1
|
Yin H, Perera-Castro AV, Randall KL, Turnbull JD, Waterman MJ, Dunn J, Robinson SA. Basking in the sun: how mosses photosynthesise and survive in Antarctica. PHOTOSYNTHESIS RESEARCH 2023; 158:151-169. [PMID: 37515652 PMCID: PMC10684656 DOI: 10.1007/s11120-023-01040-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.
Collapse
Affiliation(s)
- Hao Yin
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Krystal L Randall
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Johanna D Turnbull
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Melinda J Waterman
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jodie Dunn
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
Martínez-Abaigar J, Núñez-Olivera E. Bryophyte ultraviolet-omics: from genes to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4412-4426. [PMID: 35274697 DOI: 10.1093/jxb/erac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation has contributed to the evolution of organisms since the origins of life. Bryophytes also have evolutionary importance as the first clearly identified lineage of land plants (embryophytes) colonizing the terrestrial environment, thus facing high UV and water scarcity, among other new challenges. Here we review bryophyte UV-omics, the discipline relating bryophytes and UV, with an integrative perspective from genes to the environment. We consider species and habitats investigated, methodology, response variables, protection mechanisms, environmental interactions, UV biomonitoring, molecular and evolutionary aspects, and applications. Bryophyte UV-omics shows convergences and divergences with the UV-omics of other photosynthetic organisms, from algae to tracheophytes. All these organisms converge in that UV damage may be limited under realistic UV levels, due to structural protection and/or physiological acclimation capacity. Nevertheless, bryophytes diverge because they have a unique combination of vegetative and reproductive characteristics to cope with high UV and other concomitant adverse processes, such as desiccation. This interaction has both evolutionary and ecological implications. In addition, UV effects on bryophytes depend on the species and the evolutionary lineage considered, with mosses more UV-tolerant than liverworts. Thus, bryophytes do not constitute a homogeneous functional type with respect to their UV tolerance.
Collapse
Affiliation(s)
- Javier Martínez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | | |
Collapse
|
3
|
Oliveira MF, Maciel-Silva AS. Biological soil crusts and how they might colonize other worlds: insights from these Brazilian ecosystem engineers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4362-4379. [PMID: 35522077 DOI: 10.1093/jxb/erac162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
When bryophytes, lichens, eukaryotic algae, cyanobacteria, bacteria, and fungi live interacting intimately with the most superficial particles of the soil, they form a complex community of organisms called the biological soil crust (BSC or biocrust). These biocrusts occur predominantly in drylands, where they provide important ecological services such as soil aggregation, moisture retention, and nitrogen fixation. Unfortunately, many BSC communities remain poorly explored, especially in the tropics. This review summarizes studies about BSCs in Brazil, a tropical megadiverse country, and shows the importance of ecological, physiological, and taxonomic knowledge of biocrusts. We also compare Brazilian BSC communities with others around the world, describe why BSCs can be considered ecosystem engineers, and propose their use in the colonization of other worlds.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Adaíses Simone Maciel-Silva
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
4
|
Ekwealor JTB, Mishler BD. Transcriptomic Effects of Acute Ultraviolet Radiation Exposure on Two Syntrichia Mosses. FRONTIERS IN PLANT SCIENCE 2021; 12:752913. [PMID: 34777431 PMCID: PMC8581813 DOI: 10.3389/fpls.2021.752913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet radiation (UVR) is a major environmental stressor for terrestrial plants. Here we investigated genetic responses to acute broadband UVR exposure in the highly desiccation-tolerant mosses Syntrichia caninervis and Syntrichia ruralis, using a comparative transcriptomics approach. We explored whether UVR protection is physiologically plastic and induced by UVR exposure, addressing the following questions: (1) What is the timeline of changes in the transcriptome with acute UVR exposure in these two species? (2) What genes are involved in the UVR response? and (3) How do the two species differ in their transcriptomic response to UVR? There were remarkable differences between the two species after 10 and 30 min of UVR exposure, including no overlap in significantly differentially abundant transcripts (DATs) after 10 min of UVR exposure and more than twice as many DATs for S. caninervis as there were for S. ruralis. Photosynthesis-related transcripts were involved in the response of S. ruralis to UVR, while membrane-related transcripts were indicated in the response of S. caninervis. In both species, transcripts involved in oxidative stress and those important for desiccation tolerance (such as late embryogenesis abundant genes and early light-inducible protein genes) were involved in response to UVR, suggesting possible roles in UVR tolerance and cross-talk with desiccation tolerance in these species. The results of this study suggest potential UVR-induced responses that may have roles outside of UVR tolerance, and that the response to URV is different in these two species, perhaps a reflection of adaptation to different environmental conditions.
Collapse
Affiliation(s)
- Jenna T. B. Ekwealor
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Brent D. Mishler
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Orekhova A, Barták M, Casanova-Katny A, Hájek J. Resistance of Antarctic moss Sanionia uncinata to photoinhibition: chlorophyll fluorescence analysis of samples from the western and eastern coasts of the Antarctic Peninsula. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:653-663. [PMID: 33866664 DOI: 10.1111/plb.13270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Interspecific differences in sensitivity of the Antarctic moss Sanionia uncinata from King George Island (KGI) and James Ross Island (JRI) to photoinhibitory treatment were studied in laboratory conditions using chlorophyll fluorescence techniques. Slow (Kautsky) and fast (OJIP) kinetics were used for the measurements. Samples were exposed to a short-term (60 min) photoinhibitory treatment (PIT, 2000 μmol·m-2 ·s-1 PAR). The photoinhibitory treatment (PIT) led to photoinhibition which was indicated by the decrease in FV /FM and ΦPSII in KGI but not in JRI samples. However, this decrease was small and full recovery was reached 90 min after PIT termination. Non-photochemical quenching (NPQ) was activated during the PIT, and rapidly relaxed during recovery. Early stages of photoinhibition showed a drop in FV /FM and ΦPSII to minimum values within the first 10 s of the PIT, with their subsequent increase apparent within fast (0-5 min PIT) and slow (5-50 min PIT) phases of adjustment. The PIT caused a decrease in the performance index (Pi_Abs), photosynthetic electron transport per reaction centre (RC) (ET0 /RC). The PIT induced an increase in thermal dissipation per RC (DI0 /RC), effectivity of thermal dissipation (Phi_D0 ), absorption per RC (ABS/RC) and trapping rate per RC (TR0 /RC). In conclusion, PIT led to only slight photoinhibition followed by fast recovery in S. uncinata from KGI and JRI, since FV /FM and ΦPSII returned to pre-photoinhibitory conditions. Therefore, S. uncinata might be considered resistant to photoinhibition even in the wet state. The KGI samples showed higher resistance to photoinhibition than the JRI samples.
Collapse
Affiliation(s)
- A Orekhova
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Barták
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - A Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Catholic University Temuco, Campus Luis Rivas del Canto, Temuco, Chile
| | - J Hájek
- Department of Experimental Biology, Division of Plant Physiology and Anatomy, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Lobachevska O, Kyyak N, Kordyum E, Khorkavtsiv Y. The role of gravimorphoses in moss adaptation to extreme environment. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.01.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gravisensitivity of mosses at different stages of their ontogenesis has an adaptive value and contributes to the functional activity of the gametophyte and its stability under extreme conditions in microhabitats. The aim of our research was to determine the participation of gravimorphoses in the adaptive plasticity of mosses depending on thermal conditions of their habitats and UV radiation effect. The objects of the study were sterile cultures of the following moss protonemata: Weissia tortilis, collected in different thermal conditions of Zaporizhzhya and Lviv regions (Ukraine), Bryum caespiticium from Lviv Region (Ukraine), as well as B. caespiticium and Polytrichum arcticum collected in Antarctica (Galindez Island). In all moss cultures, the gravisensitivity of protonemata, the morphological structure and morphogenesis of stolons were analysed. The protonemata of W. tortilis from two populations in Ukraine and of B. caespiticium from Antarctica and Ukraine, growing under conditions of different UV levels, were compared in terms of their sensitivity to UV radiation. Gravity-dependent morphoses of terrestrial dendrites of W. tortilis under arid conditions, branching of apical cells of gravitropic stolons of Antarctic mosses P. arcticum and B. caespiticium as well as the rapid development of shoots on them demonstrate participation of gravimorphogenesis in adaptation of mosses to stressful environmental conditions. Gravisensitivity and ability to form buds at the apex of a gravitropic stolon are considered an important adaptive morphogenetic process. It has been found that plants of W. tortilis from Zaporizhzhya Region were more resistant to UV irradiation than those from Lviv Region. Antarctic moss after UV irradiation showed significantly higher antioxidants activity and contained larger amount of phenolic compounds and flavonoids.
Collapse
|
7
|
Perera-Castro AV, Waterman MJ, Turnbull JD, Ashcroft MB, McKinley E, Watling JR, Bramley-Alves J, Casanova-Katny A, Zuniga G, Flexas J, Robinson SA. It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:1178. [PMID: 32922412 PMCID: PMC7457050 DOI: 10.3389/fpls.2020.01178] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/21/2020] [Indexed: 05/05/2023]
Abstract
The terrestrial flora of Antarctica's frozen continent is restricted to sparse ice-free areas and dominated by lichens and bryophytes. These plants frequently battle sub-zero temperatures, extreme winds and reduced water availability; all influencing their ability to survive and grow. Antarctic mosses, however, can have canopy temperatures well above air temperature. At midday, canopy temperatures can exceed 15°C, depending on moss turf water content. In this study, the optimum temperature of photosynthesis was determined for six Antarctic moss species: Bryum pseudotriquetrum, Ceratodon purpureus, Chorisodontium aciphyllum, Polytrichastrum alpinum, Sanionia uncinata, and Schistidium antarctici collected from King George Island (maritime Antarctica) and/or the Windmill Islands, East Antarctica. Both chlorophyll fluorescence and gas exchange showed maximum values of electron transport rate occurred at canopy temperatures higher than 20°C. The optimum temperature for both net assimilation of CO2 and photoprotective heat dissipation of three East Antarctic species was 20-30°C and at temperatures below 10°C, mesophyll conductance did not significantly differ from 0. Maximum mitochondrial respiration rates occurred at temperatures higher than 35°C and were lower by around 80% at 5°C. Despite the extreme cold conditions that Antarctic mosses face over winter, the photosynthetic apparatus appears optimised to warm temperatures. Our estimation of the total carbon balance suggests that survival in this cold environment may rely on a capacity to maximize photosynthesis for brief periods during summer and minimize respiratory carbon losses in cold conditions.
Collapse
Affiliation(s)
- Alicia V. Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Melinda J. Waterman
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Johanna D. Turnbull
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Michael B. Ashcroft
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ella McKinley
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jennifer R. Watling
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Manchester Metropolitan University, Manchester, United Kingdom
| | - Jessica Bramley-Alves
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Angelica Casanova-Katny
- Laboratorio de Ecofisiología Vegetal y Cambio Climático y Núcleo de Estudios Ambientales (NEA), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Gustavo Zuniga
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Global Challenges Program, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
8
|
Ekwealor JTB, Fisher KM. Life under quartz: Hypolithic mosses in the Mojave Desert. PLoS One 2020; 15:e0235928. [PMID: 32697785 PMCID: PMC7375520 DOI: 10.1371/journal.pone.0235928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Several species of dryland cyanobacteria are known to occur as hypoliths under semi-translucent rocks. In the Mojave Desert, these organisms find refuge from intense solar radiation under milky quartz where moisture persists for a longer period of time than in adjacent soil surface habitat. Desert mosses, which are extremely desiccation-tolerant, can also occur in these hypolithic spaces, though little is known about this unique moss microhabitat and how species composition compares to that of adjacent soil surface communities. To address this question, we deployed microclimate dataloggers and collected moss samples from under and adjacent to 18 milky quartz rocks (quartz mean center thickness 26 ± 15 mm) in a western high elevation Mojave Desert site. Light transmission through Mojave quartz rocks may be as low as 1.2%, and data from microclimate loggers deployed for five months support the hypothesis that quartz provides thermal buffering and higher relative humidity compared to the soil surface. Of the 53 samples collected from hypolith and surface microhabitats, 68% were Syntrichia caninervis, the dominant bryophyte of the Mojave Desert biological soil crust. Tortula inermis accounted for 28% of the samples and 4% were Bryum argenteum. In a comparison of moss community composition, we found that S. caninervis was more likely to be on the soil surface, though it was abundant in both microhabitats, while T. inermis was more restricted to hypoliths, perhaps due to protection from temperature extremes. In our study site, the differences between hypolithic and surface microhabitats enable niche partitioning between T. inermis and S. caninervis, enhancing alpha diversity. This work points to the need to thoroughly consider microhabitats when assessing bryophyte species diversity and modelling species distributions. This focus is particularly important in extreme environments, where mosses may find refuge from the prevailing macroclimatic conditions in microhabitats such as hypoliths.
Collapse
Affiliation(s)
- Jenna T. B. Ekwealor
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Kirsten M. Fisher
- Department of Biological Sciences, California State University, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Soriano G, Del-Castillo-Alonso MÁ, Monforte L, Núñez-Olivera E, Martínez-Abaigar J. Acclimation of Bryophytes to Sun Conditions, in Comparison to Shade Conditions, Is Influenced by Both Photosynthetic and Ultraviolet Radiations. FRONTIERS IN PLANT SCIENCE 2019; 10:998. [PMID: 31428117 PMCID: PMC6689964 DOI: 10.3389/fpls.2019.00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
We studied the acclimation modalities of bryophytes to sun and shade under ambient or close-to-ambient conditions, measuring variables usually influenced by photosynthetically active (PAR) and ultraviolet (UV) radiations. Our aim was to elucidate to what extent the responses to changing radiations were influenced by PAR and UV wavelengths. For this aim, we used three taxonomically and structurally different species: the thalloid liverwort Marchantia polymorpha subsp. polymorpha, the leafy liverwort Jungermannia exsertifolia subsp. cordifolia, and the moss Fontinalis antipyretica. In the field, liverworts were more radiation-responsive than the moss, and the thalloid liverwort was more responsive than the leafy liverwort. Sun plants of M. polymorpha showed, in comparison to shade plants, higher sclerophylly, lower Chl a + b contents, higher Chl a/b ratios, higher (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratios (xanthophyll index), lower F v/F m values, higher contents of methanol-soluble vacuolar UV-absorbing compounds (soluble UVACs), higher values of the ratio between the contents of methanol-insoluble cell wall-bound UVACs (insoluble UVACs) and soluble UVACs, higher contents of soluble luteolin and apigenin derivatives and riccionidin A, and higher contents of insoluble p-coumaric and ferulic acids. Overall, these responses reduced light absorption, alleviated overexcitation, increased photoprotection through non-photochemical energy dissipation, increased UV protection through UV screening and antioxidant capacity, and denoted photoinhibition. J. exsertifolia showed moderate differences between sun and shade plants, while responses of F. antipyretica were rather diffuse. The increase in the xanthophyll index was the most consistent response to sun conditions, occurring in the three species studied. The responses of soluble UVACs were generally clearer than those of insoluble UVACs, probably because insoluble UVACs are relatively immobilized in the cell wall. These modalities of radiation acclimation were reliably summarized by principal components analysis. Using the most radiation-responsive species in the field (M. polymorpha), we found, under close-to-ambient greenhouse conditions, that sclerophylly and Chl a + b content were only influenced by PAR, F v/F m, and luteolin and apigenin derivatives were only determined by UV, and xanthophyll index was influenced by both radiation types. Thus, responses of bryophytes to radiation can be better interpreted considering the influence of both PAR and UV radiation.
Collapse
|
10
|
Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. ASTROBIOLOGY 2019; 19:221-232. [PMID: 30742499 DOI: 10.1089/ast.2018.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
Collapse
Affiliation(s)
- Björn Huwe
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Annelie Fiedler
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Sophie Moritz
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Elke Rabbow
- 2 Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jean Pierre de Vera
- 3 Astrobiological Laboratories, Management and Infrastructure, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Jasmin Joshi
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
- 4 Institute for Landscape and Open Space, Hochschule für Technik HSR Rapperswil, Rapperswil, Switzerland
| |
Collapse
|
11
|
Waterman MJ, Bramley-Alves J, Miller RE, Keller PA, Robinson SA. Photoprotection enhanced by red cell wall pigments in three East Antarctic mosses. Biol Res 2018; 51:49. [PMID: 30463628 PMCID: PMC6247747 DOI: 10.1186/s40659-018-0196-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/03/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Antarctic bryophytes (mosses and liverworts) are resilient to physiologically extreme environmental conditions including elevated levels of ultraviolet (UV) radiation due to depletion of stratospheric ozone. Many Antarctic bryophytes synthesise UV-B-absorbing compounds (UVAC) that are localised in their cells and cell walls, a location that is rarely investigated for UVAC in plants. This study compares the concentrations and localisation of intracellular and cell wall UVAC in Antarctic Ceratodon purpureus, Bryum pseudotriquetrum and Schistidium antarctici from the Windmill Islands, East Antarctica. RESULTS Multiple stresses, including desiccation and naturally high UV and visible light, seemed to enhance the incorporation of total UVAC including red pigments in the cell walls of all three Antarctic species analysed. The red growth form of C. purpureus had significantly higher levels of cell wall bound and lower intracellular UVAC concentrations than its nearby green form. Microscopic and spectroscopic analyses showed that the red colouration in this species was associated with the cell wall and that these red cell walls contained less pectin and phenolic esters than the green form. All three moss species showed a natural increase in cell wall UVAC content during the growing season and a decline in these compounds in new tissue grown under less stressful conditions in the laboratory. CONCLUSIONS UVAC and red pigments are tightly bound to the cell wall and likely have a long-term protective role in Antarctic bryophytes. Although the identity of these red pigments remains unknown, our study demonstrates the importance of investigating cell wall UVAC in plants and contributes to our current understanding of UV-protective strategies employed by particular Antarctic bryophytes. Studies such as these provide clues to how these plants survive in such extreme habitats and are helpful in predicting future survival of the species studied.
Collapse
Affiliation(s)
- Melinda J. Waterman
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- Department of Chemistry and Biology, University of Santiago, Alameda, 3363 Santiago, Chile
| | - Jessica Bramley-Alves
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Rebecca E. Miller
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC 3121 Australia
| | - Paul A. Keller
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
- Department of Chemistry and Biology, University of Santiago, Alameda, 3363 Santiago, Chile
| |
Collapse
|
12
|
Jyväsjärvi J, Virtanen R, Ilmonen J, Paasivirta L, Muotka T. Identifying taxonomic and functional surrogates for spring biodiversity conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:883-893. [PMID: 29484703 DOI: 10.1111/cobi.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive.
Collapse
Affiliation(s)
- Jussi Jyväsjärvi
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014, Finland
| | - Risto Virtanen
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014, Finland
- Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Jari Ilmonen
- Metsähallitus, P.O. Box 94, FI-01301, Vantaa, Finland
| | | | - Timo Muotka
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014, Finland
- Finnish Environment Institute, Natural Environment Centre, University of Oulu, P.O. Box 413, FI-90014, Finland
| |
Collapse
|
13
|
Monforte L, Soriano G, Núñez‐Olivera E, Martínez‐Abaigar J. Cell compartmentation of ultraviolet‐absorbing compounds: An underexplored tool related to bryophyte ecology, phylogeny and evolution. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Monforte
- Facultad de Ciencia y TecnologíaUniversidad de La Rioja Logroño Spain
| | - Gonzalo Soriano
- Facultad de Ciencia y TecnologíaUniversidad de La Rioja Logroño Spain
| | | | | |
Collapse
|
14
|
Waterman MJ, Nugraha AS, Hendra R, Ball GE, Robinson SA, Keller PA. Antarctic Moss Biflavonoids Show High Antioxidant and Ultraviolet-Screening Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:2224-2231. [PMID: 28783339 DOI: 10.1021/acs.jnatprod.7b00085] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ceratodon purpureus is a cosmopolitan moss that survives some of the harshest places on Earth: from frozen Antarctica to hot South Australian deserts. In a study on the survival mechanisms of the species, nine compounds were isolated from Australian and Antarctic C. purpureus. This included five biflavonoids, with complete structural elucidation of 1 and 2 reported here for the first time, as well as an additional four known phenolic compounds. Dispersion-corrected DFT calculations suggested a rotational barrier, leading to atropisomerism, resulting in the presence of diastereomers for compound 2. All isolates absorbed strongly in the ultraviolet (UV) spectrum, e.g., biflavone 1 (UV-A, 315-400 nm), which displayed the strongest radical-scavenging activity, 13% more efficient than the standard rutin; p-coumaric acid and trans-ferulic acid showed the highest UV-B (280-315 nm) absorption. The more complex and abundant 1 and 2 presumably have dual roles as both UV-screening and antioxidant compounds. They are strongly bound to Antarctic moss cell walls as well as located inside the cells of moss from both locations. The combined high stability and photoprotective abilities of these isolates may account for the known resilience of this species to UV-B radiation and its survival in some of the toughest locations in the world.
Collapse
Affiliation(s)
| | | | | | - Graham E Ball
- School of Chemistry, UNSW , Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
15
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochem Photobiol Sci 2016; 15:141-74. [PMID: 26822392 DOI: 10.1039/c6pp90004f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
Collapse
|
16
|
Kume A, Akitsu T, Nasahara KN. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation. JOURNAL OF PLANT RESEARCH 2016; 129:615-624. [PMID: 26943164 DOI: 10.1007/s10265-016-0809-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/22/2015] [Indexed: 05/10/2023]
Abstract
The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Tomoko Akitsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kenlo Nishida Nasahara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| |
Collapse
|
17
|
Physiology of Photosynthetic Organisms Within Biological Soil Crusts: Their Adaptation, Flexibility, and Plasticity. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
WADA M. Chloroplast and nuclear photorelocation movements. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:387-411. [PMID: 27840388 PMCID: PMC5328789 DOI: 10.2183/pjab.92.387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described.
Collapse
Affiliation(s)
- Masamitsu WADA
- Department Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa, Tokyo, Japan
| |
Collapse
|
19
|
Bornman JF, Barnes PW, Robinson SA, Ballaré CL, Flint SD, Caldwell MM. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem Photobiol Sci 2015; 14:88-107. [DOI: 10.1039/c4pp90034k] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We summarise advances in our knowledge of how UV-B radiation (280–315 nm) together with other climate change factors interact in their influence on terrestrial organisms and ecosystems.
Collapse
Affiliation(s)
- J. F. Bornman
- International Institute of Agri-Food Security (IIAFS)
- Curtin University
- Perth
- Australia
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University New Orleans
- New Orleans
- USA
| | - S. A. Robinson
- Institute for Conservation Biology
- School of Biological Sciences
- The University of Wollongong
- New South Wales 2522
- Australia
| | - C. L. Ballaré
- IFEVA Universidad de Buenos Aires and IIB Universidad Nacional de San Martín
- Consejo Nacional de Investigaciones Científicas y Técnicas
- C1417DSE Buenos Aires
- Argentina
| | - S. D. Flint
- Department of Forest
- Rangeland
- and Fire Sciences
- University of Idaho
- Moscow
| | | |
Collapse
|