1
|
Sakane F, Murakami C, Sakai H. Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways. Adv Biol Regul 2025; 95:101054. [PMID: 39368888 DOI: 10.1016/j.jbior.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| |
Collapse
|
2
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
3
|
Wu Y, Cheng M, Jiang Y, Zhang X, Li J, Zhu Y, Yao Q. Calcium-based biomaterials: Unveiling features and expanding applications in osteosarcoma treatment. Bioact Mater 2024; 32:385-399. [PMID: 37920827 PMCID: PMC10618625 DOI: 10.1016/j.bioactmat.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023] Open
Abstract
Calcium, an indispensable element in bone tissues, plays a crucial role in various cellular processes involved in cancer progression. Its ubiquitous yet spatially distinct distribution in the body presents an opportunity to target calcium homeostasis as a novel strategies for cancer treatment, with specific advantages in osteosarcoma therapy. In this comprehensive review, we retrospect the calcium biology intersected with cancer progression, highlight the unveiling features of calcium-based biomaterials in regulating both bone homeostasis and cancer development. We also provide an overview of recent breakthroughs in cancer therapy that leverage calcium biomaterials, showcasing their potential to serve as versatile, customizable platforms for osteosarcoma treatment and as reservoirs for supporting bone reconstruction.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Min Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingqiang Yao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
4
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
5
|
Receptor-specific Ca 2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes. iScience 2021; 24:103139. [PMID: 34646983 PMCID: PMC8496176 DOI: 10.1016/j.isci.2021.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists. Distinct stereotypic Ca2+ oscillations are elicited by P2Y1 and P2Y2 receptors P2X receptors do not contribute to the generation of Ca2+ oscillations Agonist-specific Ca2+ spike shapes reflect discrete modes of PKC negative feedback Bifurcation of IP3/PKC signaling yields unique Ca2+ oscillation signatures
Collapse
|
6
|
Wang CC, Weyrer C, Fioravante D, Kaeser PS, Regehr WG. Presynaptic Short-Term Plasticity Persists in the Absence of PKC Phosphorylation of Munc18-1. J Neurosci 2021; 41:7329-7339. [PMID: 34290081 PMCID: PMC8412997 DOI: 10.1523/jneurosci.0347-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP.
Collapse
Affiliation(s)
- Chih-Chieh Wang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher Weyrer
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Diasynou Fioravante
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
7
|
Hong F, Yang Y, Chen B, Li P, Wang G, Jiang Y. Protein kinase C-θ knockout decreases serum IL-10 levels and inhibits insulin secretion from islet β cells. Islets 2021; 13:24-31. [PMID: 33719858 PMCID: PMC8018435 DOI: 10.1080/19382014.2021.1890963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Various subtypes of protein kinase C (PKC) are expressed in islet β cells and regulate β cell proliferation and survival. PKC-θ is distributed in the immune system and promotes the secretion of IL-10, which manifests a critical role in the onset of diabetes, by the immune cells. However, the role of PKC-θ in islets has not been concerned. In the present study, we investigated the role of PKC-θ in the protection of islet β cells and insulin secretion. Fasting glucose and insulin measurement, glucose tolerant test, immunofluorescence, and ELISA were conducted to study the influence of PKC-θ knockout on islet β cell survival and function, and explore the mechanism underlying this regulation. PKC-θ knockout mice at 2 weeks manifested normal serum insulin levels, glucose tolerance, and β cell mass. Knockout mice at 8 weeks show decreased β cell mass, but manifested normal insulin levels and glucose tolerance. Knockout mice at 16 weeks manifested impaired glucose tolerance, β cell mass, and decreased glucose stimulated insulin secretion. Furthermore, knockout mice manifested decreased serum IL-10 level compared with normal mice since 2 weeks. IL-10 injection into knockout mice improved glucose tolerance, serum insulin level, and reduced β cell mass, and IL-10 administration into cultured pancreatic tissue increased glucose stimulated insulin secretion. PKC-θ knockout decreases the secretion of IL-10, reduces β cell mass and insulin secretion in pancreatic islets. The present study illuminates the critical role of PKC-θ in protecting the survival and function of islet β cells.
Collapse
Affiliation(s)
- Feng Hong
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- Hong Feng School of Preclinical Medicine, Wannan Medical College; No.22 Wenchang West Road, Wuhu 241002, China
| | - Yang Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Baiyi Chen
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Peng Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Guoguang Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- CONTACT Yuxin Jiang School of Medicine, Jiaxing University, No.118 Jiahang Road, Jiaxing 341001, China
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
8
|
Role of Protein Kinase C in Immune Cell Activation and Its Implication Chemical-Induced Immunotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:151-163. [PMID: 33539015 DOI: 10.1007/978-3-030-49844-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCβ and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCβ and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.
Collapse
|
9
|
Parker PJ, Lockwood N, Davis K, Kelly JR, Soliman TN, Pardo AL, Marshall JJT, Redmond JM, Vitale M, Silvia Martini. A cancer-associated, genome protective programme engaging PKCε. Adv Biol Regul 2020; 78:100759. [PMID: 33039823 PMCID: PMC7689578 DOI: 10.1016/j.jbior.2020.100759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Campus, London, SE1 1UL, UK.
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Joanna R Kelly
- Cancer Research UK, Manchester Institute, Alderley Park, SK10 4TG, UK
| | - Tanya N Soliman
- Barts Cancer Institute, Charterhouse Square, London, EC1M 6BE, UK
| | - Ainara Lopez Pardo
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
10
|
Parra-Abarca J, Rivera-Ramírez N, Villa-Maldonado LF, García-Hernández U, Aguilera P, Arias-Montaño JA. Histamine H 1 and H 3 receptor activation increases the expression of Glucose Transporter 1 (GLUT-1) in rat cerebro-cortical astrocytes in primary culture. Neurochem Int 2019; 131:104565. [PMID: 31586591 DOI: 10.1016/j.neuint.2019.104565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Astrocytes take up glucose via the 45 kDa isoform of the Glucose Transporter 1 (GLUT-1), and in this work we have investigated whether histamine regulates GLUT-1 expression in rat cerebro-cortical astrocytes in primary culture. Cultured astrocytes expressed histamine H1 and H3 receptors (H1Rs and H3Rs) as evaluated by radioligand binding. Receptor functionality was confirmed by the increase in the intracellular concentration of Ca2+ (H1R) and the inhibition of forskolin-induced cAMP accumulation (H3R). Quantitative RT-PCR showed that histamine and selective H1R and H3R agonists (1 h incubation) significantly increased GLUT-1 mRNA to 153 ± 7, 163 ± 2 and 168 ± 13% of control values, respectively. In immunoblot assays, incubation (3 h) with histamine or H1R and H3R agonists increased GLUT-1 protein levels to 224 ± 12, 305 ± 11 and 193 ± 13% of control values, respectively, an action confirmed by inmunocytochemistry. The effects of H1R and H3R agonists were blocked by the selective antagonists mepyramine (H1R) and clobenpropit (H3R). The pharmacological inhibition of protein kinase C (PKC) prevented the increase in GLUT-1 protein induced by either H1R or H3R activation. Furthermore, histamine increased ERK-1/2 phosphorylation, and the effect of H1R and H3R activation on GLUT-1 protein levels was reduced or prevented, respectively, by MEK-1/2 inhibition. These results indicate that by activating H1Rs and H3Rs histamine regulates the expression of GLUT-1 by astrocytes. The effect appears to involve the phospholipase C (PLC) → diacylglycerol (DAG)/Ca2+→ PKC and PLC → DAG/Ca2+ → PKC → MAPK pathways.
Collapse
Affiliation(s)
- Juan Parra-Abarca
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Luis-Fernando Villa-Maldonado
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Ubaldo García-Hernández
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Trexler AW, Knudsen GA, Nicklisch SCT, Birnbaum LS, Cannon RE. 2,4,6-Tribromophenol Exposure Decreases P-Glycoprotein Transport at the Blood-Brain Barrier. Toxicol Sci 2019; 171:463-472. [PMID: 31368499 PMCID: PMC6760274 DOI: 10.1093/toxsci/kfz155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
2,4,6-Tribromophenol (TBP, CAS No. 118-79-6) is a brominated chemical used in the production of flame-retardant epoxy resins and as a wood preservative. In marine environments, TBP is incorporated into shellfish and consumed by predatory fish. Food processing and water treatment facilities produce TBP as a byproduct. 2,4,6-Tribromophenol has been detected in human blood and breast milk. Biologically, TBP interferes with estrogen and thyroid hormone signaling, which regulate important transporters of the blood-brain barrier (BBB). The BBB is a selectively permeable barrier characterized by brain microvessels which are composed of endothelial cells mortared by tight-junction proteins. ATP-binding cassette (ABC) efflux transporters on the luminal membrane facilitate the removal of unwanted endobiotics and xenobiotics from the brain. In this study, we examined the in vivo and ex vivo effects of TBP on two important transporters of the BBB: P-glycoprotein (P-gp, ABCB1) and Multidrug Resistance-associated Protein 2 (MRP2, ABCC2), using male and female rats and mice. 2,4,6-Tribromophenol exposure ex vivo resulted in a time- (1-3 h) and dose- (1-100 nM) dependent decrease in P-gp transport activity. MRP2 transport activity was unchanged under identical conditions. Immunofluorescence and western blotting measured decreases in P-gp expression after TBP treatment. ATPase assays indicate that TBP is not a substrate and does not directly interact with P-gp. In vivo dosing with TBP (0.4 µmol/kg) produced decreases in P-gp transport. Co-treatment with selective protein kinase C (PKC) inhibitors prevented the TBP-mediated decreases in P-gp transport activity.
Collapse
Affiliation(s)
- Andrew W Trexler
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Sascha C T Nicklisch
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla 92093, California
- Department of Environmental Toxicology, University of California Davis 95616, Davis, California
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| | - Ronald E Cannon
- NCI Laboratory of Toxicology and Toxicokinetics, Research Triangl Park, North Carolina, 27709
| |
Collapse
|
12
|
Boucher E, Goldin-Blais L, Basiren Q, Mandato CA. Actin dynamics and myosin contractility during plasma membrane repair and restoration: Does one ring really heal them all? CURRENT TOPICS IN MEMBRANES 2019; 84:17-41. [PMID: 31610862 DOI: 10.1016/bs.ctm.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to survive daily insults, cells have evolved various mechanisms that detect, stabilize and repair damages done to their plasma membrane and cytoskeletal structures. Damage to the PM endangers wounded cells by exposing them to uncontrolled exchanges with the extracellular milieu. The processes and molecular machinery enabling PM repair are therefore at the center of the bulk of the investigations into single-cell repair program. Wounds are repaired by dynamically remodeling the composition and shape of the injured area through exocytosis-mediated release of intracellular membrane components to the wounded area, endocytosis-mediated removal of the injured area, or the shedding of the injury. The wound healing program of Xenopus oocytes and early Drosophila embryos is by contrast, mostly characterized by the rapid formation of a large membrane patch over the wound that eventually fuse with the plasma membrane which restores plasma membrane continuity and lead to the shedding of patch material into the extracellular space. Formation and contraction of actomyosin ring restores normal plasma membrane composition and organizes cytoskeletal repairs. The extend of the contributions of the cytoskeleton to the wound healing program of somatic cells have comparatively received little attention. This review offers a survey of the current knowledge on how actin dynamics, myosin-based contraction and other cytoskeletal structures affects PM and cortical cytoskeleton repair of somatic cells.
Collapse
Affiliation(s)
- Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laurence Goldin-Blais
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Quentin Basiren
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Yu S, Liu X, Men L, Yao J, Xing Q, Du J. Selenoprotein S protects against high glucose-induced vascular endothelial apoptosis through the PKCβII/JNK/Bcl-2 pathway. J Cell Biochem 2019; 120:8661-8675. [PMID: 30485531 DOI: 10.1002/jcb.28154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Vascular endothelial apoptosis is closely associated with the pathogenesis and progression of diabetic macrovascular diseases. Selenoprotein S (SelS) participates in the protection of vascular endothelial and smooth muscle cells from oxidative and endoplasmic reticulum stress-induced injury. However, whether SelS can protect vascular endothelium from high glucose (HG)-induced apoptosis and the underlying mechanism remains unclear. The present study preliminarily analyzed aortic endothelial apoptosis and SelS expression in diabetic rats in vivo and the effects of HG on human umbilical vein endothelial cell (HUVEC) apoptosis and SelS expression in vitro. Subsequently, SelS expression was up- or downregulated in HUVECs using the pcDNA3.1-SelS recombinant plasmid and SelS-specific small interfering RNAs, and the effects of high/low SelS expression on HG-induced HUVEC apoptosis and a possible molecular mechanism were analyzed. As expected, HG induced vascular endothelial apoptosis and upregulated endothelial SelS expression in vivo and in vitro. SelS overexpression in HUVECs suppressed HG-induced increase in apoptosis and cleaved caspase3 level, accompanied by reduced protein kinase CβII (PKCβII), c-JUN N-terminal kinase (JNK), and B-cell lymphoma/leukemia-2 (Bcl-2) phosphorylation. In contrast, inhibiting SelS expression in HUVECs further aggravated HG-induced increase in apoptosis and cleaved caspase3 level, which was accompanied by increased PKCβII, JNK, and Bcl-2 phosphorylation. Pretreatment with PKC activators blocked the protective effects of SelS and increased the apoptosis and cleaved caspase3 level in HUVECs. In summary, SelS protects vascular endothelium from HG-induced apoptosis, and this was achieved through the inhibition of PKCβII/JNK/Bcl-2 pathway to eventually inhibit caspase3 activation. SelS may be a promising target for the prevention and treatment of diabetic macrovascular complications.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoying Liu
- Department of General Practice, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Men
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjie Yao
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qian Xing
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
He Y, Wang ZJ. Spinal and afferent PKC signaling mechanisms that mediate chronic pain in sickle cell disease. Neurosci Lett 2019; 706:56-60. [PMID: 31051220 DOI: 10.1016/j.neulet.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Pain is the most characteristic feature of sickle cell disease (SCD). Patients with SCD live with unpredictable, recurrent episodes of acute painful crisis, as well as chronic unremitting pain throughout their lifetime. While most of the research and medical efforts have focused on treating vaso-occlusion crisis and acute pain, chronic pain remains a significant challenge faced by patients and physicians. Emerging evidence from human and animal studies has suggested the presence of a neuropathic component in SCD pain. New knowledge on the neurobiology of chronic pain in SCD has significant implications in unraveling the underlying mechanisms. This review focuses on the recent advances on the role of protein kinase C or PKC in promoting and maintaining chronic pain conditions. With a highlight of a specific PKC isoform, PKCδ, we aim to propose PKC as an essential regulator of chronic pain in SCD, which may ultimately lead to innovative therapeutic strategies for treating this devastating life-long problem in patients with SCD.
Collapse
Affiliation(s)
- Ying He
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60612, United States.
| |
Collapse
|
15
|
Hu Q, Huang L, Zhao C, Shen Y, Zheng XF, Wang Y, Zhou CH, Wu YQ. Ca 2+-PKCα-ERK1/2 signaling pathway is involved in the suppressive effect of propofol on proliferation of neural stem cells from the neonatal rat hippocampus. Brain Res Bull 2019; 149:148-155. [PMID: 31002911 DOI: 10.1016/j.brainresbull.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/31/2018] [Accepted: 04/09/2019] [Indexed: 11/17/2022]
Abstract
Neonatal exposure to propofol induces persistent behavioral abnormalities in adulthood. In addition to triggering the apoptosis of neurons in the developing brain, anesthetics may contribute to the development of cognitive deficits by interfering neurogenesis. Given the importance of neural stem cell (NSC) proliferation in neurogenesis, the effect of propofol on NSC proliferation and the mechanisms underlying this effect were investigated. Hippocampal NSC proliferation from neonatal rats was examined using 5-bromo-2'-deoxyuridine incorporation assays in vitro. The [Ca2+]i was analyzed using flow cytometry. The activations of protein kinase C (PKC)-α and extracellular signal-regulated kinases 1/2 (ERK1/2) were measured by western blot. Our results showed that propofol significantly inhibited NSC proliferation in vitro. [Ca2+]i and activations of PKCα and ERK1/2 in NSCs were markedly suppressed by propofol (5, 10, 20, 40 and 80 μM). Ca2+ channel blocker verapamil, PKCα inhibitor chelerythrine and ERK1/2 kinase inhibitor PD98059 exerted their maximal effects on NSC function at concentrations of 20, 10 and 20 μM, respectively. Propofol (20 μM) could not produce further additional suppression effects when used in combination with verapamil (20 μM), chelerythrine (10 μM) or PD98059 (20 μM). In addition, phorbol-12-myristate-13-acetate (PMA, a activator of PKC) markedly attenuated the suppressive effects of propofol on ERK1/2 phosphorylation and NSC proliferation. The inhibition effects on PKCα activation, ERK1/2 phosphorylation and NSC proliferation induced by propofol were significantly improved by BayK8644 (a calcium channel agonist). These results indicate that propofol can inhibits hippocampal NSC proliferation by suppressing the Ca2+-PKCα-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Li Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China; Department of Pharmacy, Women & Infants Hospital of Zhengzhou, Zhengzhou, PR China
| | - Chao Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Ying Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Xiao-Feng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yu Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Cheng-Hua Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
16
|
Márquez-Valadez B, Aquino-Miranda G, Quintero-Romero MO, Papacostas-Quintanilla H, Bueno-Nava A, López-Rubalcava C, Díaz NF, Arias-Montaño JA, Molina-Hernández A. The Systemic Administration of the Histamine H 1 Receptor Antagonist/Inverse Agonist Chlorpheniramine to Pregnant Rats Impairs the Development of Nigro-Striatal Dopaminergic Neurons. Front Neurosci 2019; 13:360. [PMID: 31040765 PMCID: PMC6476962 DOI: 10.3389/fnins.2019.00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.
Collapse
Affiliation(s)
- Berenice Márquez-Valadez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guillermo Aquino-Miranda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mijail-Oliver Quintero-Romero
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Helena Papacostas-Quintanilla
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carolina López-Rubalcava
- Laboratorio de Psicofarmacología y Trastornos de la Alimentación, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados delInstituto Politécnico Nacional, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
17
|
Mehjabin R, Chen L, Huang R, Zhu D, Yang C, Li Y, Liao L, He L, Zhu Z, Wang Y. Expression and localization of grass carp pkc-θ (protein kinase C theta) gene after its activation. FISH & SHELLFISH IMMUNOLOGY 2019; 87:788-795. [PMID: 30716520 DOI: 10.1016/j.fsi.2019.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Haemorrhagic disease caused by grass carp reovirus (GCRV) can result in large-scale death of young grass carp, leading to irreparable economic losses that seriously affect large-scale breeding. Protein kinase C (PKC, also known as PRKC) represents a family of serine/threonine protein kinases that includes multiple isozymes in many species. Among these, PKC-θ (PKC theta, also written as PRKCQ) is a novel isoform, mainly expressed in T cells, that is known to be involved in immune system function in mammals. To date, no research on immunological functions of fish Pkc-θ has been reported. To address this issue, we cloned the grass carp pkc-θ gene. Phylogenetic and syntenic analysis showed that this gene is the most evolutionarily conserved relative to zebrafish. Real-time quantitative PCR (RT-qPCR) indicated that pkc-θ was expressed at high levels in the gills and spleen of healthy grass carp. Infection with GCRV down regulated pkc-θ expression in the gills and spleen. Gene products that function upstream and downstream of pkc-θ were up regulated in the gill, but were down-regulated in the spleen. These results suggest that direct or indirect targeting of pkc-θ by GCRV may help the virus evade host immune defences in the spleen. Phorbol ester (PMA) treatment of Jurkat T cells induced translocation of grass carp Pkc-θ from the cytoplasm to the plasma membrane. This response to PMA suggests evolutionary conservation of an immune response function in fish Pkc-θ, as well as conservation of its sequence and structural domains. This study expanded our knowledge of the fish PKC gene family, and explored the role of pkc-θ in function of the grass carp immune system, providing new insights which may facilitate further studies of its biological functions.
Collapse
Affiliation(s)
- Rumana Mehjabin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
18
|
Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER, Huang X. Identification and Analysis of Alzheimer's Candidate Genes by an Amplitude Deviation Algorithm. ACTA ACUST UNITED AC 2019; 9. [PMID: 31080696 PMCID: PMC6505709 DOI: 10.4172/2161-0460.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Alzheimer’s disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. Methods: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. Results: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. Conclusions: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.
Collapse
Affiliation(s)
- Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Hualan Yang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Shipeng Wang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Meixia Chen
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hannah S Chen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristy A Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
19
|
Ramírez-Rodríguez GB, Olvera-Hernández S, Vega-Rivera NM, Ortiz-López L. Melatonin Influences Structural Plasticity in the Axons of Granule Cells in the Dentate Gyrus of Balb/C Mice. Int J Mol Sci 2018; 20:ijms20010073. [PMID: 30585191 PMCID: PMC6337618 DOI: 10.3390/ijms20010073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, the main product synthesized by the pineal gland, acts as a regulator of the generation of new neurons in the dentate gyrus (DG). Newborn neurons buffer the deleterious effects of stress and are involved in learning and memory processes. Furthermore, melatonin, through the regulation of the cytoskeleton, favors dendrite maturation of newborn neurons. Moreover, newborn neurons send their axons via the mossy fiber tract to Cornu Ammonis 3 (CA3) region to form synapses with pyramidal neurons. Thus, axons of newborn cells contribute to the mossy fiber projection and their plasticity correlates with better performance in several behavioral tasks. Thus, in this study, we analyzed the impact of exogenous melatonin (8 mg/kg) administered daily for one- or six-months on the structural plasticity of infrapyramidal- and suprapyramidal mossy fiber projection of granule cells in the DG in male Balb/C mice. We analyzed the mossy fiber projection through the staining of calbindin, that is a calcium-binding protein localized in dendrites and axons. We first found an increase in the number of calbindin-positive cells in the granular cell layer in the DG (11%, 33%) after treatment. Futhermore, we found an increase in the volume of suprapyramidal (>135%, 59%) and infrapyramidal (>128%, 36%) mossy fiber projection of granule neurons in the DG after treatment. We also found an increase in the volume of CA3 region (>146%, 33%) after treatment, suggesting that melatonin modulates the structural plasticity of the mossy fiber projection to establish functional synapses in the hippocampus. Together, the data suggest that, in addition to the previously reported effects of melatonin on the generation of new neurons and its antidepressant like effects, melatonin also modulates the structural plasticity of axons in granule cells in the DG.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Sandra Olvera-Hernández
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Leonardo Ortiz-López
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| |
Collapse
|
20
|
Mugami S, Dobkin-Bekman M, Rahamim-Ben Navi L, Naor Z. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells. Mol Cell Endocrinol 2018; 463:97-105. [PMID: 28392410 DOI: 10.1016/j.mce.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022]
Abstract
The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCβII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
21
|
Abstract
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure.
Collapse
|
22
|
Sakane F, Mizuno S, Takahashi D, Sakai H. Where do substrates of diacylglycerol kinases come from? Diacylglycerol kinases utilize diacylglycerol species supplied from phosphatidylinositol turnover-independent pathways. Adv Biol Regul 2018; 67:101-108. [PMID: 28918129 DOI: 10.1016/j.jbior.2017.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprises ten isozymes (α-κ) and regulates a wide variety of physiological and pathological events, such as cancer, type II diabetes, neuronal disorders and immune responses. DG and PA consist of various molecular species that have different acyl chains at the sn-1 and sn-2 positions, and consequently, mammalian cells contain at least 50 structurally distinct DG/PA species. Because DGK is one of the components of phosphatidylinositol (PI) turnover, the generally accepted dogma is that all DGK isozymes utilize 18:0/20:4-DG derived from PI turnover. We recently established a specific liquid chromatography-mass spectrometry method to analyze which PA species were generated by DGK isozymes in a cell stimulation-dependent manner. Interestingly, we determined that DGKδ, which is closely related to the pathogenesis of type II diabetes, preferentially utilized 14:0/16:0-, 14:0/16:1-, 16:0/16:0-, 16:0/16:1-, 16:0/18:0- and 16:0/18:1-DG species (X:Y = the total number of carbon atoms: the total number of double bonds) supplied from the phosphatidylcholine-specific phospholipase C pathway, but not 18:0/20:4-DG, in high glucose-stimulated C2C12 myoblasts. Moreover, DGKα mainly consumed 14:0/16:0-, 16:0/18:1-, 18:0/18:1- and 18:1/18:1-DG species during cell proliferation in AKI melanoma cells. Furthermore, we found that 16:0/16:0-PA was specifically produced by DGKζ in Neuro-2a cells during retinoic acid- and serum starvation-induced neuronal differentiation. These results indicate that DGK isozymes utilize a variety of DG molecular species derived from PI turnover-independent pathways as substrates in different stimuli and cells. DGK isozymes phosphorylate various DG species to generate various PA species. It was revealed that the modes of activation of conventional and novel protein kinase isoforms by DG molecular species varied considerably. However, PA species-selective binding proteins have not been found to date. Therefore, we next attempted to identify PA species-selective binding proteins from the mouse brain and identified α-synuclein, which has causal links to Parkinson's disease. Intriguingly, we determined that among phospholipids, including several PA species (16:0/16:0-PA, 16:0/18:1-PA, 18:1/18:1-PA, 18:0/18:0-PA and 18:0/20:4-PA); 18:1/18:1-PA was the most strongly bound PA to α-synuclein. Moreover, 18:1/18:1-PA strongly enhanced secondary structural changes from the random coil form to the α-helix form and generated a multimeric and proteinase K-resistant α-synuclein protein. In contrast with the dogma described above, our recent studies strongly suggest that PI turnover-derived DG species and also various DG species derived from PI turnover-independent pathways are utilized by DGK isozymes. DG species supplied from distinct pathways may be utilized by DGK isozymes based on different stimuli present in different types of cells, and individual PA molecular species would have specific targets and exert their own physiological functions.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| |
Collapse
|
23
|
Corsini E, Galbiati V, Papale A, Kummer E, Pinto A, Guaita A, Racchi M. The role of HSP27 in RACK1-mediated PKC activation in THP-1 cells. Immunol Res 2017; 64:940-50. [PMID: 27178349 DOI: 10.1007/s12026-016-8802-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Receptor for Activated C Kinase 1 (RACK1) pseudosubstrate is a commercially available peptide that directly activates protein kinase C-β (PKCβ). We have recently shown that RACK1 pseudosubstrate, alone or in combination with classical immune activators, results in increased cytokine production and CD86 upregulation in primary leukocytes. Furthermore, we demonstrated a role of PKCβ and RACK1 in chemical allergen-induced CD86 expression and IL-8 production in both THP-1 cells and primary human dendritic cells. Aim of this study was to shed light on the mechanisms underlying RACK1 pseudosubstrate-induced immune activation and to compare it to lipopolysaccharide (LPS). The human promyelocytic cell line THP-1 was used throughout the study. RACK1 pseudosubstrate induced rapid (5 min) and dose-related PKCβ activation as assessed by its membrane translocation. Among the proteins phosphorylated, we identified Hsp27. Both RACK1 pseudosubstrate and LPS induce its phosphorylation and release in culture medium. The release of Hsp27 induced by RACK1 pseudosubstrate was also confirmed in peripheral blood mononuclear cells. To evaluate the role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, we conducted Hsp27 silencing and neutralization experiments. Both strategies confirmed the central role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, as assessed by IL-8 production and upregulation of CD86.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Angela Papale
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Elena Kummer
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Antonella Pinto
- Department of Drug Sciences - Pharmacology, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | | | - Marco Racchi
- Department of Drug Sciences - Pharmacology, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
24
|
Identification and characterisation of lamprey protein kinase C delta-like gene. Sci Rep 2017; 7:12214. [PMID: 28939820 PMCID: PMC5610172 DOI: 10.1038/s41598-017-12526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/15/2017] [Indexed: 01/13/2023] Open
Abstract
Protein kinase C-δ (PKC-δ), a member of the lipid-regulated serine/threonine PKC family, has been implicated in a wide range of important cellular processes, such as cell growth, differentiation, and apoptosis. Lampreys belong to the most primitive class of vertebrates, and there is little information on PKC-δ in these animals. In this study, a PKC-δ-like cDNA sequence and deduced PKC-δ-like amino acid sequence were identified in the Japanese lamprey (Lampetra japonica). The PKC-δ-like gene shared approximately 60% sequence identity with its homologs in jawed vertebrates. The anti-PKC-δ-like polyclonal antibodies were well prepared, and experiments showed that PKC-δ-like was primarily distributed in the supraneural body of the lamprey. Both mRNA and protein levels of PKC-δ-like in supraneural body cells were increased after incubation with cis-diaminedichloroplatinum (CDDP). Moreover, PKC-δ-like protein induced the apoptosis of HEK-293T cells. In addition, the activation of PKC-δ-like resulted in apoptosis. Conversely, the inhibition of PKC-δ-like activity disrupted the CDDP-mediated induction of cellular apoptosis. These results indicate that PKC-δ-like identified in lampreys might play an important role in apoptosis in jawless vertebrates.
Collapse
|
25
|
Compton LA, Doyle LA. Advances in the Genetic Characterization of Cutaneous Mesenchymal Neoplasms: Implications for Tumor Classification and Novel Diagnostic Markers. Surg Pathol Clin 2017; 10:299-317. [PMID: 28477882 DOI: 10.1016/j.path.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cutaneous mesenchymal neoplasms often pose significant diagnostic challenges; many such entities are rare or show clinical and histologic overlap with both other mesenchymal and non-mesenchymal lesions. Recent advances in the genetic classification of many cutaneous mesenchymal neoplasms have not only helped define unique pathologic entities and increase our understanding of their biology, but have also provided new diagnostic markers. This review details these recent discoveries, with a focus on their implications for tumor classification and diagnosis.
Collapse
Affiliation(s)
- Leigh A Compton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Hyperpolarization-activated current I h in mouse trigeminal sensory neurons in a transgenic mouse model of familial hemiplegic migraine type-1. Neuroscience 2017; 351:47-64. [DOI: 10.1016/j.neuroscience.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
|
27
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Mugami S, Kravchook S, Rahamim-Ben Navi L, Seger R, Naor Z. Differential roles of PKC isoforms (PKCs) and Ca 2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Mol Cell Endocrinol 2017; 439:141-154. [PMID: 27810601 DOI: 10.1016/j.mce.2016.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
We examined the role of PKCs and Ca2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LβT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LβT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca2+ influx via voltage-gated Ca2+ channels and Ca2+ mobilization, while in the differentiated LβT2 gonadotrope cells it is mediated only by Ca2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca2+ pools involved in GnRH stimulated p38MAPK phosphorylation.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shani Kravchook
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
29
|
Eiam-Ong S, Chaipipat M, Manotham K, Eiam-Ong S. Rapid Action of Aldosterone on Protein Levels of Sodium-Hydrogen Exchangers and Protein Kinase C Beta Isoforms in Rat Kidney. Int J Endocrinol 2017; 2017:2975853. [PMID: 29201052 PMCID: PMC5671724 DOI: 10.1155/2017/2975853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022] Open
Abstract
Previous in vitro studies demonstrated that aldosterone rapidly activates sodium-hydrogen exchangers 1 and 3 (NHE 1 and 3). In vitro investigations revealed that protein kinase C (PKC) regulates NHE properties. We previously demonstrated that aldosterone rapidly enhances PKCα protein abundance in the rat kidney. There are no reports of renal PKCβ (I and II) protein levels related to the regulation by aldosterone. There are also no in vivo data regarding the rapid effects of aldosterone on renal protein levels of NHE (1 and 3) and PKCβ (I and II), simultaneously. In the current study, rats received normal saline solution or aldosterone (150 μg/kg BW, i.p.). After 30 minutes, abundance and immunoreactivity of these proteins were determined by Western blot analysis and immunohistochemistry, respectively. Aldosterone increased NHE1 and NHE3 protein abundance to 152% and 134%, respectively (P < 0.05). PKCβI protein level was enhanced by 30%, whereas PKCβII declined slightly. Aldosterone increased NHE protein expression mostly in the medulla. PKCβI immunostaining intensity was increased in the glomeruli, renal vasculature, and thin limb of the loop of Henle, while PKCβII was reduced. This is the first in vivo study to simultaneously demonstrate that aldosterone rapidly elevates PKCβI and NHE (1 and 3) protein abundance in the rat kidney. Aldosterone-induced NHE (1 and 3) protein levels may be related to PKCβI activation.
Collapse
Affiliation(s)
- Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mookda Chaipipat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Somchai Eiam-Ong
- Department of Medicine (Division of Nephrology), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
30
|
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2016; 45:89-108. [PMID: 27913853 DOI: 10.1007/s00240-016-0952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.
Collapse
|
31
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
32
|
Capuani B, Pacifici F, Pastore D, Palmirotta R, Donadel G, Arriga R, Bellia A, Di Daniele N, Rogliani P, Abete P, Sbraccia P, Guadagni F, Lauro D, Della-Morte D. The role of epsilon PKC in acute and chronic diseases: Possible pharmacological implications of its modulators. Pharmacol Res 2016; 111:659-667. [PMID: 27461137 DOI: 10.1016/j.phrs.2016.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
|
33
|
Xie L, Chiang ET, Wu X, Kelly GT, Kanteti P, Singleton PA, Camp SM, Zhou T, Dudek SM, Natarajan V, Wang T, Black SM, Garcia JGN, Jacobson JR. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 2016; 11:e0158865. [PMID: 27442243 PMCID: PMC4956111 DOI: 10.1371/journal.pone.0158865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Protein Kinase C (PKC) plays a significant role in thrombin-induced loss of endothelial cell (EC) barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin), dominant negative PKCδ construct and PKCδ silencing (siRNA). In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ) and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.
Collapse
Affiliation(s)
- Lishi Xie
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Eddie T Chiang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Xiaomin Wu
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel T Kelly
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Patrick A Singleton
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sara M Camp
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Tingting Zhou
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Steven M Dudek
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ting Wang
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Steven M Black
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Joe G N Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine and Arizona Respiratory Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R Jacobson
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Kamiya Y, Mizuno S, Komenoi S, Sakai H, Sakane F. Activation of conventional and novel protein kinase C isozymes by different diacylglycerol molecular species. Biochem Biophys Rep 2016; 7:361-366. [PMID: 28955926 PMCID: PMC5613651 DOI: 10.1016/j.bbrep.2016.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
A variety of diacylglycerol (DG) molecular species are produced in stimulated cells. Conventional (α, βII and γ) and novel (δ, ε, η and θ) protein kinase C (PKC) isoforms are known to be activated by DG. However, a comprehensive analysis has not been performed. In this study, we analyzed activation of the PKC isozymes in the presence of 2–2000 mmol% 16:0/16:0-, 16:0/18:1-, 18:1/18:1-, 18:0/20:4- or 18:0/22:6-DG species. PKCα activity was strongly increased by DG and exhibited less of a preference for 18:0/22:6-DG at 2 mmol%. PKCβII activity was moderately increased by DG and did not have significant preference for DG species. PKCγ activity was moderately increased by DG and exhibited a moderate preference for 18:0/22:6-DG at 2 mmol%. PKCδ activity was moderately increased by DG and exhibited a preference for 18:0/22:6-DG at 20 and 200 mmol%. PKCε activity moderately increased by DG and showed a moderate preference for 18:0/22:6-DG at 2000 mmol%. PKCη was not markedly activated by DG. PKCθ activity was the most strongly increased by DG and exhibited a preference for 18:0/22:6-DG at 2 and 20 mmol% DG. These results indicate that conventional and novel PKCs have different sensitivities and dependences on DG and a distinct preference for shorter and saturated fatty acid-containing and longer and polyunsaturated fatty acid-containing DG species, respectively. This differential regulation would be important for their physiological functions. We comprehensively analyzed activation of c/nPKC isozymes by different DG species. c/nPKCs have different sensitivities and dependences on DG. c/nPKCs have a distinct preference for different fatty acid-containing DG species. This differential regulation would be important for PKCs' physiological functions.
Collapse
Affiliation(s)
- Yuuna Kamiya
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Suguru Komenoi
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiromichi Sakai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
35
|
Heterologous, PKC-Mediated Desensitization of Human Histamine H3 Receptors Expressed in CHO-K1 Cells. Neurochem Res 2016; 41:2415-24. [PMID: 27350581 DOI: 10.1007/s11064-016-1954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
Desensitization is a major mechanism to regulate the functional response of G protein-coupled receptors. In this work we studied whether the human histamine H3 receptor of 445 amino acids (hH3R445) experiences heterologous desensitization mediated by PKC activation. Bioinformatic analysis indicated the presence of Serine and Threonine residues susceptible of PKC-mediated phosphorylation on the third intracellular loop and the carboxyl terminus of the hH3R445. In CHO-K1 cells stably transfected with the hH3R445 direct PKC activation by phorbol 12-myristate 13-acetate (TPA, 200 nM) abolished H3R-mediated inhibition of forskolin-stimulated cAMP accumulation. Activation of endogenous purinergic receptors by ATP (adenosine 5'-triphosphate, 10 μM) increased the free calcium intracellular concentration ([Ca(2+)]i) confirming their coupling to phospholipase C stimulation. Incubation with ATP also abolished H3R-mediated inhibition of forskolin-induced cAMP accumulation, and this effect was prevented by the PKC inhibitors Ro-31-8220 and Gö-6976. Pre-incubation with TPA or ATP reduced H3R-mediated stimulation of [(35)S]-GTPγS binding to membranes from CHO-K1-hH3R445 cells by 39.7 and 54.2 %, respectively, with no change in the agonist potency, and the effect was prevented by either Ro-31-8220 or Gö-6976. Exposure to ATP or TPA also resulted in the loss of cell surface H3Rs (-30.4 and -45.1 %) as evaluated by [(3)H]-NMHA binding to intact cells. These results indicate that the hH3R445 undergoes heterologous desensitization upon activation of receptors coupled to PKC stimulation.
Collapse
|
36
|
Wuttke A, Yu Q, Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J Biol Chem 2016; 291:14986-95. [PMID: 27226533 PMCID: PMC4946917 DOI: 10.1074/jbc.m115.698456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.
Collapse
Affiliation(s)
- Anne Wuttke
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Qian Yu
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Anders Tengholm
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
37
|
Kamerbeek CB, Mateos MV, Vallés AS, Pediconi MF, Barrantes FJ, Borroni V. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor. Int J Biochem Cell Biol 2016; 74:1-11. [PMID: 26898898 DOI: 10.1016/j.biocel.2016.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity.
Collapse
Affiliation(s)
- Constanza B Kamerbeek
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Ana S Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - María F Pediconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research UCA-CONICET, Faculty of Medical Sciences, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Virginia Borroni
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
38
|
Expressing an inhibitor of PLCβ1b sustains contractile function following pressure overload. J Mol Cell Cardiol 2016; 93:12-7. [PMID: 26906633 DOI: 10.1016/j.yjmcc.2016.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
The activity of phospholipase Cβ1b (PLCβ1b) is selectively elevated in failing myocardium and cardiac expression of PLCβ1b causes contractile dysfunction. PLCβ1b can be selectively inhibited by expressing a peptide inhibitor that prevents sarcolemmal localization. The inhibitory peptide, PLCβ1b-CT was expressed in heart from a mini-gene using adeno-associated virus (rAAV6-PLCβ1b-CT). rAAV6-PLCβ1b-CT, or blank virus, was delivered IV (4×10(9)vg/g body weight) and trans-aortic-constriction (TAC) or sham-operation was performed 8weeks later. Expression of PLCβ1b-CT prevented the loss of contractile function, eliminated lung congestion and improved survival following TAC with either a 'moderate' or 'severe' pressure gradient. Hypertrophy was attenuated but not eliminated. Expression of the PLCβ1b-CT peptide 2-3weeks after TAC reduced contractile dysfunction and lung congestion, without limiting hypertrophy. PLCβ1b inhibition ameliorates pathological responses following acute pressure overload. The targeting of PLCβ1b to the sarcolemma provides the basis for the development of a new class of inotropic agent.
Collapse
|
39
|
Cao L, Liu P, Gill K, Reece EA, Cheema AK, Zhao Z. Identification of novel cell survival regulation in diabetic embryopathy via phospholipidomic profiling. Biochem Biophys Res Commun 2016; 470:599-605. [PMID: 26797275 PMCID: PMC4756589 DOI: 10.1016/j.bbrc.2016.01.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus in early pregnancy causes birth defects by disturbing metabolic homeostasis and increasing programmed cell death in the embryo. Over-activation of phospholipase Cβ3 and γ1 suggests disturbed phospholipid metabolism, which is an important in regulation of cell signaling and activity. Metabolomic examinations reveal significant changes in the profile of phospholipid metabolism. Among the metabolites, levels of phosphatidylinositol bisphosphate (PIP2) are increased. PIP2 effector PTEN (phosphatase and tensin homolog deleted on chromosome 10) is activated. Activation of protein kinase Bα (PKBα, or AKT1) and mTOR (mechanistic target of rapamycin) is decreased. Inhibition of PLCs and PTEN suppresses over-generation of reactive oxygen species and inhibition of PLCs prevents fragmentation of mitochondria in neural stem cells cultured in high glucose. These observations suggest that maternal hyperglycemia disrupts phospholipid metabolism, leading to perturbation of mitochondrial dynamics and redox homeostasis and suppression of the PKB-mTOR cell survival signaling in the embryos.
Collapse
Affiliation(s)
- Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peiyan Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirandeep Gill
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - E A Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Cooper NH, Balachandra JP, Hardman MJ. Global Gene Expression Analysis in PKCα-/- Mouse Skin Reveals Structural Changes in the Dermis and Defective Wound Granulation Tissue. J Invest Dermatol 2015; 135:3173-3182. [PMID: 26354149 DOI: 10.1038/jid.2015.338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/06/2023]
Abstract
The skin's mechanical integrity is maintained by an organized and robust dermal extracellular matrix (ECM). Resistance to mechanical disruption hinges primarily on homeostasis of the dermal collagen fibril architecture, which is regulated, at least in part, by members of the small leucine-rich proteoglycan (SLRP) family. Here we present data linking protein kinase C alpha (PKCα) to the regulated expression of multiple ECM components including SLRPs. Global microarray profiling reveals deficiencies in ECM gene expression in PKCα-/- skin correlating with abnormal collagen fibril morphology, disorganized dermal architecture, and reduced skin strength. Detailed analysis of the skin and wounds from wild-type and PKCα-/- mice reveals a failure to upregulate collagen and other ECM components in response to injury, resulting in delayed granulation tissue deposition in PKCα-/- wounds. Thus, our data reveal a previously unappreciated role for PKCα in the regulation of ECM structure and deposition during skin wound healing.
Collapse
Affiliation(s)
- Nichola H Cooper
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Medical Biology, Epithelial Epigenetics Laboratory, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeya P Balachandra
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Matthew J Hardman
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
41
|
Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Cancers (Basel) 2015; 7:1271-91. [PMID: 26184315 PMCID: PMC4586769 DOI: 10.3390/cancers7030836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.
Collapse
|
42
|
Park C, Kalinec F. PKCα-Mediated Signals Regulate the Motile Responses of Cochlear Outer Hair Cells. Biophys J 2015; 108:2171-80. [PMID: 25954875 PMCID: PMC4423042 DOI: 10.1016/j.bpj.2015.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
There is strong evidence that changes in the actin/spectrin-based cortical cytoskeleton of outer hair cells (OHCs) regulate their motile responses as well as cochlear amplification, the process that optimizes the sensitivity and frequency selectivity of the mammalian inner ear. Since a RhoA/protein kinase C (PKC)-mediated pathway is known to inhibit the actin-spectrin interaction in other cell models, we decided to investigate whether this signaling cascade could also participate in the regulation of OHC motility. We used high-speed video microscopy and confocal microscopy to explore the effects of pharmacological activation of PKCα, PKCβI, PKCβII, PKCδ, PKCε, and PKCζ with lysophosphatidic acid (LPA) and their inhibition with bisindolylmaleimide I, as well as inhibition of RhoA and Rho-associated protein kinase (ROCK) with C3 and Y-27632, respectively. Motile responses were induced in isolated guinea pig OHCs by stimulation with an 8 V/cm external alternating electrical field as 50 Hz bursts of square wave pulses (100 ms on/off). We found that LPA increased expression of PKCα and PKCζ only, with PKCα, but not PKCζ, phosphorylating the cytoskeletal protein adducin of both Ser-726 and Thr-445. Interestingly, however, inhibition of PKCα reduced adducin phosphorylation only at Ser-726. We also determined that LPA activation of a PKCα-mediated signaling pathway simultaneously enhanced OHC electromotile amplitude and cell shortening, and facilitated RhoA/ROCK/LIMK1-mediated cofilin phosphorylation. Altogether, our results suggest that PKCα-mediated signals, probably via adducin-mediated inhibition of actin-spectrin binding and cofilin-mediated depolymerization of actin filaments, play an essential role in the homeostatic regulation of OHC motility and cochlear amplification.
Collapse
Affiliation(s)
- Channy Park
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
43
|
Grubb DR, Crook B, Ma Y, Luo J, Qian HW, Gao XM, Kiriazis H, Du XJ, Gregorevic P, Woodcock EA. The atypical 'b' splice variant of phospholipase Cβ1 promotes cardiac contractile dysfunction. J Mol Cell Cardiol 2015; 84:95-103. [PMID: 25918049 DOI: 10.1016/j.yjmcc.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
The activity of the early signaling enzyme, phospholipase Cβ1b (PLCβ1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCβ1b activity to cardiac pathology. PLCβ1b, the alternative splice variant, PLCβ1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCβ1b, rAAV6-FLAG-PLCβ1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCβ1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCβ1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCβ1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCβ1b, but not PLCβ1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCβ1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCβ1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.
Collapse
Affiliation(s)
- David R Grubb
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Bryony Crook
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Yi Ma
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Jieting Luo
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Hong Wei Qian
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Ming Gao
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia
| | - Elizabeth A Woodcock
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|
44
|
Corsini E, Galbiati V, Pinto A, Davin A, Polito L, Guaita A, Racchi M. Immunostimulatory effects of RACK1 pseudosubstrate in human leukocytes obtained from young and old donors. Oncotarget 2015; 6:6524-34. [PMID: 25779661 PMCID: PMC4466631 DOI: 10.18632/oncotarget.3002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
Aims of this study were to investigate the ability of RACK1 pseudosubstrate alone or in combination with classical immune stimuli to activate human leukocytes, and to restore age-associated immune defects.A total of 25 donors (17 old donors, 77-79 yrs; 8 young donors, 25-34 yrs) were enrolled. To evaluate the effect of RACK1 pseudosubstrate on cytokine production and CD86 expression the whole blood assay was used. Cultures were treated with RACK1 pseudosubstrate in the presence or absence of lipopolysaccharide (LPS) or phytohaemagglutinin (PHA) and incubated for 24 h or 48 h for LPS-induced CD86 expression, TNF-α, IL-6, IL-8, IL-10 production, and PHA-induced IL-4, IL-10, IFN-γ, respectively. RACK1 pseudosubstrate alone induced IL-6, IL-8, and CD86 expression in both young and old donors, and IFN-γ in old donors. In combination with LPS an increase in IL-8, IL-10 and TNF-α was observed, also resulting in restoration of age-associated defective production, while no changes in the other parameters investigated were found.Even if based on a small sample size, these results suggest the possibility to by-pass some of age-associated immune alterations, which may be beneficial in situations were natural immune stimulation is required, and highlight a different role of PKCβ in immune cells activation.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Antonella Pinto
- Department of Drug Sciences - Pharmacology, University of Pavia, Pavia, Italy
| | | | | | | | - Marco Racchi
- Department of Drug Sciences - Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
45
|
Ramírez-Rodríguez G, Gómez-Sánchez A, Ortíz-López L. Melatonin maintains calcium-binding calretinin-positive neurons in the dentate gyrus during aging of Balb/C mice. Exp Gerontol 2014; 60:147-52. [PMID: 25446980 DOI: 10.1016/j.exger.2014.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
Melatonin, the main product synthesized by the pineal gland, modulates several brain functions through different mechanisms, some of them involving the activation or participation of calcium binding intracellular proteins, such as the alpha calcium dependent protein kinase C and calmodulin. Another calcium-binding protein is calretinin, which exerts an essential role for adult hippocampal neurogenesis. Melatonin favors calretinin-positive neurons in the dentate gyrus (DG) of young mice but hippocampal neurogenesis and plasma levels of melatonin decrease during aging. Thus, in this study, we analyzed the impact of exogenous supplementation with melatonin in calretinin-neurons and their distribution along the dorsal-ventral DG in the hippocampus at three different time points (1, 3, or 6 months) after daily treatment with melatonin (8 mg/kg) in male Balb/C mice. We found an increase in the number of calretinin-positive neurons in the DG after treatment (>66%). Although a significant decline in the number of calretinin-neurons was found in both treated (~60.46-69.56%) and untreated mice (~68.81-70.34%) with respect to the youngest mice analyzed, melatonin still maintained higher number of cells in the DG. Also, the distribution of calretinin-neurons along the dorsal-ventral DG significantly showed more cells in the ventral-DG of mice treated with melatonin. Together, the data suggest that melatonin also acts on calretinin in the DG, supporting it as a molecule connecting calcium signaling and neuronal development.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico.
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| | - Leonardo Ortíz-López
- Laboratory of Neurogenesis, Division of Clinical Research, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 México, D.F., Mexico
| |
Collapse
|
46
|
Velásquez-Martínez MC, Vázquez-Torres R, Rojas LV, Sanabria P, Jiménez-Rivera CA. Alpha-1 adrenoreceptors modulate GABA release onto ventral tegmental area dopamine neurons. Neuropharmacology 2014; 88:110-21. [PMID: 25261018 DOI: 10.1016/j.neuropharm.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023]
Abstract
The ventral tegmental area (VTA) plays an important role in reward and motivational processes involved in drug addiction. Previous studies have shown that alpha1-adrenoreceptors (α1-AR) are primarily found pre-synaptically at this area. We hypothesized that GABA released onto VTA-dopamine (DA) cells is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using whole-cell voltage clamp technique. Phenylephrine (10 μM; α1-AR agonist) decreased the amplitude of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of afferent fibers (n = 7; p < 0.05). Prazosin (1 μM, α1-AR antagonist), blocked this effect. Paired-pulse ratios were increased by phenylephrine application (n = 13; p < 0.05) indicating a presynaptic site of action. Spontaneous IPSCs frequency but not amplitude, were decreased in the presence of phenylephrine (n = 7; p < 0.05). However, frequency or amplitude of miniature IPSCs were not changed (n = 9; p > 0.05). Phenylephrine in low Ca(2+) (1 mM) medium decreased IPSC amplitude (n = 7; p < 0.05). Chelerythrine (a protein kinase C inhibitor) blocked the α1-AR action on IPSC amplitude (n = 6; p < 0.05). Phenylephrine failed to decrease IPSCs amplitude in the presence of paxilline, a BK channel blocker (n = 7; p < 0.05). Taken together, these results demonstrate that α1-ARs at presynaptic terminals can modulate GABA release onto VTA-DA cells. Drug-induced changes in α1-AR could contribute to the modifications occurring in the VTA during the addiction process.
Collapse
Affiliation(s)
- Maria C Velásquez-Martínez
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA; Laboratorio de Neurociencias y Comportamiento, Departamento de Ciencias Básicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rafael Vázquez-Torres
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Legier V Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Priscila Sanabria
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Carlos A Jiménez-Rivera
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
47
|
Cheng X, Gu J, Zhang M, Yuan J, Zhao B, Jiang J, Jia X. Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway. Int Immunopharmacol 2014; 23:304-13. [PMID: 25218161 DOI: 10.1016/j.intimp.2014.08.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 01/27/2023]
Abstract
The migration and invasion characteristics that are related to inflammatory response play important roles in the development of lung cancer. Astagaloside IV (AS-IV), an effective saponin component isolated from Astragali Radix, has been reported to inhibit metastasis of tumor cells. However, little is known about the underlying mechanism of AS-IV on inhibiting the migration and invasion characteristics of lung cancer cells. In the present study, cell proliferation was assessed by MTT colorimetric assay. Wound-healing assay and transwell chambers assay were used to detect the effects of AS-IV on the migration capacity and invasiveness of A549 cells. Metastasis-related bio-markers expressions were detected by Western blot analysis. Levels of inflammatory factors including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell supernatant were tested by enzyme linked immunosorbent assay (ELISA). The expressions of PKC-α, ERK1/2 and NF-κB were analyzed by Western blot analysis. The results showed that the migration and invasion ability of A549 has been suppressed in presence of AS-IV. The levels of MMP-2, MMP-9 and integrin β1 were decreased significantly, whereas E-cadherin was increased by the treatment of different concentrations AS-IV. Furthermore, AS-IV also significantly decreased TGF-β1, TNF-α and IL-6 levels. Interestingly, PKC pathway inhibitor AEB071 (Sotrastaurin) (0.1 μM) or ERK inhibitor U0126 (1 μM) or NF-κB inhibitor PDTC (1 μM) could affect suppression of AS-IV on cell invasion, at least partially. Our results suggested that the migration and invasion of AS-IV in A549 cells might be related to the PKC-α-ERK1/2-NF-κB pathway. The result indicated that AS-IV could be used as a candidate for the inhibition of metastasis of human lung cancer.
Collapse
Affiliation(s)
- Xudong Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Junfei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Jiarui Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Bingjie Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Jun Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Xiaobin Jia
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China.
| |
Collapse
|
48
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
49
|
Uhlenbrock F, Hagemann-Jensen M, Kehlet S, Andresen L, Pastorekova S, Skov S. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway. THE JOURNAL OF IMMUNOLOGY 2014; 193:1654-65. [PMID: 25024379 DOI: 10.4049/jimmunol.1303275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Soluble ULBP2 is a marker for poor prognosis in several types of cancer. In this study we demonstrate that both soluble and cell surface-bound ULBP2 is transported via a so far unrecognized endosomal pathway. ULBP2 surface expression, but not MICA/B, could specifically be targeted and retained by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties. The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest that the endosomal transport pathway constitutes a novel therapeutic target for ULBP2-producing tumors.
Collapse
Affiliation(s)
- Franziska Uhlenbrock
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Michael Hagemann-Jensen
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Stephanie Kehlet
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Lars Andresen
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Søren Skov
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| |
Collapse
|
50
|
Ong ST, Freeley M, Skubis-Zegadło J, Fazil MHUT, Kelleher D, Fresser F, Baier G, Verma NK, Long A. Phosphorylation of Rab5a protein by protein kinase Cϵ is crucial for T-cell migration. J Biol Chem 2014; 289:19420-34. [PMID: 24872409 DOI: 10.1074/jbc.m113.545863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility. We show that Rab5a physically associates with protein kinase Cϵ (PKCϵ) in migrating T-cells. After stimulation of T-cells through the integrin LFA-1 or the chemokine receptor CXCR4, Rab5a is phosphorylated on an N-terminal Thr-7 site by PKCϵ. Both Rab5a and PKCϵ dynamically interact at the centrosomal region of migrating cells, and PKCϵ-mediated phosphorylation on Thr-7 regulates Rab5a trafficking to the cell leading edge. Furthermore, we demonstrate that Rab5a Thr-7 phosphorylation is functionally necessary for Rac1 activation, actin rearrangement, and T-cell motility. We present a novel mechanism by which a PKCϵ-Rab5a-Rac1 axis regulates cytoskeleton remodeling and T-cell migration, both of which are central for the adaptive immune response.
Collapse
Affiliation(s)
- Seow Theng Ong
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Michael Freeley
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Joanna Skubis-Zegadło
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland, Department of Applied Pharmacy and Bioengineering, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom, and
| | - Friedrich Fresser
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553,
| | - Aideen Long
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland,
| |
Collapse
|