1
|
Jiang CS, Schrader M. Modelling Peroxisomal Disorders in Zebrafish. Cells 2025; 14:147. [PMID: 39851575 PMCID: PMC11764017 DOI: 10.3390/cells14020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by PEX genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication. Defects in peroxins or peroxisomal enzymes can result in severe disorders, including developmental and neurological abnormalities. The drive to understand the role of peroxisomes in human health and disease, as well as their functions in tissues and organs or during development, has led to the establishment of vertebrate models. The zebrafish (Danio rerio) has become an attractive vertebrate model organism to investigate peroxisomal functions. Here, we provide an overview of the visualisation of peroxisomes in zebrafish, as well as the peroxisomal metabolic functions and peroxisomal protein inventory in comparison to human peroxisomes. We then present zebrafish models which have been established to investigate peroxisomal disorders. These include model zebrafish for peroxisome biogenesis disorders/Zellweger Spectrum disorders, and single enzyme deficiencies, particularly adrenoleukodystrophy and fatty acid beta-oxidation abnormalities. Finally, we highlight zebrafish models for deficiencies of dually targeted peroxisomal/mitochondrial proteins. Advantages for the investigation of peroxisomes during development and approaches to the application of zebrafish models for drug screening are discussed.
Collapse
Affiliation(s)
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK;
| |
Collapse
|
2
|
Böing C, Di Fabrizio M, Burger D, Bol JGJM, Huisman E, Rozemuller AJM, van de Berg WDJ, Stahlberg H, Lewis AJ. Distinct ultrastructural phenotypes of glial and neuronal alpha-synuclein inclusions in multiple system atrophy. Brain 2024; 147:3727-3741. [PMID: 38696728 PMCID: PMC11531854 DOI: 10.1093/brain/awae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/17/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Multiple system atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.
Collapse
Affiliation(s)
- Carolin Böing
- C-CINA, Biozentrum, University of Basel, Basel 4058, Switzerland
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Domenic Burger
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - John G J M Bol
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Evelien Huisman
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience program Neurodegeneration, Amsterdam University Medical Centre, Vrije University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Amanda J Lewis
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Federale Lausanne, Lausanne, Vaud 1015, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
3
|
Cerasuolo M, Di Meo I, Auriemma MC, Paolisso G, Papa M, Rizzo MR. Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer's Disease. Biomolecules 2024; 14:1362. [PMID: 39595539 PMCID: PMC11591903 DOI: 10.3390/biom14111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer's disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer's disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer's disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| |
Collapse
|
4
|
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. A transcriptomic analysis of dental pulp stem cell senescence in vitro. Biomed Eng Online 2024; 23:102. [PMID: 39425139 PMCID: PMC11488381 DOI: 10.1186/s12938-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND/PURPOSE The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. MATERIALS AND METHODS The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms. RESULTS With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence. CONCLUSION Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.
Collapse
Affiliation(s)
- Jidong Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Longfei Liu
- Qingdao Engineering Vocational College, Qingdao, 266000, China
| | - Xuecheng Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
5
|
Rüttermann M, Koci M, Lill P, Geladas ED, Kaschani F, Klink BU, Erdmann R, Gatsogiannis C. Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate. Nat Commun 2023; 14:5942. [PMID: 37741838 PMCID: PMC10518020 DOI: 10.1038/s41467-023-41640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Michelle Koci
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pascal Lill
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ermis Dionysios Geladas
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Farnusch Kaschani
- Analytics Core Facility Essen, Center of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Björn Udo Klink
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics, University Münster, Münster, Germany.
- Center for Soft Nanoscience (SoN), University Münster, Münster, Germany.
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
6
|
Rüttermann M, Gatsogiannis C. Good things come to those who bait: the peroxisomal docking complex. Biol Chem 2023; 404:107-119. [PMID: 36117327 DOI: 10.1515/hsz-2022-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
7
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Ghzaiel I, Zarrouk A, Essadek S, Martine L, Hammouda S, Yammine A, Ksila M, Nury T, Meddeb W, Tahri Joutey M, Mihoubi W, Caccia C, Leoni V, Samadi M, Acar N, Andreoletti P, Hammami S, Ghrairi T, Vejux A, Hammami M, Lizard G. Protective effects of milk thistle (Sylibum marianum) seed oil and α-tocopherol against 7β-hydroxycholesterol-induced peroxisomal alterations in murine C2C12 myoblasts: Nutritional insights associated with the concept of pexotherapy. Steroids 2022; 183:109032. [PMID: 35381271 DOI: 10.1016/j.steroids.2022.109032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7β-hydroxycholesterol (7β-OHC; 50 μM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 μg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7β-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7β-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7β-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7β-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal β-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal β-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia; Faculty of Medicine, University of Sousse, 4000 Sousse, Tunisia.
| | - Soukaina Essadek
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Souha Hammouda
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Mohamed Ksila
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Thomas Nury
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wiem Meddeb
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mounia Tahri Joutey
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco
| | - Wafa Mihoubi
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, B.P 1177, Université de Sfax, 3018 Sfax, Tunisia
| | - Claudio Caccia
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Pierre Andreoletti
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Sonia Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Taoufik Ghrairi
- Faculty of Sciences of Tunis, University Tunis-El Manar, 2092 Tunis, Tunisia
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism'EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
9
|
Meghnem D, Leong E, Pinelli M, Marshall JS, Di Cara F. Peroxisomes Regulate Cellular Free Fatty Acids to Modulate Mast Cell TLR2, TLR4, and IgE-Mediated Activation. Front Cell Dev Biol 2022; 10:856243. [PMID: 35756999 PMCID: PMC9215104 DOI: 10.3389/fcell.2022.856243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Marinella Pinelli
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S. Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| | - Francesca Di Cara
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| |
Collapse
|
10
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
11
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
12
|
Boontem P, Yamashima T. Hydroxynonenal causes Langerhans cell degeneration in the pancreas of Japanese macaque monkeys. PLoS One 2021; 16:e0245702. [PMID: 34748564 PMCID: PMC8575276 DOI: 10.1371/journal.pone.0245702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background For their functions of insulin biosynthesis and glucose- and fatty acid- mediated insulin secretion, Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans cell degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to Langerhans cells was studied using macaque monkeys after the consecutive injections of the lipid peroxidation product ‘hydroxynonenal’. Based on the ‘calpain-cathepsin hypothesis’ formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy, and Western blotting. Results Light microscopy showed more abundant vacuole formation in the hydroxynonenal-treated islet cells than the control cells. Electron microscopy showed that vacuolar changes, which were identified as enlarged rough ER, occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased co-localization of activated μ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in μ-calpain activation, Hsp70.1 cleavage, and expression of the hydroxynonenal receptor GPR109A. Conclusions Taken together, these data implicate hydroxynonenal in both oxidation of Hsp70.1 and activation of μ-calpain. The calpain-mediated cleavage of the carbonylated Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.
Collapse
Affiliation(s)
| | - Tetsumori Yamashima
- Departments of Cell Metabolism and Nutrition, Kanazawa, Japan
- Psychiatry and Behavioral Science, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
13
|
Papandreou ME, Tavernarakis N. Selective Autophagy as a Potential Therapeutic Target in Age-Associated Pathologies. Metabolites 2021; 11:metabo11090588. [PMID: 34564405 PMCID: PMC8472713 DOI: 10.3390/metabo11090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive accumulation of damaged cellular constituents contributes to age-related diseases. Autophagy is the main catabolic process, which recycles cellular material in a multitude of tissues and organs. Autophagy is activated upon nutrient deprivation, and oncogenic, heat or oxidative stress-induced stimuli to selectively degrade cell constituents and compartments. Specificity and accuracy of the autophagic process is maintained via the precision of interaction of autophagy receptors or adaptors and substrates by the intricate, stepwise orchestration of specialized integrating stimuli. Polymorphisms in genes regulating selective autophagy have been linked to aging and age-associated disorders. The involvement of autophagy perturbations in aging and disease indicates that pharmacological agents balancing autophagic flux may be beneficial, in these contexts. Here, we introduce the modes and mechanisms of selective autophagy, and survey recent experimental evidence of dysfunctional autophagy triggering severe pathology. We further highlight identified pharmacological targets that hold potential for developing therapeutic interventions to alleviate cellular autophagic cargo burden and associated pathologies.
Collapse
Affiliation(s)
- Margarita-Elena Papandreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece;
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece;
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence:
| |
Collapse
|
14
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
15
|
Andrés‐Benito P, Gelpi E, Jové M, Mota‐Martorell N, Obis È, Portero‐Otin M, Povedano M, Pujol A, Pamplona R, Ferrer I. Lipid alterations in human frontal cortex in ALS-FTLD-TDP43 proteinopathy spectrum are partly related to peroxisome impairment. Neuropathol Appl Neurobiol 2021; 47:544-563. [PMID: 33332650 PMCID: PMC8248144 DOI: 10.1111/nan.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Peroxisomes play a key role in lipid metabolism, and peroxisome defects have been associated with neurodegenerative diseases such as X-adrenoleukodystrophy and Alzheimer's disease. This study aims to elucidate the contribution of peroxisomes in lipid alterations of area 8 of the frontal cortex in the spectrum of TDP43-proteinopathies. Cases of frontotemporal lobar degeneration-TDP43 (FTLD-TDP), manifested as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD), and of sporadic amyotrophic lateral sclerosis (sALS) as the most common TDP43 proteinopathies, were analysed. METHODS We used transcriptomics and lipidomics methods to define the steady-state levels of gene expression and lipid profiles. RESULTS Our results show alterations in gene expression of some components of peroxisomes and related lipid pathways in frontal cortex area 8 in sALS, sFTLD-TDP and c9FTLD. Additionally, we identify a lipidomic pattern associated with the ALS-FTLD-TDP43 proteinopathy spectrum, notably characterised by down-regulation of ether lipids and acylcarnitine among other lipid species, as well as alterations in the lipidome of each phenotype of TDP43 proteinopathy, which reveals commonalities and disease-dependent differences in lipid composition. CONCLUSION Globally, lipid alterations in the human frontal cortex of the ALS-FTLD-TDP43 proteinopathy spectrum, which involve cell membrane composition and signalling, vulnerability against cellular stress and possible glucose metabolism, are partly related to peroxisome impairment.
Collapse
Affiliation(s)
- Pol Andrés‐Benito
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc‐Hospital Clínic‐Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPSBarcelonaSpain
- Institute of NeurologyMedical University of ViennaViennaAustria
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Natalia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Manuel Portero‐Otin
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELAService of NeurologyBellvitge University HospitalHospitalet de LlobregatSpain
| | - Aurora Pujol
- Catalan Institution for Research and Advanced Studies (ICREABarcelonaSpain
- Neurometabolic Diseases LaboratoryBellvitge Biomedical Research InstituteHospital Duran i ReynalsHospitalet de Llobregat, BarcelonaSpain
- Center for Biomedical Research on Rare Diseases (CIBERERInstitute of Health Carlos IIIMadridSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida ‐ Lleida Biomedical Research Institute (UdL‐IRBLleidaLleidaSpain
| | - Isidro Ferrer
- NeuropathologyBellvitge University Hospital‐Bellvitge Biomedical Research Institute (IDIBELLHospitalet de Llobregat, BarcelonaSpain
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative DiseasesInstitute of Health Carlos IIIMinistry of Economy and CompetitivenessMadridSpain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALSUtrechtThe Netherlands
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
16
|
Deb R, Joshi N, Nagotu S. Peroxisomes of the Brain: Distribution, Functions, and Associated Diseases. Neurotox Res 2021; 39:986-1006. [PMID: 33400183 DOI: 10.1007/s12640-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are versatile cell organelles that exhibit a repertoire of organism and cell-type dependent functions. The presence of oxidases and antioxidant enzymes is a characteristic feature of these organelles. The role of peroxisomes in various cell types in human health and disease is under investigation. Defects in the biogenesis of the organelle and its function lead to severe debilitating disorders. In this manuscript, we discuss the distribution and functions of peroxisomes in the nervous system and especially in the brain cells. The important peroxisomal functions in these cells and their role in the pathology of associated disorders such as neurodegeneration are highlighted in recent studies. Although the cause of the pathogenesis of these disorders is still not clearly understood, emerging evidence supports a crucial role of peroxisomes. In this review, we discuss research highlighting the role of peroxisomes in brain development and its function. We also provide an overview of the major findings in recent years that highlight the role of peroxisome dysfunction in various associated diseases.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
17
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
18
|
Beyene HB, Olshansky G, T. Smith AA, Giles C, Huynh K, Cinel M, Mellett NA, Cadby G, Hung J, Hui J, Beilby J, Watts GF, Shaw JS, Moses EK, Magliano DJ, Meikle PJ. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLoS Biol 2020; 18:e3000870. [PMID: 32986697 PMCID: PMC7544135 DOI: 10.1371/journal.pbio.3000870] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and related metabolic diseases show clear sex-related differences. The growing burden of these diseases calls for better understanding of the age- and sex-related metabolic consequences. High-throughput lipidomic analyses of population-based cohorts offer an opportunity to identify disease-risk-associated biomarkers and to improve our understanding of lipid metabolism and biology at a population level. Here, we comprehensively examined the relationship between lipid classes/subclasses and molecular species with age, sex, and body mass index (BMI). Furthermore, we evaluated sex specificity in the association of the plasma lipidome with age and BMI. Some 747 targeted lipid measures, representing 706 molecular lipid species across 36 classes/subclasses, were measured using a high-performance liquid chromatography coupled mass spectrometer on a total of 10,339 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), with 563 lipid species being validated externally on 4,207 participants of the Busselton Health Study (BHS). Heat maps were constructed to visualise the relative differences in lipidomic profile between men and women. Multivariable linear regression analyses, including sex-interaction terms, were performed to assess the associations of lipid species with cardiometabolic phenotypes. Associations with age and sex were found for 472 (66.9%) and 583 (82.6%) lipid species, respectively. We further demonstrated that age-associated lipidomic fingerprints differed by sex. Specific classes of ether-phospholipids and lysophospholipids (calculated as the sum composition of the species within the class) were inversely associated with age in men only. In analyses with women alone, higher triacylglycerol and lower lysoalkylphosphatidylcholine species were observed among postmenopausal women compared with premenopausal women. We also identified sex-specific associations of lipid species with obesity. Lysophospholipids were negatively associated with BMI in both sexes (with a larger effect size in men), whilst acylcarnitine species showed opposing associations based on sex (positive association in women and negative association in men). Finally, by utilising specific lipid ratios as a proxy for enzymatic activity, we identified stearoyl CoA desaturase (SCD-1), fatty acid desaturase 3 (FADS3), and plasmanylethanolamine Δ1-desaturase activities, as well as the sphingolipid metabolic pathway, as constituent perturbations of cardiometabolic phenotypes. Our analyses elucidate the effect of age and sex on lipid metabolism by offering a comprehensive view of the lipidomic profiles associated with common cardiometabolic risk factors. These findings have implications for age- and sex-dependent lipid metabolism in health and disease and suggest the need for sex stratification during lipid biomarker discovery, establishing biological reference intervals for assessment of disease risk.
Collapse
Affiliation(s)
- Habtamu B. Beyene
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | | | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Gemma Cadby
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Joseph Hung
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Perth, Australia
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia
| | - John Beilby
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia
| | - Gerald F. Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | | | - Eric K. Moses
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Dianna J. Magliano
- Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology-IWK Health Centre- Dalhousie University, Halifax (NS), Canada
| |
Collapse
|
20
|
Piao L, Dorotea D, Jiang S, Koh EH, Oh GT, Ha H. Impaired Peroxisomal Fitness in Obese Mice, a Vicious Cycle Exacerbating Adipocyte Dysfunction via Oxidative Stress. Antioxid Redox Signal 2019; 31:1339-1351. [PMID: 31530170 PMCID: PMC6859694 DOI: 10.1089/ars.2018.7614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims: Peroxisome is a critical organelle for fatty acid oxidation (FAO) and metabolism of reactive oxygen species (ROS). Increased oxidative stress in adipose tissue contributes to the development of insulin resistance and metabolic syndrome in obesity. This study aimed to investigate the role of peroxisomal fitness in maintaining adipocyte function, which has been under-rated in the obesity research area. Results: Reduced peroxisomal gene expressions in white adipose tissue (WAT) of obese mice suggested a close correlation between peroxisomes and obesity. Peroxisomal biogenesis factor 5 siRNA increased cellular ROS and inflammatory mediators in 3T3-L1 adipocytes. On the contrary, hydrogen peroxide or tumor necrosis factor-α treatment significantly decreased biogenesis- and function-related peroxisomal proteins, suggesting a positive feedback loop of ROS/inflammation and peroxisomal dysfunction. Correspondingly, catalase (a major peroxisomal antioxidant)-knockout mice fed with high-fat diet (HFD) exhibited suppressed peroxisomal proteins along with increased oxidative stress and accelerated obesity. In response to fenofibrate (a peroxisomal proliferator) treatment, WAT of HFD-fed wild-type mice showed not only increases in peroxisomal biogenesis and FAO but also attenuated features of adipocyte dysfunction and obesity. However, these results were not observed in peroxisome proliferator-activated receptor-alpha null obese mice. Innovation: Impaired peroxisomal fitness enhanced oxidative stress and inflammation in adipocytes, which exacerbates obesity. Conclusion: Adipose tissue peroxisomal homeostasis plays an important role in attenuating the features of obesity, and it can be a potential therapeutic target of obesity.
Collapse
Affiliation(s)
- Lingjuan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Hee Koh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Staying in Healthy Contact: How Peroxisomes Interact with Other Cell Organelles. Trends Mol Med 2019; 26:201-214. [PMID: 31727543 DOI: 10.1016/j.molmed.2019.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022]
Abstract
Peroxisomes share extensive metabolic connections with other cell organelles. Membrane contact sites (MCSs) establish and maintain such interactions, and they are vital for organelle positioning and motility. In the past few years peroxisome interactions and MCSs with other cellular organelles have been explored extensively, resulting in the identification of new MCSs, the tethering molecules involved, and their functional characterization. Defective tethering and compartmental communication can lead to pathological conditions that can be termed 'organelle interaction diseases'. We review peroxisome-organelle interactions in mammals and summarize the most recent knowledge of mammalian peroxisomal organelle contacts in health and disease.
Collapse
|
22
|
Hao C, Wu X, Zhou R, Zhang H, Zhou Y, Wang X, Feng Y, Mei L, He C, Cai X, Wu L. Downregulation of p66Shc can reduce oxidative stress and apoptosis in oxidative stress model of marginal cells of stria vascularis in Sprague Dawley rats. Drug Des Devel Ther 2019; 13:3199-3206. [PMID: 31686782 PMCID: PMC6751335 DOI: 10.2147/dddt.s214918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND p66Shc, a Src homologue and collagen homologue (Shc) adaptor protein, mediates oxidative stress signaling. The p66Shc-null mice have increased lifespan and enhanced resistance to oxidative stress. Studies have also indicated its potential role in inner ear aging, which can lead to deafness. OBJECTIVE The aim of this study was to determine the effects of p66Shc down-regulation on the marginal cells (MCs) of the inner ear stria vascularis. METHODS Primary MCs were isolated from neonatal rats and treated with glucose oxidase to induce oxidative stress. The cells were transduced with adenovirus expressing siRNA, and the knockdown was verified by Western blotting. The reactive oxygen species (ROS) levels and apoptosis were analyzed using the DCFH-DA probe and Annexin-V/7-AAD staining respectively. The ultrastructure of the differentially-treated cells was examined by transmission electron microscopy (TEM).Results: The in vitro oxidative stress model was established successfully in rat MCs. Knockdown of p66Shc alleviated the high ROS levels and apoptosis in the glucose oxidase-treated cells. In addition, glucose oxidase significantly increased the number of peroxisomes in the MCs, which was decreased by p66Shc inhibition. CONCLUSION Oxidative stress increases p66Shc levels in the marginal cells of the inner ear, which aggravates ROS production and cellular injury. Blocking p66Shc expression can effectively reduce oxidative stress and protect the MCs.
Collapse
Affiliation(s)
- Cong Hao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Ruoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Hao Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
| | - Yulai Zhou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
| | - Xinxing Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
| | - Yong Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Lingyun Mei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Chufeng He
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Xinzhang Cai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| | - Lisha Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital Central South University, Changsha410008, Hunan, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha410008, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China
| |
Collapse
|
23
|
Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 2019; 20:ijms20153673. [PMID: 31357514 PMCID: PMC6695606 DOI: 10.3390/ijms20153673] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.
Collapse
|
24
|
Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants (Basel) 2019; 8:antiox8070223. [PMID: 31315226 PMCID: PMC6680737 DOI: 10.3390/antiox8070223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022] Open
Abstract
In this work, for the first time, were analyzed mulberry genotypes grown in Apulia (Southern Italy, Salento region) were analyzed. Two local varieties of Morus alba (cv. Legittimo nero and cv. Nello) and one of Morus nigra were characterized for content in simple sugars, organic acids, phenols, anthocyanins; fruit antioxidant activity (AA) was also evaluated by three different methods (2,2-Diphenyl-1-picrylhydrazyl, DPPH; 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS; and Ferric reducing antioxidant potential, FRAP test). The results showed that the sugars amount ranged between 6.29 and 7.66 g/100 g fresh weight (FW) while the malic and citric acids content was low, at about 0.1–1 g/100 g FW. Mulberries are a good source of phenols which are present in higher values in M. nigra and M. alba cv. Legittimo nero (485 and 424 mg Gallic Acid Equivalent (GAE)/ 100 g FW, respectively). The high performance liquid chromatography/diode array detector/mass spectrometry (HPLC/DAD/MS) analysis identified 5 main anthocyanin compounds present in different concentrations in each variety of mulberry: cyanidin 3-sophoroside, cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, pelargonidin 3-rutinoside. The highest concentration of anthocyanins was determined in Morus alba Legittimo (about 300 mg/100 g FW) while the lowest content (about 25 mg/100 g FW) was measured in M. alba cv. Nello. Morus nigra showed a good AA in comparison with the different M. alba genotypes with all the used methods; its AA was equal to 33, 26 and 21 μmols Trolox/g FW when using DPPH, ABTS and FRAP tests, respectively. All genotypes showed an anti-inflammatory activity (measured by cyclooxygenase (COX) inhibitory assay) which was also compared with two commercial anti-inflammatory drugs. The data obtained support the high biological qualities of mulberry fruits and their diffusion in human nutrition.
Collapse
|
25
|
Peroxisomes: new insights into protein sorting, dynamics, quality control, signalling and roles in health and disease. Histochem Cell Biol 2019; 151:283-289. [PMID: 30927066 DOI: 10.1007/s00418-019-01780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
26
|
Fransen M, Lismont C. Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects. Antioxid Redox Signal 2019; 30:95-112. [PMID: 29433327 DOI: 10.1089/ars.2018.7515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Peroxisomes are organelles that are best known for their role in cellular lipid and hydrogen peroxide (H2O2) metabolism. Emerging evidence suggests that these organelles serve as guardians and modulators of cellular redox balance, and that alterations in their redox metabolism may contribute to aging and the development of chronic diseases such as neurodegeneration, diabetes, and cancer. Recent Advances: H2O2 is an important signaling messenger that controls many cellular processes by modulating protein activity through cysteine oxidation. Somewhat surprisingly, the potential involvement of peroxisomes in H2O2-mediated signaling processes has been overlooked for a long time. However, recent advances in the development of live-cell approaches to monitor and modulate spatiotemporal fluxes in redox species at the subcellular level have opened up new avenues for research in redox biology and boosted interest in the concept of peroxisomes as redox signaling platforms. CRITICAL ISSUES This review first introduces the reader to what is known about the role of peroxisomes in cellular H2O2 production and clearance, with a focus on mammalian cells. Next, it briefly describes the benefits and drawbacks of current strategies used to investigate the complex interplay between peroxisome metabolism and cellular redox state. Furthermore, it integrates and critically evaluates literature dealing with the interrelationship between peroxisomal redox metabolism, cell signaling, and human disease. FUTURE DIRECTIONS As the precise molecular mechanisms underlying many of these associations are still poorly understood, a key focus for future research should be the identification of primary targets for peroxisome-derived H2O2.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
27
|
Abstract
Peroxisomes are ubiquitous and highly dynamic organelles that play a central role in the metabolism of lipids and reactive oxygen species. The importance of peroxisomal metabolism is illustrated by severe peroxisome biogenesis disorders in which functional peroxisomes are absent or disorders caused by single peroxisomal enzyme deficiencies. These multisystemic diseases manifest specific clinical and biochemical disturbances that originate from the affected peroxisomal pathways. An emerging role of the peroxisome has been identified in many types of diseases, including cancer, neurodegenerative disorders, aging, obesity, and diabetes. Peroxisome homeostasis is achieved via a tightly regulated interplay between peroxisome biogenesis and degradation via selective autophagy, which is commonly known as "pexophagy". Dysregulation of either peroxisome biogenesis or pexophagy may be detrimental to the health of cells and contribute to the pathophysiology of these diseases. Autophagy is an evolutionary conserved catabolic process for non-selective degradation of macromolecules and organelles in response to various stressors. In selective autophagy, specific cargo-recognizing receptors connect the cargo to the core autophagic machinery, and additional posttranslational modifications such as ubiquitination and phosphorylation regulate this process. Several stress conditions have been shown to stimulate pexophagy and decrease peroxisome abundance. However, our understanding of the mechanisms that particularly regulate mammalian pexophagy has been limited. In recent years considerable progress has been made uncovering signaling pathways, autophagy receptors and adaptors as well as posttranslational modifications involved in pexophagy. In this review, which is published back-to-back with a peroxisome review by Islinger et al. [(Histochem Cell Biol 137:547-574, 2018). The peroxisome: an update on mysteries 2.0], we focus on recent novel findings on the underlying molecular mechanisms of pexophagy in yeast and mammalian cells and highlight concerns and gaps in our knowledge.
Collapse
|
28
|
Chen Y, Zheng S, Ju Z, Zhang C, Tang G, Wang J, Wen Z, Chen W, Ma Z. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungusFusarium graminearum. Environ Microbiol 2018; 20:3224-3245. [DOI: 10.1111/1462-2920.14291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Shiyu Zheng
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Zhenzhen Ju
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Chengqi Zhang
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Guangfei Tang
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Jing Wang
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Ziyue Wen
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Wei Chen
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Zhejiang University; 866 Yuhangtang Road, Hangzhou 310058 China
| |
Collapse
|
29
|
Nury T, Sghaier R, Zarrouk A, Ménétrier F, Uzun T, Leoni V, Caccia C, Meddeb W, Namsi A, Sassi K, Mihoubi W, Riedinger JM, Cherkaoui-Malki M, Moreau T, Vejux A, Lizard G. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie 2018; 153:181-202. [PMID: 30031877 DOI: 10.1016/j.biochi.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
The involvement of organelles in cell death is well established especially for endoplasmic reticulum, lysosomes and mitochondria. However, the role of the peroxisome is not well known, though peroxisomal dysfunction favors a rupture of redox equilibrium. To study the role of peroxisomes in cell death, 158 N murine oligodendrocytes were treated with 7-ketocholesterol (7 KC: 25-50 μM, 24 h). The highest concentration is known to induce oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY), whereas the lowest concentration does not induce cell death. In those conditions (with 7 KC: 50 μM) morphological, topographical and functional peroxisome alterations associated with modifications of the cytoplasmic distribution of mitochondria, with mitochondrial dysfunction (loss of transmembrane mitochondrial potential, decreased level of cardiolipins) and oxidative stress were observed: presence of peroxisomes with abnormal sizes and shapes similar to those observed in Zellweger fibroblasts, lower cellular level of ABCD3, used as a marker of peroxisomal mass, measured by flow cytometry, lower mRNA and protein levels (measured by RT-qPCR and western blotting) of ABCD1 and ABCD3 (two ATP-dependent peroxisomal transporters), and of ACOX1 and MFP2 enzymes, and lower mRNA level of DHAPAT, involved in peroxisomal β-oxidation and plasmalogen synthesis, respectively, and increased levels of very long chain fatty acids (VLCFA: C24:0, C24:1, C26:0 and C26:1, quantified by gas chromatography coupled with mass spectrometry) metabolized by peroxisomal β-oxidation. In the presence of 7 KC (25 μM), slight mitochondrial dysfunction and oxidative stress were found, and no induction of apoptosis was detected; however, modifications of the cytoplasmic distribution of mitochondria and clusters of mitochondria were detected. The peroxisomal alterations observed with 7 KC (25 μM) were similar to those with 7 KC (50 μM). In addition, data obtained by transmission electron microcopy and immunofluorescence microscopy by dual staining with antibodies raised against p62, involved in autophagy, and ABCD3, support that 7 KC (25-50 μM) induces pexophagy. 7 KC (25-50 μM)-induced side effects were attenuated by α-tocopherol but not by α-tocotrienol, whereas the anti-oxidant properties of these molecules determined with the FRAP assay were in the same range. These data provide evidences that 7 KC, at concentrations inducing or not cell death, triggers morphological, topographical and functional peroxisomal alterations associated with minor or major mitochondrial changes.
Collapse
Affiliation(s)
- Thomas Nury
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Randa Sghaier
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Monastir, Lab. Biotechnology, Monastir, Tunisia
| | - Amira Zarrouk
- Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Diseases' LR12-ES-05, Monastir, Tunisia; Faculty of Medicine, Sousse, Tunisia
| | | | - Tugba Uzun
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Valerio Leoni
- Lab. Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | - Wiem Meddeb
- Univ. Carthage, LMMA, IPEST, Tunis, and Fac. of Science of Bizerte, Bizerte, Tunisia
| | - Amira Namsi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Lab. Neurophysiologie Fonctionnelle et Pathologie-UR11ES/09, Tunis, Tunisia
| | - Khouloud Sassi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Fac. of Medicine, Lab of Onco-Hematology, Tunis, Tunisia
| | - Wafa Mihoubi
- Centre de Biotechnologie de Sfax, Lab. Biotechnologie Moléculaire des Eucaryotes, Sfax, Tunisia
| | - Jean-Marc Riedinger
- Centre de Lutte Contre le Cancer GF Leclerc, Laboratoire de Biologie Médicale, Dijon, France
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Dept. of Neurology, Univ. Hospital of Dijon, France
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France.
| |
Collapse
|
30
|
Deori NM, Kale A, Maurya PK, Nagotu S. Peroxisomes: role in cellular ageing and age related disorders. Biogerontology 2018; 19:303-324. [PMID: 29968207 DOI: 10.1007/s10522-018-9761-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
Abstract
Peroxisomes are dynamic organelles essential for optimum functioning of a eukaryotic cell. Biogenesis of these organelles and the diverse functions performed by them have been extensively studied in the past decade. Their ability to perform functions depending on the cell type and growth conditions is unique and remarkable. Oxidation of fatty acids and reactive oxygen species metabolism are the two most important functions of these ubiquitous organelles. They are often referred to as both source and sink of reactive oxygen species in a cell. Recent research connects peroxisome dysfunction to fatal oxidative damage associated with ageing-related diseases/disorders. It is now widely accepted that mitochondria and peroxisomes are required to maintain oxidative balance in a cell. However, our understanding on the inter-dependence of these organelles to maintain cellular homeostasis of reactive oxygen species is still in its infancy. Herein, we summarize findings that highlight the role of peroxisomes in cellular reactive oxygen species metabolism, ageing and age-related disorders.
Collapse
Affiliation(s)
- Nayan M Deori
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Avinash Kale
- UM-DAE, Centre for Excellence in Basic Sciences, Health Centre, University of Mumbai, Mumbai, 400098, India
| | - Pawan K Maurya
- Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Universidade Federal de Sao Paulo-UNIFESP, Sao Paulo, Brazil
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
31
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
32
|
Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs' connection? Cell Death Dis 2018; 9:364. [PMID: 29511163 PMCID: PMC5840383 DOI: 10.1038/s41419-018-0406-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease, the main pathological hallmarks of which associate with diabetes, optic atrophy, and deafness. Other symptoms may be identified in some but not all patients. Prognosis is poor, with death occurring around 35 years of age. To date, no treatment is available. WS was first described as a mitochondriopathy. However, the localization of the protein on the endoplasmic reticulum (ER) membrane challenged this hypothesis. ER contacts mitochondria to ensure effective Ca2+ transfer, lipids transfer, and apoptosis within stabilized and functionalized microdomains, termed “mitochondria-associated ER membranes” (MAMs). Two types of WS are characterized so far and Wolfram syndrome type 2 is due to mutation in CISD2, a protein mostly expressed in MAMs. The aim of the present review is to collect evidences showing that WS is indeed a mitochondriopathy, with established MAM dysfunction, and thus share commonalities with several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as metabolic diseases, such as diabetes.
Collapse
Affiliation(s)
- Benjamin Delprat
- INSERM UMR-S1198, 34095, Montpellier, France. .,University of Montpellier, 34095, Montpellier, France.
| | - Tangui Maurice
- INSERM UMR-S1198, 34095, Montpellier, France.,University of Montpellier, 34095, Montpellier, France
| | - Cécile Delettre
- University of Montpellier, 34095, Montpellier, France. .,INSERM UMR-S1051, Institute of Neurosciences of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
33
|
Costello JL, Schrader M. Unloosing the Gordian knot of peroxisome formation. Curr Opin Cell Biol 2018; 50:50-56. [PMID: 29475136 PMCID: PMC6525147 DOI: 10.1016/j.ceb.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Peroxisome biogenesis is governed by molecular machineries, which are either unique to peroxisomes or are partially shared with mitochondria. As peroxisomes have important protective functions in the cell, modulation of their number is important for human health and disease. Significant progress has been made towards our understanding of the mechanisms of peroxisome formation, revealing a remarkable plasticity of the peroxisome biogenesis pathway. Here we discuss most recent findings with particular focus on peroxisome formation in mammalian cells.
Collapse
Affiliation(s)
- Joseph L Costello
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
34
|
Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N. Int J Mol Sci 2017; 18:ijms18102220. [PMID: 29065513 PMCID: PMC5666899 DOI: 10.3390/ijms18102220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Argan oil is widely used in Morocco in traditional medicine. Its ability to treat cardiovascular diseases is well-established. However, nothing is known about its effects on neurodegenerative diseases, which are often associated with increased oxidative stress leading to lipid peroxidation and the formation of 7-ketocholesterol (7KC) resulting from cholesterol auto-oxidation. As 7KC induces oxidative stress, inflammation and cell death, it is important to identify compounds able to impair its harmful effects. These compounds may be either natural or synthetic molecules or mixtures of molecules such as oils. In this context: (i) the lipid profiles of dietary argan oils from Berkane and Agadir (Morocco) in fatty acids, phytosterols, tocopherols and polyphenols were determined by different chromatographic techniques; and (ii) their anti-oxidant and cytoprotective effects in 158N murine oligodendrocytes cultured with 7KC (25-50 µM; 24 h) without and with argan oil (0.1% v/v) or α-tocopherol (400 µM, positive control) were evaluated with complementary techniques of cellular and molecular biology. Among the unsaturated fatty acids present in argan oils, oleate (C18:1 n-9) and linoleate (C18:1 n-6) were the most abundant; the highest quantities of saturated fatty acids were palmitate (C16:0) and stearate (C18:0). Several phytosterols were found, mainly schottenol and spinasterol (specific to argan oil), cycloartenol, β-amyrin and citrostadienol. α- and γ-tocopherols were also present. Tyrosol and protocatechic acid were the only polyphenols detected. Argan and extra virgin olive oils have many compounds in common, principally oleate and linoleate, and tocopherols. Kit Radicaux Libres (KRL) and ferric reducing antioxidant power (FRAP) tests showed that argan and extra virgin olive oils have anti-oxidant properties. Argan oils were able to attenuate the cytotoxic effects of 7KC on 158N cells: loss of cell adhesion, cell growth inhibition, increased plasma membrane permeability, mitochondrial, peroxisomal and lysosomal dysfunction, and the induction of oxiapoptophagy (OXIdation + APOPTOsis + autoPHAGY). Altogether, our data obtained in 158N oligodendrocytes provide evidence that argan oil is able to counteract the toxic effects of 7KC on nerve cells, thus suggesting that some of its compounds could prevent or mitigate neurodegenerative diseases to the extent that they are able to cross the blood-brain barrier.
Collapse
|
35
|
Passmore JB, Pinho S, Gomez-Lazaro M, Schrader M. The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilising activity. Histochem Cell Biol 2017; 148:331-341. [PMID: 28523458 PMCID: PMC5539279 DOI: 10.1007/s00418-017-1577-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling are supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which-in contrast to its effect on peroxisomes-were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson's disease, are discussed.
Collapse
Affiliation(s)
- Josiah B Passmore
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Sonia Pinho
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Gomez-Lazaro
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
- Centre for Cell Biology & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
36
|
Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9860841. [PMID: 28811869 PMCID: PMC5546064 DOI: 10.1155/2017/9860841] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.
Collapse
|
37
|
The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017; 18:ijms18061126. [PMID: 28538669 PMCID: PMC5485950 DOI: 10.3390/ijms18061126] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease.
Collapse
|
38
|
Cavallini G, Donati A, Taddei M, Bergamini E. Peroxisomes proliferation and pharmacological stimulation of autophagy in rat liver: evidence to support that autophagy may remove the "older" peroxisomes. Mol Cell Biochem 2017; 431:97-102. [PMID: 28255846 DOI: 10.1007/s11010-017-2979-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/24/2017] [Indexed: 01/25/2023]
Abstract
Like mitochondria, peroxisomes produce reactive oxygen species (ROS), compounds which have been implicated to play an important role in many degenerative diseases and aging itself, and an exaggerated ROS production might occur in altered or older organelles. Growing evidence shows that autophagy, a required function in cell housekeeping during fasting, can remove damaged macromolecules, organelles, and membranes selectively. Proliferation of peroxisomes can be enhanced in liver cells by perfluorooctanoic acid (PFOA), which causes a marked increase of the Acyl-CoA oxidase (ACOX) activity and no significant change in urate oxidase (UOX) activity. The administration of antilipolytic drugs to fasted animals was shown to intensify autophagy. Here we tested the hypothesis that autophagy may distinguish and remove older from younger peroxisomes in rat liver. Male Sprague-Dawley rats were given PFOA (150 mg/kg body weight) or vehicle. Animals were sacrificed at different times following PFOA administration, and 3 h after the induction of autophagy with the antilipolytic agent 3,5-dimethyl pyrazole (DMP, 12 mg/kg body weight). The levels of ACOX and UOX activity were measured in the liver tissue. Results showed that autophagy caused a parallel, significant decrease in both enzymes activity in control rats, and that in PFOA-treated rats the effects were different and changed with PFOA time administration. Changes are compatible with the hypothesis that newly formed ACOX-rich peroxisomes are resistant to pexophagy and that sensitivity to pexophagy increases with increasing peroxisomal "age." In conclusion, there is indirect evidence supporting the hypothesis that autophagy may recognize and degrade older peroxisomes.
Collapse
Affiliation(s)
- Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Alessio Donati
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Michele Taddei
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Ettore Bergamini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
39
|
Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathol 2017; 133:283-301. [PMID: 28004277 PMCID: PMC5250669 DOI: 10.1007/s00401-016-1655-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1− and Abcd1−/Abcd2−/− mice) and X-ALD patient’s fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1−/Abcd2−/− mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.
Collapse
|
40
|
Yofe I, Soliman K, Chuartzman SG, Morgan B, Weill U, Yifrach E, Dick TP, Cooper SJ, Ejsing CS, Schuldiner M, Zalckvar E, Thoms S. Pex35 is a regulator of peroxisome abundance. J Cell Sci 2017; 130:791-804. [PMID: 28049721 DOI: 10.1242/jcs.187914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are cellular organelles with vital functions in lipid, amino acid and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes; however, the regulation of peroxisome abundance is still poorly understood. Here, we use a high-content microscopy screen in Saccharomyces cerevisiae to identify new regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term PEX35, which affects peroxisome abundance. PEX35 encodes a peroxisomal membrane protein, a remote homolog to several curvature-generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in PEX35, and we found that Pex35 functionally interacts with the vesicle-budding-inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.
Collapse
Affiliation(s)
- Ido Yofe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kareem Soliman
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bruce Morgan
- Department of Cellular Biochemistry, University of Kaiserslautern, Kaiserslautern 67653, Germany.,Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias P Dick
- Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense 5230, Denmark
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| |
Collapse
|
41
|
Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 2016; 32:2-12. [PMID: 27125853 DOI: 10.1016/j.arr.2016.04.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/26/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes are the main catabolic organelles of a cell and play a pivotal role in a plethora of cellular processes, including responses to nutrient availability and composition, stress resistance, programmed cell death, plasma membrane repair, development, and cell differentiation. In line with this pleiotropic importance for cellular and organismal life and death, lysosomal dysfunction is associated with many age-related pathologies like Parkinson's and Alzheimer's disease, as well as with a decline in lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to promote longevity. Here, we analyze the current knowledge on the prominent influence of lysosomes on aging-related processes, such as their executory and regulatory roles during general and selective macroautophagy, or their storage capacity for amino acids and ions. In addition, we review and discuss the roles of lysosomes as active players in the mechanisms underlying known lifespan-extending interventions like, for example, spermidine or rapamycin administration. In conclusion, this review aims at critically examining the nature and pliability of the different layers, in which lysosomes are involved as a control hub for aging and longevity.
Collapse
|
42
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
43
|
Lefevre SD, Kumar S, van der Klei IJ. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan. Cell Cycle 2016; 14:1698-703. [PMID: 25840089 PMCID: PMC4614869 DOI: 10.1080/15384101.2015.1029685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.
Collapse
Affiliation(s)
- Sophie D Lefevre
- a Molecular Cell Biology, Systems Biology Center for Energy Metabolism and Aging; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen ; Groningen , The Netherlands
| | | | | |
Collapse
|
44
|
Turgut NH, Mert DG, Kara H, Egilmez HR, Arslanbas E, Tepe B, Gungor H, Yilmaz N, Tuncel NB. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactose-induced aging mice. PHARMACEUTICAL BIOLOGY 2015; 54:1052-64. [PMID: 26510817 PMCID: PMC11132963 DOI: 10.3109/13880209.2015.1101476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 05/21/2023]
Abstract
CONTEXT Morus nigra L. (Moraceae) has various uses in traditional medicine. However, the effect of M. nigra on cognitive impairment has not been investigated yet. OBJECTIVE The objective of this study is to determine the phenolic acid content and DNA damage protection potential of M. nigra leaf extract and to investigate the extract effect on cognitive impairment and oxidative stress in aging mice. MATERIALS AND METHODS Phenolic acid content was determined by quantitative chromatographic analysis. DNA damage protection potential was evaluated on pBR322 plasmid DNA. Thirty-two Balb-C mice were randomly divided into four groups (control, d-galactose, d-galactose + M. nigra 50, and d-galactose + M. nigra 100). Mice were administered d-galactose (100 mg/kg, subcutaneous) and M. nigra (50 or 100 mg/kg, orally) daily for 8 weeks. Behavioral responses were evaluated with Morris water maze. Activities of antioxidant enzymes and levels of malondialdehyde (MDA) were assayed in serum, brain, and liver. RESULTS In extract, vanillic (632.093 μg/g) and chlorogenic acids (555.0 μg/g) were determined. The extract between 0.02 and 0.05 mg/mL effectively protected all DNA bands against the hazardous effect of UV and H2O2. Morus nigra significantly improved learning dysfunctions (p < 0.01), increased memory retention (p < 0.01), reduced MDA levels (p < 0.05), and elevated SOD, GPx, and CAT activities (p < 0.05) compared with the d-galactose group. DISCUSSION AND CONCLUSION These results show that M. nigra has the potential in improving cognitive deficits in mice and that M. nigra may be useful to suppress aging, partially due to its scavenging activity of free radicals and high antioxidant capacity.
Collapse
Affiliation(s)
- Nergiz Hacer Turgut
- Department of Pharmacology, Cumhuriyet University Faculty of Pharmacy, Sivas, Turkey
| | - Derya Guliz Mert
- Department of Psychiatry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Haki Kara
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | | | - Emre Arslanbas
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Kilis University Faculty of Science and Literature, Kilis, Turkey
| | - Huseyin Gungor
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Nese Yilmaz
- Department of Food Engineering, Faculty of Engineering, Canakkale 18 Mart University, Canakkale, Turkey
| | - Necati Baris Tuncel
- Department of Food Engineering, Faculty of Engineering, Canakkale 18 Mart University, Canakkale, Turkey
| |
Collapse
|
45
|
Jo DS, Bae DJ, Park SJ, Seo HM, Kim HB, Oh JS, Chang JW, Kim SY, Shin JW, Cho DH. Pexophagy is induced by increasing peroxisomal reactive oxygen species in 1'10-phenanthroline-treated cells. Biochem Biophys Res Commun 2015; 467:354-60. [PMID: 26453011 DOI: 10.1016/j.bbrc.2015.09.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023]
Abstract
Although autophagy regulates the quality and quantity of cellular organelles, the regulatory mechanisms of peroxisomal autophagy remain largely unknown. In this study, we developed a cell-based image screening assay, and identified 1,10-phenanthroline (Phen) as a novel pexophagy inducer from chemical library screening. Treatment with Phen induces selective loss of peroxisomes but not endoplasmic reticulum and Golgi apparatus in hepatocytes. In addition, Phen increases autophagic engulfment of peroxisomes in an ATG5 dependent manner. Interestingly, treatment of Phen excessively produces peroxisomal reactive oxygen species (ROS), and inhibition of the ROS suppresses loss of peroxisome in Phen-treated cells. Taken together, these results suggest that Phen triggers pexophagy by enhancing peroxisomal ROS.
Collapse
Affiliation(s)
- Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Hae Mi Seo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Han Byeol Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jong Wook Chang
- Research Institute for Future Medicine Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Won Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea.
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, South Korea.
| |
Collapse
|
46
|
Schrader M, Godinho LF, Costello JL, Islinger M. The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 2015; 3:56. [PMID: 26442263 PMCID: PMC4585249 DOI: 10.3389/fcell.2015.00056] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy—a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Luis F Godinho
- Centre for Cell Biology and Department of Biology, University of Aveiro Aveiro, Portugal
| | - Joseph L Costello
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
47
|
Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B. Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 2015; 84:215-226. [PMID: 25772011 DOI: 10.1016/j.freeradbiomed.2015.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Peroxiredoxin-5 (PRDX5) is a thioredoxin peroxidase that reduces hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This enzyme is present in the cytosol, mitochondria, peroxisomes, and nucleus in human cells. Antioxidant cytoprotective functions have been previously documented for cytosolic, mitochondrial, and nuclear mammalian PRDX5. However, the exact function of PRDX5 in peroxisomes is still not clear. The aim of this work was to determine the function of peroxisomal PRDX5 in mammalian cells and, more specifically, in glial cells. To study the role of PRDX5 in peroxisomes, the endogenous expression of PRDX5 in murine oligodendrocyte 158N cells was silenced by RNA interference. In addition, human PRDX5 was also overexpressed in peroxisomes using a vector coding for human PRDX5, whose unconventional peroxisomal targeting sequence 1 (PTS1; SQL) was replaced by the prototypical PTS1 SKL. Stable 158N clones were obtained. The antioxidant cytoprotective function of peroxisomal PRDX5 against peroxisomal and mitochondrial KillerRed-mediated reactive oxygen species production as well as H2O2 was examined using MTT viability assays, roGFP2, and C11-BOBIPY probes. Altogether our results show that peroxisomal PRDX5 protects 158N oligodendrocytes against peroxisomal and mitochondrial KillerRed- and H2O2-induced oxidative stress.
Collapse
Affiliation(s)
- Geoffroy Walbrecq
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Bo Wang
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Sarah Becker
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Amandine Hannotiau
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
48
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
49
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
50
|
Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:967203. [PMID: 25973140 PMCID: PMC4418010 DOI: 10.1155/2015/967203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/05/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes.
Collapse
|