components of the pre-mRNA splicing complex and essential for cell cycle progression in yeast, plants and mammals. Human CDC5 is phosphorylated in a mitogen-dependent manner, and its association with the spliceosome is ATP-dependent. Examination of the amino acid sequence suggests that CDC5L may be phosphorylated at up to 28 potential consensus recognition sequences for known kinases, however, the identity of actual phosphorylation sites, their role in regulating CDC5L activity, and the kinases responsible for their phosphorylation have not previously been determined. Using two-dimensional phosphopeptide mapping and nanoelectrospray mass spectrometry, we now show that CDC5L is phosphorylated on at least nine sites in vivo. We demonstrate that while CDC5L is capable of forming homodimers in vitro and in vivo, neither homodimerization nor nuclear localization is dependent on phosphorylation at these sites. Using an in vitro splicing assay, we show that phosphorylation of CDC5L at threonines 411 and 438 within recognition sequences for CDKs are required for CDC5L-mediated pre-mRNA splicing. We also demonstrate that a specific inhibitor of CDK2, CVT-313, inhibits CDC5L phosphorylation in both in vitro kinase assays and in vivo radiolabeling experiments in cycling cells. These studies represent the first demonstration of a regulatory role for phosphorylation of CDC5L, and suggest that targeting these sites or the implicated kinases may provide novel strategies for treating disorders of unguarded cellular proliferation, such as cancer.
Collapse
Affiliation(s)
- Remo Gräub
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Hope Lancero
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Anissa Pedersen
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Meihua Chu
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | | | - Xiao-Qin Xu
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Paul Spitz
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Robert Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - David Stokoe
- Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California, San Francisco, USA
- Comprehensive Cancer Center, University of California, San Francisco, USA
- Department of Pediatrics, University of California, San Francisco, USA
- Institute for Regeneration Medicine, University of California, San Francisco, USA
| |
Collapse
|
14
|
Bakkour N, Lin YL, Maire S, Ayadi L, Mahuteau-Betzer F, Nguyen CH, Mettling C, Portales P, Grierson D, Chabot B, Jeanteur P, Branlant C, Corbeau P, Tazi J. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog 2008; 3:1530-9. [PMID: 17967062 PMCID: PMC2042022 DOI: 10.1371/journal.ppat.0030159] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 09/14/2007] [Indexed: 01/01/2023] Open
Abstract
The development of multidrug-resistant viruses compromises antiretroviral therapy efficacy and limits therapeutic options. Therefore, it is an ongoing task to identify new targets for antiretroviral therapy and to develop new drugs. Here, we show that an indole derivative (IDC16) that interferes with exonic splicing enhancer activity of the SR protein splicing factor SF2/ASF suppresses the production of key viral proteins, thereby compromising subsequent synthesis of full-length HIV-1 pre-mRNA and assembly of infectious particles. IDC16 inhibits replication of macrophage- and T cell-tropic laboratory strains, clinical isolates, and strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Importantly, drug treatment of primary blood cells did not alter splicing profiles of endogenous genes involved in cell cycle transition and apoptosis. Thus, human splicing factors represent novel and promising drug targets for the development of antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.
Collapse
Affiliation(s)
- Nadia Bakkour
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Yea-Lih Lin
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Sophie Maire
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Lilia Ayadi
- Université Henri Poincare-Nancy I, Vandoeuvre-les-Nancy, France
- CNRS, UMR 7567, Vandoeuvre-les-Nancy, France
| | | | - Chi Hung Nguyen
- Laboratoire de Pharmaco-chimie, Institut Curie, Orsay, France
- CNRS-UMR 176, Orsay, France
| | - Clément Mettling
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Pierre Portales
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - David Grierson
- Laboratoire de Pharmaco-chimie, Institut Curie, Orsay, France
- CNRS-UMR 176, Orsay, France
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe Jeanteur
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
| | - Christiane Branlant
- Université Henri Poincare-Nancy I, Vandoeuvre-les-Nancy, France
- CNRS, UMR 7567, Vandoeuvre-les-Nancy, France
| | - Pierre Corbeau
- Laboratoire d'Immunologie CHU de Montpellier, Montpellier, France
- Institut de Genetique Humaine, Montpellier, France
- CNRS, UPR1142, Montpellier, France
| | - Jamal Tazi
- Université de Montpellier II, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- CNRS, UMR 5535, Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Yang F, Jaitly N, Jayachandran H, Luo Q, Monroe ME, Du X, Gritsenko MA, Zhang R, Anderson DJ, Purvine SO, Adkins JN, Moore RJ, Ding SJ, Mottaz HM, Lipton MS, Camp DG, Udseth HR, Smith RD, Rossie S. Applying a targeted label-free approach using LC-MS AMT tags to evaluate changes in protein phosphorylation following phosphatase inhibition. J Proteome Res 2007; 6:4489-97. [PMID: 17929957 PMCID: PMC2516346 DOI: 10.1021/pr070068e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.
Collapse
Affiliation(s)
- Feng Yang
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Navdeep Jaitly
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Hemalatha Jayachandran
- Department of Biochemistry and Purdue Cancer Center, Purdue University West Lafayette, Indiana 47907-2084
| | - Quanzhou Luo
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | - Xiuxia Du
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | - Rui Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | | | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Shi-Jian Ding
- Biological Sciences Division, Pacific Northwest National Laboratory
| | | | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Harold R. Udseth
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory
| | - Sandra Rossie
- Department of Biochemistry and Purdue Cancer Center, Purdue University West Lafayette, Indiana 47907-2084
| |
Collapse
|
16
|
Fic W, Juge F, Soret J, Tazi J. Eye development under the control of SRp55/B52-mediated alternative splicing of eyeless. PLoS One 2007; 2:e253. [PMID: 17327915 PMCID: PMC1803029 DOI: 10.1371/journal.pone.0000253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022] Open
Abstract
The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing.
Collapse
Affiliation(s)
- Weronika Fic
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, Université de Montpellier II, Centre National de Recherche Scientifique (CNRS), Montpellier, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Tazi J, Durand S, Jeanteur P. The spliceosome: a novel multi-faceted target for therapy. Trends Biochem Sci 2006; 30:469-78. [PMID: 16009556 DOI: 10.1016/j.tibs.2005.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/13/2005] [Accepted: 06/21/2005] [Indexed: 01/26/2023]
Abstract
The spliceosome is a dynamic and flexible ribonucleoprotein enzyme that removes intronic sequences in a regulated manner. Spliceosome action enables one stretch of genomic DNA sequence to yield several mRNAs that encode different proteins. It depends on a flexible mechanism for selecting splice sites, which calls for regulatory sequences (splicing enhancers or silencers) recognized by cognate trans-acting protein factors and constitutive ribonucleoprotein devices to build up the catalytic core. The identification of both types of elements now offers a comprehensive insight into how the spliceosome is adapted to carry out the removal of different introns and suggests novel therapeutic targets to, ultimately, restore a physiological pattern of alternatively spliced variants in a large repertoire of pathologies.
Collapse
Affiliation(s)
- Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier (IGMM), UMR 5535, IFR 122, Centre National de Recherche Scientifique (CNRS), France.
| | | | | |
Collapse
|
18
|
Haynes C, Iakoucheva LM. Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. Nucleic Acids Res 2006; 34:305-12. [PMID: 16407336 PMCID: PMC1326245 DOI: 10.1093/nar/gkj424] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Serine/arginine-rich (SR) splicing factors play an important role in constitutive and alternative splicing as well as during several steps of RNA metabolism. Despite the wealth of functional information about SR proteins accumulated to-date, structural knowledge about the members of this family is very limited. To gain a better insight into structure-function relationships of SR proteins, we performed extensive sequence analysis of SR protein family members and combined it with ordered/disordered structure predictions. We found that SR proteins have properties characteristic of intrinsically disordered (ID) proteins. The amino acid composition and sequence complexity of SR proteins were very similar to those of the disordered protein regions. More detailed analysis showed that the SR proteins, and their RS domains in particular, are enriched in the disorder-promoting residues and are depleted in the order-promoting residues as compared to the entire human proteome. Moreover, disorder predictions indicated that RS domains of SR proteins were completely unstructured. Two different classification methods, the charge-hydropathy measure and the cumulative distribution function (CDF) of the disorder scores, were in agreement with each other, and they both strongly predicted members of the SR protein family to be disordered. This study emphasizes the importance of the disordered structure for several functions of SR proteins, such as for spliceosome assembly and for interaction with multiple partners. In addition, it demonstrates the usefulness of order/disorder predictions for inferring protein structure from sequence.
Collapse
Affiliation(s)
| | - Lilia M. Iakoucheva
- To whom correspondence should be addressed. Tel: +1 212 327 7989; Fax: +1 212 327 7996;
| |
Collapse
|
19
|
Even Y, Durieux S, Escande ML, Lozano JC, Peaucellier G, Weil D, Genevière AM. CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J Cell Biochem 2006; 99:890-904. [PMID: 16721827 DOI: 10.1002/jcb.20986] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human CDC2L5 gene encodes a protein of unknown physiological function. This protein is closely related to the cyclin-dependent kinase (Cdks) family and contains an arginine/serine-rich (RS) domain. The Cdks were first identified as crucial regulators of cell-cycle progression, more recently they were found to be involved in transcription and mRNA processing. RS domains are mainly present in proteins regulating pre-mRNA splicing, suggesting CDC2L5 having a possible role in this process. In this study, we demonstrate that CDC2L5 is located in the nucleoplasm, at a higher concentration in speckles, the storage sites for splicing factors. Furthermore, this localization is dependent on the presence of the N-terminal sequence including the RS domain. Then, we report that CDC2L5 directly interacts with the ASF/SF2-associated protein p32, a protein involved in splicing regulation. Overexpression of CDC2L5 constructs disturbs constitutive splicing and switches alternative splice site selection in vivo. These results argue in favor of a functional role of the CDC2L5 kinase in splicing regulation.
Collapse
Affiliation(s)
- Yasmine Even
- Laboratoire Arago, CNRS-UMR 7628/Université Pierre et Marie Curie, BP 44, F-66651 Banyuls-sur-Mer cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Soret J, Gabut M, Tazi J. SR Proteins as Potential Targets for Therapy. ALTERNATIVE SPLICING AND DISEASE 2006; 44:65-87. [PMID: 17076265 DOI: 10.1007/978-3-540-34449-0_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine- and arginine-rich (SR) proteins constitute a highly conserved family of pre-mRNA splicing factors that play key roles in the regulation of splice site selection, and thereby in the control of alternative splicing processes. In addition to conserved sequences at the splice junctions, splice site selection also depends upon different sets of auxiliary cis regulatory elements known as exonic and intronic splicing enhancers (ESEs and ISEs) or exonic and intronic silencers (ESSs and ISSs). Specific binding of SR proteins to their cognate splicing enhancers as well as binding of splicing repressor to silencer sequences serve to enhance or inhibit recognition of weak splice sites by the splicing machinery. Given that the vast majority of human genes contain introns and that most pre-mRNAs containing multiple exons undergo alternative splicing, mutations disrupting or creating such auxiliary elements can result in aberrant splicing events at the origin of various human diseases. In the past few years, numerous studies have reported several approaches allowing correction of such aberrant splicing events by targeting either the mutated sequences or the splicing regulators whose binding is affected by the mutation. The aim of the present review is to highlight the different means by which it is possible to modulate the activity of SR splicing factors and to bring out those holding the greatest promises for the development of therapeutic treatments.
Collapse
Affiliation(s)
- Johann Soret
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 122, Centre National de Recherche Scientifique, 1919, route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
21
|
Yang L, Lin C, Liu ZR. Signaling to the DEAD box—Regulation of DEAD-box p68 RNA helicase by protein phosphorylations. Cell Signal 2005; 17:1495-504. [PMID: 15927448 DOI: 10.1016/j.cellsig.2005.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
P68 nuclear RNA helicase is essential for normal cell growth. The protein plays a very important role in cell development and proliferation. However, the molecular mechanism by which the p68 functions in cell developmental program is not clear. We previously observed that bacterially expressed his-p68 was phosphorylated at multiple sites including serine/threonine and tyrosine [L. Yang, Z.R. Liu, Protein Expr. Purif., 35: 327]. Here we report that p68 RNA helicase is phosphorylated at tyrosine residue(s) in HeLa cells. Phosphorylation of p68 at threonine or tyrosine residues responds differently to tumor necrosis factor alpha (TNF-alpha)induced cell signal. Kinase inhibition and in vitro kinase assays demonstrate that p68 RNA helicase is a cellular target of p38 MAP kinase. Phosphorylation of p68 affects the ATPase and RNA unwinding activities of the protein. In addition, we demonstrate here that phosphorylation of p68 RNA helicase controls the function of the protein in the pre-mRNA splicing process. Interestingly, phosphorylation at different amino acid residues exhibits different regulatory effects. The data suggest that function(s) of p68 RNA helicase may be subjected to the regulation of multiple cell signal pathways.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
22
|
Jeanteur P, Tazi J. Le code de l’épissage et sa modulation thérapeutique par des molécules chimiques. Med Sci (Paris) 2005; 21:793-5. [PMID: 16197888 DOI: 10.1051/medsci/20052110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Singh R, Valcárcel J. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 2005; 12:645-53. [PMID: 16077728 DOI: 10.1038/nsmb961] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 06/10/2005] [Indexed: 12/23/2022]
Abstract
Specificity is key to biological regulation. Two families of RNA binding proteins, heterogeneous nuclear ribonucleoproteins and serine-arginine-rich proteins, were initially thought to have redundant or nonspecific biochemical functions. Recently, members of these families have been found as components of distinct regulatory complexes with highly specific and essential roles in mRNA metabolism. Here we discuss the basis for their functional specificity and the mechanisms of action of some of their characteristic protein domains.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
24
|
Venables JP, Bourgeois CF, Dalgliesh C, Kister L, Stevenin J, Elliott DJ. Up-regulation of the ubiquitous alternative splicing factor Tra2β causes inclusion of a germ cell-specific exon. Hum Mol Genet 2005; 14:2289-303. [PMID: 16000324 DOI: 10.1093/hmg/ddi233] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have discovered a new exon of the homeodomain-interacting kinase HipK3 that incorporates a premature stop codon and is included only in the human testis. To investigate this, we tested the effects of transfecting cells with green fluorescent protein fusions of RNA-binding proteins implicated in spermatogenesis using a novel assay based on multi-fraction fluorescence-activated cell sorting (MF-FACS). This allows the effect of a controlled titration of any splicing factor on the splicing of endogenous genes to be studied in vivo. We found that Tra2beta recapitulates testis-specific splicing of endogenous HipK3 in a concentration-dependent manner and binds specifically to a long purine-rich sequence in the novel exon. This sequence was also specifically bound by hnRNP A1, hnRNP H, ASF/SF2 and SRp40, but not by 9G8. Consistent with these observations, in vitro studies showed that this sequence shifts splicing to a downstream 5' splice site within a heterologous pre-mRNA substrate in the presence of Tra2beta, ASF/SF2 and SRp40, whereas hnRNP A1 specifically inhibits this choice. By mutating the purine-rich sequence in the context of the HipK3 gene, we also show that it is the major determinant of Tra2beta- and hnRNP A1-mediated regulation. Tra2 is essential for sex determination and spermatogenesis in flies, and Tra2beta protein was most highly expressed in testis out of six mouse tissues, whereas hnRNP A1 is down-regulated during germ cell development. Therefore, our data imply an evolutionarily conserved role for Tra2 proteins in spermatogenesis and suggest that an elevated concentration of Tra2beta may convert it into a tissue-specific splicing factor.
Collapse
Affiliation(s)
- Julian P Venables
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Masuhiro Y, Mezaki Y, Sakari M, Takeyama KI, Yoshida T, Inoue K, Yanagisawa J, Hanazawa S, O'malley BW, Kato S. Splicing potentiation by growth factor signals via estrogen receptor phosphorylation. Proc Natl Acad Sci U S A 2005; 102:8126-31. [PMID: 15919818 PMCID: PMC1149443 DOI: 10.1073/pnas.0503197102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase-mediated growth factor signals are known to augment the ligand-induced transactivation function of nuclear estrogen receptor alpha (ERalpha) through phosphorylation of Ser-118 within the ERalpha N-terminal transactivation (activation function-1) domain. We identified the spliceosome component splicing factor (SF)3a p120 as a coactivator specific for human ERalpha (hERalpha) activation function-1 that physically associated with ERalpha dependent on the phosphorylation state of Ser-118. SF3a p120 potentiated hERalpha-mediated RNA splicing, and notably, the potentiation of RNA splicing by SF3a p120 depended on hER Ser-118 phosphorylation. Thus, our findings suggest a mechanism by which growth factor signaling can regulate gene expression through the modulation of RNA splicing efficiency via phosphorylation of sequence-specific activators, after association between such activators and the spliceosome.
Collapse
Affiliation(s)
- Yoshikazu Masuhiro
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tazi J, Bakkour N, Soret J, Zekri L, Hazra B, Laine W, Baldeyrou B, Lansiaux A, Bailly C. Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 2005; 67:1186-94. [PMID: 15625279 DOI: 10.1124/mol.104.007633] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pre-mRNA splicing is an essential step of the expression of most metazoan protein-coding genes, which is often regulated in a cell type-specific or developmental manner. We have demonstrated previously that human DNA topoisomerase I, an extensively studied target for anticancer drugs, also has an intrinsic protein kinase activity that specifically phosphorylates proteins involved in splice site selection. Therefore, DNA topoisomerase I was recently shown to play a critical role in alternative splicing. Here, we have exploited these novel properties of DNA topoisomerase I to develop entirely novel diospyrin derivatives targeting its protein kinase activity and thereby modulating pre-mRNA splicing. Although some derivatives indeed inhibit kinase activity of topoisomerase I, they did not block reactions of topoisomerase I on DNA. However, these drugs interfere with camptothecin-dependent topoisomerase I-mediated DNA cleavage, implying that diospyrin derivatives mediate a conformational change of topoisomerase I. It is note-worthy that in vitro splicing reactions revealed that diospyrin derivatives alter various steps of splicing. Some diospyrin derivatives inhibit either the first or the second catalytic step of splicing but not spliceosome assembly, whereas diospyrin itself prevents the formation of full spliceosome. Our data revealed for the first time that diospyrin derivatives are able to stall the dynamic assembly of the spliceosome and open the exciting possibility of using these derivatives to correct aberrant splicing in human genetic diseases.
Collapse
Affiliation(s)
- Jamal Tazi
- IGM-Centre National de la Recherche Scientifique-UMII, Unité Mixte de Recherche 5535, l'Institut Fédératif de Recherches 122, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bourgeois CF, Lejeune F, Stévenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:37-88. [PMID: 15210328 DOI: 10.1016/s0079-6603(04)78002-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.
Collapse
Affiliation(s)
- Cyril F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, C.U. Strasbourg, France
| | | | | |
Collapse
|