1
|
Lv X, Li S, Yu Y, Zhang X, Li F. Crustin Defense against Vibrio parahaemolyticus Infection by Regulating Intestinal Microbial Balance in Litopenaeus vannamei. Mar Drugs 2023; 21:md21020130. [PMID: 36827171 PMCID: PMC9963704 DOI: 10.3390/md21020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Crustins are a kind of antimicrobial peptide (AMP) that exist in crustaceans. Some crustins do not have direct antimicrobial activity but exhibit in vivo defense functions against Vibrio. However, the underlying molecular mechanism is not clear. Here, the regulatory mechanism was partially revealed along with the characterization of the immune function of a type I crustin, LvCrustin I-2, from Litopenaeus vannamei. LvCrustin I-2 was mainly detected in hemocytes, intestines and gills and was apparently up-regulated after Vibrio parahaemolyticus infection. Although the recombinant LvCrustin I-2 protein possessed neither antibacterial activity nor agglutinating activity, the knockdown of LvCrustin I-2 accelerated the in vivo proliferation of V. parahaemolyticus. Microbiome analysis showed that the balance of intestinal microbiota was impaired after LvCrustin I-2 knockdown. Further transcriptome analysis showed that the intestinal epithelial barrier and immune function were impaired in shrimp after LvCrustin I-2 knockdown. After removing the intestinal bacteria via antibiotic treatment, the phenomenon of impaired intestinal epithelial barrier and immune function disappeared in shrimp after LvCrustin I-2 knockdown. This indicated that the impairment of the shrimp intestine after LvCrustin I-2 knockdown was caused by the dysbiosis of the intestinal microbiota. The present data suggest that crustins could resist pathogen infection through regulating the intestinal microbiota balance, which provides new insights into the functional mechanisms of antimicrobial peptides during pathogen infection.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (F.L.)
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (S.L.); (F.L.)
| |
Collapse
|
2
|
Wu C, Zhong L, Li W, Liu B, Huang B, Luo Z, Wu Y. Study on the mechanism of Mycoplasma gallisepticum infection on chicken tracheal mucosa injury. Avian Pathol 2022; 51:361-373. [PMID: 35503522 DOI: 10.1080/03079457.2022.2068997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ABSTRACTMycoplasma gallisepticum (MG) is a pathogenic microorganism that causes serious harm to the poultry industry. It is mainly adsorbed on the cilia and mucosa of respiratory epithelial cells, causing tracheal mucosal damage or cilia loss, causing chronic respiratory disease (CRD). In order to study the effect of MG infection on chicken tracheal mucosa injury and explore its possible mechanism, specific-pathogen-free (SPF) chickens were challenged with Mycoplasma gallisepticum wild-type strain MG-HY. Then, transcriptome sequencing analysis was performed to study the mechanism of MG tracheal mucosal damage. During infection, MG localizes and proliferates in the chicken trachea, and induces mucosal damage. A total of 3112 significantly (P < 0.01) differentially expressed genes (DEGs) were selected by RNA-seq, including 1646 up-regulated genes and 1466 down-regulated genes. Functional analysis showed increased expression levels of genes involved in immune defense response and mechanical barrier of tracheal mucosa in infected chicks. The expression level of pro-inflammatory cytokines (TNF-α) increased, activating the upstream protein Ras of the ERK-MLCK signaling pathway, Ras causing ERK phosphorylation levels to rise and MLCK activation, thus causing phosphationalization of MLC, and further regulating the expression and mucous distribution of tight junction protein (TJ), leading to tracheal mucosal injury in chicks. The results of qRT-PCR assay and immunohistochemical analysis were consistent with the results of transcriptome analysis. Overall, Our findings provide a basis for further research on the underlying mechanism of chick tracheal mucosal damage caused by MG infection, and help to understand how MG induces respiratory immune damage in birds.
Collapse
Affiliation(s)
- Chunlin Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China
| | - Lemiao Zhong
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China
| | - Wenji Li
- ZooKo biochec technology Co. Ltd, Nanping 354200, People's Republic of China
| | - Binhui Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Vocational College of Agriculture, Fuzhou 350002, People's Republic of China
| | - Baoqin Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Sunner Development Co. Ltd, Nanping 354100, People's Republic of China
| | - Zhongbao Luo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Sunner Development Co. Ltd, Nanping 354100, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal 10 Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's 11 Republic of China
| |
Collapse
|
3
|
Tian J, He R, Fan Y, Zhang Q, Tian B, Zhou C, Liu C, Song M, Zhao S. Galectin-7 overexpression destroys airway epithelial barrier in transgenic mice. Integr Zool 2021; 16:270-279. [PMID: 32627954 DOI: 10.1111/1749-4877.12463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When the integrity of airway epithelium is destroyed, the ordered airway barrier no longer exists and increases sensitivity to viral infections and allergens, leading to the occurrence of airway inflammation such as asthma. Here, we found that galectin-7 transgenic(+) mice exhibited abnormal airway structures as embryos and after birth. These abnormalities included absent or substantially reduced pseudostratified columnar ciliated epithelium and increased monolayer cells with irregular arrangement and widening of intercellular spaces. Moreover, airway tissue from galectin-7 transgenic(+) mice showed evidence of impaired cell-cell junctions and decreased expression of zonula occludens-1(ZO-1) and E-cadherin. When treated with respiratory syncytial virus (RSV) or ovalbumin (OVA), galectin-7 transgenic(+) mice developed substantially increased bronchial epithelial detachment and apoptosis, airway smooth muscle and basement membrane thickening, and enhanced airway responsiveness. We found that Galectin-7 localized in the cytoplasm and nucleus of bronchial epithelial cells, and that increased apoptosis was mediated through mitochondrial release of cytochrome c and upregulated JNK1 activation and expression of caspase-3 in galectin-7 Tg(+) mice. These findings suggested that Galectin-7 causes airway structural defects and destroys airway epithelium barrier, which predispose the airways to RSV or OVA-induced epithelial apoptosis, injury, and other asthma responses.
Collapse
Affiliation(s)
- Jing Tian
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ruxuan He
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yimu Fan
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qianqian Zhang
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baolin Tian
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chunju Zhou
- Virus Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Chunyan Liu
- Virus Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Mingjing Song
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine II, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
4
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
5
|
Kasioulis I, Das RM, Storey KG. Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. eLife 2017; 6:e26215. [PMID: 29058679 PMCID: PMC5653239 DOI: 10.7554/elife.26215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.
Collapse
Affiliation(s)
- Ioannis Kasioulis
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
6
|
Hernández-Nava E, Cuellar P, Nava P, Chávez-Munguía B, Schnoor M, Orozco E, Betanzos A. Adherens junctions and desmosomes are damaged by Entamoeba histolytica: Participation of EhCPADH complex and EhCP112 protease. Cell Microbiol 2017; 19. [PMID: 28656597 DOI: 10.1111/cmi.12761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica trophozoites adhere to epithelium at the cell-cell contact and perturb tight junctions disturbing the transepithelial electrical resistance. Behind tight junctions are the adherens junctions (AJs) that reinforce them and the desmosomes (DSMs) that maintain the epithelium integrity. The damage produced to AJs and DMSs by this parasite is unknown. Here, we studied the effect of the trophozoites, the EhCPADH complex, and the EhCP112 recombinant enzyme (rEhCP112) on AJ and DSM proteins. We found that trophozoites degraded β-cat, E-cad, Dsp l/ll, and Dsg-2 with the participation of EhCPADH and EhCP112. After contact of epithelial cells with trophozoites, immunofluorescence and transmission electron microscopy assays revealed EhCPADH and rEhCP112 at the intercellular space where they colocalised with β-cat, E-cad, Dsp l/ll, and Dsg-2. Moreover, our results suggested that rEhCP112 could be internalised by caveolae and clathrin-coated vesicles. Immunoprecipitation assays showed the interaction of EhCPADH with β-cat and Dsp l/ll. Besides, in vivo assays demonstrated that rEhCP112 concentrates at the cellular borders of the mouse intestine degrading E-cad and Dsp I/II. Our research gives the first clues on the trophozoite attack to AJs and DSMs and point out the role of the EhCPADH and EhCP112 in the multifactorial event of trophozoites virulence.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| |
Collapse
|
7
|
The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A 2015; 112:14337-42. [PMID: 26489655 DOI: 10.1073/pnas.1510265112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.
Collapse
|
8
|
Rossetti CA, Drake KL, Siddavatam P, Lawhon SD, Nunes JES, Gull T, Khare S, Everts RE, Lewin HA, Adams LG. Systems biology analysis of Brucella infected Peyer's patch reveals rapid invasion with modest transient perturbations of the host transcriptome. PLoS One 2013; 8:e81719. [PMID: 24349118 PMCID: PMC3857238 DOI: 10.1371/journal.pone.0081719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/21/2013] [Indexed: 01/12/2023] Open
Abstract
Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN) of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing) were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process of Brucella is primarily accomplished by compromising the mucosal immune barrier and subverting critical immune response mechanisms.
Collapse
Affiliation(s)
- Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kenneth L. Drake
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Prasad Siddavatam
- Seralogix, Limited Liability Corporation, Austin, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
An introduction to adherens junctions: from molecular mechanisms to tissue development and disease. Subcell Biochem 2012; 60:1-5. [PMID: 22674065 DOI: 10.1007/978-94-007-4186-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adherens junctions (AJs) are fundamental for the development of animal tissues and organs. The core complex is formed from transmembrane cell-cell adhesion molecules, cadherins, and adaptor molecules, the catenins, that link to cytoskeletal and regulatory networks within the cell. This complex can be considered over a wide range of biological organization, from atoms to molecules, protein complexes, molecular networks, cells, tissues, and overall animal development. AJs have also been an integral part of animal evolution, and play central roles in cancer development and pathogen infection. This book addresses major questions encompassing these aspects of AJ biology. How did AJs evolve? How do the cadherins and catenins interact to assemble AJs and mediate adhesion? How do AJs interface with other cellular machinery to couple adhesion with the whole cell? How do AJs affect cell behaviour and multicellular development? How can abnormal AJ activity lead to disease?
Collapse
|