1
|
Cao J, Chen Z, Zhang J, Cao L, Li S. The Identification of a New Gene KRTAP 6-3 in Capra hircus and Its Potential for the Diameter Improvement of Cashmere Fibers. Genes (Basel) 2025; 16:721. [PMID: 40565613 DOI: 10.3390/genes16060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2025] [Revised: 06/05/2025] [Accepted: 06/17/2025] [Indexed: 06/28/2025] Open
Abstract
BACKGROUND Cashmere is one of the important economic products of goats, and the KRTAP gene family, as an important family of regulatory genes in the growth process of cashmere fiber, largely affects the quality of cashmere. METHODS In this study, the KRTAP6-3 gene was identified and located on goat chromosome 1 using a goat genome homology search combined with a phylogenetic tree approach. The Longdong cashmere goat KRTAP6-3 gene variation and its effect on cashmere quality were explored by using the polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP) technique, in situ hybridization, and the allele presence/absence model. RESULTS The results identified a total of six SNPs in KRTAP6-3, three of which were located in the coding region and two of which were synonymous mutations, in addition to 45- bp deletion sequences detected in alleles C and F. Moreover, the KRTAP6-3 mRNA showed a strong expression signal in the cortical layer of the primary and secondary follicles in the inner root sheaths, as well as in the cells of the hair papillae and the matrices during the anagen phase, and signaling at the sites described above is attenuated during the telogen phase. The presence of allele C was associated with increased MFD (mean fiber diameter) (p < 0.01). The MFD of goats with allele C genotype (genotype AC) was significantly higher (p < 0.05) than that of goats without allele C genotype (genotypes AA and AB). CONCLUSIONS This indicates that genetic variation in the KRTAP6-3 gene in goats is significantly associated with cashmere traits and can serve as a candidate gene for molecular markers of cashmere traits.
Collapse
Affiliation(s)
- Jian Cao
- College of Bioengineering, Jiuquan Vocational and Technical University, Jiuquan 735000, China
| | - Zhanzhao Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianmin Zhang
- College of Bioengineering, Jiuquan Vocational and Technical University, Jiuquan 735000, China
| | - Liang Cao
- College of Bioengineering, Jiuquan Vocational and Technical University, Jiuquan 735000, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Meer A, Mathews A, Cabral M, Tarabokija A, Carroll E, Chaudhry H, Paszek M, Radecker N, Palaia T, de Guzman HC, de Guzman RC. Biocompatibility and wound-healing prospect of KAPs-depleted residual hair biomaterial. Biomater Sci 2025. [PMID: 40387482 DOI: 10.1039/d4bm00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This work is an in-depth investigation of the in vitro and in vivo biocompatibility of processed and treated residual human hair samples with intact cuticle layers. The specimens included oxidized hair with minimal melanin (BLH) and hair with medium- (M-KAP) and low- (L-KAP) amounts of keratin associated proteins (KAPs), confirmed through gel electrophoresis, electron microscopy, trichrome histological staining, and tensile biomechanics, in comparison to the untreated regular hair (REG) control. All hair groups, high KAPs (H-KAPs: REG and BLH), M-KAP, and L-KAP, are non-cytotoxic in the adipose fibroblast's response to their extracts based on the ISO 10993-5 medical device biomaterial testing standard. In vivo mouse subcutaneous implantation (ISO 10993-6, local effects) at 2 weeks showed a foreign body response (FBR) with thin fibrous encapsulation at 28% relative skin dermis thickness; but the L-KAP implant mitigated a significant decrease in FBR area compared to H-KAPs and a lower number of immune cells of mostly macrophages and mast cells on the biomaterial's surface. In the bulk of the capsules, blood vessels and collagen extracellular matrix densities were similar among groups. These findings suggest that small globular KAPs diffuse out of the cortex to the host-biomaterial interface which induce a slightly-elevated FBR but limited to the implant's surface vicinity. For translatability, we evaluated the effectiveness of the residual hair with the most depleted KAPs (L-KAP) in a 10 mm-diameter, splinted, and full-thickness mouse skin excision wound. Treatment with the L-KAP mesh exhibited an 8% healing improvement per day compared to the untreated control: significantly reducing the projected complete healing time by 30%. On-going research focuses on purer keratin-based and macromolecularly organized residual hair biomaterials for drug-delivery as they are deemed the most biocompatible.
Collapse
Affiliation(s)
- Allison Meer
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Aidan Mathews
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Mariana Cabral
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Andrew Tarabokija
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Evan Carroll
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Henna Chaudhry
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Michelle Paszek
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| | - Nancy Radecker
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, New York University School of Medicine, Mineola, NY 11501, USA
| | - Hazel Consunji de Guzman
- Department of Foundations of Medicine, New York University School of Medicine, Mineola, NY 11501, USA
- Hair Life Regeneration LLC, Copiague, NY 11726, USA
| | - Roche C de Guzman
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY 11549, USA..
| |
Collapse
|
3
|
Sachslehner AP, Parry DAD, Eckhart L. Cornified Epithelial Teeth of Jawless Vertebrates Contain Proteins Similar to Keratin-Associated Proteins of Mammalian Skin Appendages. J Dev Biol 2025; 13:18. [PMID: 40407687 PMCID: PMC12101200 DOI: 10.3390/jdb13020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 05/16/2025] [Indexed: 05/26/2025] Open
Abstract
Keratins and keratin-associated proteins (KRTAPs) are the main components of mammalian nails and hair. Comparative genomics and gene expression studies have revealed that keratins are conserved in all vertebrates, whereas KRTAPs exist only in mammals. Recently, we found hair keratin-like cysteine-rich keratins in jawless vertebrates with confirmed expression in the cornified epithelial teeth of the sea lamprey (Petromyzon marinus). Here, we report that KRTAP-like proteins are also present in the horny teeth of the lamprey. Mass spectrometry-based proteomics identified proteins that share features with KRTAPs, such as high contents of cysteine and tyrosine residues, which support intermolecular interactions, and abundant glycine residues, which endow the proteins with flexibility. Genes encoding KRTAP-like proteins are arranged in a cluster in P. marinus, and the presence of at least one KRTAP-like protein is conserved in phylogenetically diverse species of lamprey, including Lampetra fluviatilis, Lethenteron reissneri, Geotria australis, and Mordacia mordax. The KRTAP-like genes of lampreys contain two exons, whereas mammalian KRTAPs have only a single exon. Although KRTAPs and KRTAP-like proteins are products of independent evolution, their common expression in cornified skin appendages suggests that they fulfill similar functions.
Collapse
Affiliation(s)
| | - David A. D. Parry
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand;
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
4
|
Holthaus KB, Steinbinder J, Sachslehner AP, Eckhart L. Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures. Animals (Basel) 2025; 15:457. [PMID: 39943227 PMCID: PMC11816140 DOI: 10.3390/ani15030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research.
Collapse
Affiliation(s)
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.H.)
| |
Collapse
|
5
|
Farah CS, Shearston K, Turner EC, Vacher M, Fox SA. Global gene expression profile of proliferative verrucous leukoplakia and its underlying biological disease mechanisms. Oral Oncol 2024; 151:106737. [PMID: 38408418 DOI: 10.1016/j.oraloncology.2024.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Proliferative verrucous leukoplakia (PVL) is a rare and enigmatic oral potentially malignant disorder which almost invariably results in oral squamous cell carcinoma (OSCC). The aims of this project were to use transcriptome profiling to characterise PVL gene expression patterns for biomarker identification and gain insight into the molecular aetiopathogenesis of PVL. METHODS Forty-three oral cavity mucosal biopsies from 32 patients with oral lesions clinically compatible with either PVL or non-PVL conventional oral leukoplakia (OLK) underwent transcriptome profiling by RNA sequencing. Data was analysed by hierarchical clustering, differential gene expression, functional enrichment and network analysis, sparse partial least squares discriminant analysis sPLS-DA, and immune cell phenotypic estimation. RESULTS We found 464 genes significantly differentially expressed at least 2-fold between PVL and non-PVL OLK (193 up and 271 down). HOX genes, including HOXA1 and HOXB7, keratin-associated proteins (KRTAPs) and olfactory receptor G proteins (OR) were significantly upregulated in PVL. Other upregulated genes in PVL included FOS, WNT16 and IFNA1. Pathway analysis showed that there was a significant downregulation of connective tissue signalling in PVL. Classifying multivariate models based upon 22 genes discriminated PVL from non-PVL OLK. Bioinformatic profiling showed that immune cell profiles in PVL and OLK were similar except that fibroblast markers were reduced in PVL. CONCLUSION These results demonstrate that PVL and conventional OLK are molecularly distinct with upregulation of many cancer-associated genes. They provide insight into the pathogenesis of PVL and show that biomarker based molecular diagnostics is feasible to discriminate and inform diagnosis and management.
Collapse
Affiliation(s)
- Camile S Farah
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; Central Queensland University, Rockhampton, Queensland, Australia; Genomics for Life, Milton, QLD, Australia.
| | - Kate Shearston
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; UWA Dental School, University of Western Australia, Nedlands, WA, Australia.
| | - Emma C Turner
- UWA Dental School, University of Western Australia, Nedlands, WA, Australia; Special Needs Dental Unit, Royal Darwin Hospital, Tiwi, NT, Australia
| | - Michael Vacher
- The Australian eHealth Research Centre, CSIRO Health and Biosecurity, Kensington, WA, Australia.
| | - Simon A Fox
- Australian Centre for Oral Oncology Research & Education, Nedlands, WA, Australia; UWA Dental School, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
6
|
Label-free proteomics to identify keratins and keratin-associated proteins and their effects on the fleece traits of Inner Mongolia Cashmere Goats. CZECH JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.17221/93/2022-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Chen Y, He D, Li Y, Luo F, Zhang M, Wang J, Chen L, Tao J. A study of the phosphorylation proteomic skin characteristics of Tan sheep during the newborn and er-mao stages. Trop Anim Health Prod 2021; 54:30. [PMID: 34964062 PMCID: PMC8714624 DOI: 10.1007/s11250-021-02899-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022]
Abstract
In this experiment, in order to study the formation mechanism of the lamb fur of Tan sheep, skin samples were collected from Tan sheep at the newborn and er-mao stages. Then, the phosphorylated proteomes of the skin samples of Tan sheep at the two different stages were compared and analyzed using a TMT labeled quantitative phosphorylation proteomic technique. A total of 2806 phosphorylated proteins were identified, including 8184 phosphorylation sites. The results of this study’s quantitative analysis showed that when compared with the skin samples at the er-mao stage, the phosphorylation levels of 171 sites had been upregulated in the skin samples at newborn stage. Meanwhile, 125 sites had been downregulated at the same stage. As shown by the results of the functional enrichment analysis of the differentially phosphorylated proteins, they had been mainly enriched in the cysteine and methionine metabolism. In addition, the phosphorylation levels of KAP4.7 and KAP13.1 had also varied during the different skin stages. These results indicated that the cysteine metabolism pathways, as well as the phosphorylation modifications of the keratin associated proteins in the skin, played important roles in the formation of the er-mao stage fur of the Tan sheep. Therefore, the findings of this study provided a new angle for interpreting the formation mechanism of er-mao stage fur properties.
Collapse
Affiliation(s)
- Yonghong Chen
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Dongqian He
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yachao Li
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Fang Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Meng Zhang
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Junkui Wang
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Liyao Chen
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Jinzhong Tao
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
8
|
Xu Y, Zhang X, Hui T, Sun J, Cai W, Lin G, Wang L, Dou X, Wang Z, Han D, Wang J, Zhang Y, Qin Y, Gu M, Bai Z, Sun Y, Wu Y, Chen R, Wang Z. Association analysis for SNPs of KRT26 and TCHH genes with cashmere production performance, body measurement traits and milk production traits in Liaoning cashmere goats. Anim Biotechnol 2021:1-11. [PMID: 34747683 DOI: 10.1080/10495398.2021.1996386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cashmere fineness is getting thicker, which is one of the key problems in cashmere breeding, however, there have been no systematic studies on the molecular regulation of cashmere fineness. The aim of this study was to investigate the relationship between KRT26 and TCHH gene polymorphism and production performance in Liaoning cashmere goats (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence alignment and PCR-Seq polymorphism of KRT26 and TCHH genes and analyzed the effect of SNPs on production performance by SPSS software. Two SNPs sites (A559T and A6839G) of two genes were detected. The AA genotype of KRT26 A559T locus was the dominant genotype. AG and GG at TCHH A6839G locus were the dominant genotypes. AAAA was the dominant haplotype combination. The results showed that KRT26 and TCHH genes were associated with cashmere fineness of LCG, and A559T (AA) and A6839G (GG) genotypes were the preferred marker genotypes for cashmere fineness, which provided more theoretical basis for further research on cashmere fineness.
Collapse
Affiliation(s)
- Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Guangyu Lin
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Lingling Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Zhanhong Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Di Han
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Jiaming Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Yu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Stein WD, Hoshen MB. During evolution from the earliest tetrapoda, newly-recruited genes are increasingly paralogues of existing genes and distribute non-randomly among the chromosomes. BMC Genomics 2021; 22:794. [PMID: 34736418 PMCID: PMC8570013 DOI: 10.1186/s12864-021-08066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present availability of full genome sequences of a broad range of animal species across the whole range of evolutionary history enables one to ask questions as to the distribution of genes across the chromosomes. Do newly recruited genes, as new clades emerge, distribute at random or at non-random locations? RESULTS We extracted values for the ages of the human genes and for their current chromosome locations, from published sources. A quantitative analysis showed that the distribution of newly-added genes among and within the chromosomes appears to be increasingly non-random if one observes animals along the evolutionary series from the precursors of the tetrapoda through to the great apes, whereas the oldest genes are randomly distributed. CONCLUSIONS Randomization will result from chromosome evolution, but less and less time is available for this process as evolution proceeds. Much of the bunching of recently-added genes arises from new gene formation as paralogues in gene families, near the location of genes that were recruited in the preceding phylostratum. As examples we cite the KRTAP, ZNF, OR and some minor gene families. We show that bunching can also result from the evolution of the chromosomes themselves when, as for the KRTAP genes, blocks of genes that had previously been on disparate chromosomes become linked together.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel.
| | - Moshe B Hoshen
- Bioinformatics Department, Jerusalem College of Technology, Tal Campus, Beit HaDfus 7, 95483, Jerusalem, Israel
| |
Collapse
|
10
|
Qiu K, Li K, Zeng T, Liao Y, Min J, Zhang N, Peng M, Kong W, Chen LL. Integrative Analyses of Genes Associated with Hashimoto's Thyroiditis. J Immunol Res 2021; 2021:8263829. [PMID: 34493981 PMCID: PMC8418929 DOI: 10.1155/2021/8263829] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/18/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Hashimoto's thyroiditis, also known as chronic lymphocytic thyroiditis, is a common autoimmune thyroiditis, which mostly occurs in young and middle-aged women. It can be manifested as hyperthyroidism in the early stage; hypothyroidism may appear with the progression of the disease. Studies have shown that multiple factors such as heredity, environment, and autoimmunity are involved in the pathogenesis, but the specific mechanism is not clear. In our study, we tried to find key genes and potential molecular mechanisms of Hashimoto's thyroiditis to provide new ideas for the therapeutic targets of Hashimoto's thyroiditis. METHOD GSE138198 and GSE54958 were downloaded from the GEO database, and two datasets were combined for analysis. The combined data were normalized to identify the differentially expressed genes (DEGs), and GO and KEGG enrichment analyses were performed. Protein-protein interaction (PPI) networks and hub genes between DEGs were identified. We also used the miRWalk database to identify regulatory miRNAs associated with expressions of DEGs. RESULT We identified 182 DEGs (160 upregulated and 22 downregulated) between Hashimoto's disease patients and the healthy control group. GO analysis showed that DEGs were mostly concentrated in detection of chemical stimulus involved in sensory perception, intermediate filament cytoskeleton, and olfactory receptor activity. KEGG pathway analysis showed that DEGs were mainly related to olfactory transduction. Some members of the KRTAP family and HTR5A, KNG1, DRD3, HTR1D, TAS2R16, INSL5, TAS2R42, and GRM7 are the most important hub genes in the PPI network. In addition, we recognized that OTUD4, LLPH, and ECHDC1 were the most important hub genes in the miRNA-target gene network. CONCLUSION In this study, a series of bioinformatics analyses of DEGs were performed to identify the key genes and pathways associated with Hashimoto's thyroiditis. These genes and pathways provide a more detailed understanding of the pathogenesis of Hashimoto's disease and provide new ideas for the therapeutic targets of Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Kangli Qiu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Kai Li
- Network and Computing Center, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Nan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Miaomiao Peng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Lu-lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| |
Collapse
|
11
|
Lachner J, Ehrlich F, Mlitz V, Hermann M, Alibardi L, Tschachler E, Eckhart L. Immunolocalization and phylogenetic profiling of the feather protein with the highest cysteine content. PROTOPLASMA 2019; 256:1257-1265. [PMID: 31037447 PMCID: PMC6713690 DOI: 10.1007/s00709-019-01381-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Feathers are the most complex skin appendages of vertebrates. Mature feathers consist of interconnected dead keratinocytes that are filled with heavily cross-linked proteins. Although the molecular architecture determines essential functions of feathers, only few feather proteins have been characterized with regard to their amino acid sequences and evolution. Here, we identify Epidermal Differentiation protein containing DPCC Motifs (EDDM) as a cysteine-rich protein that has co-evolved with other feather proteins. The EDDM gene is located within the avian epidermal differentiation complex (EDC), a cluster of genes that has originated and diversified in amniotes. EDDM shares the exon-intron organization with EDC genes of other amniotes, including humans, and a gene encoding an EDDM-like protein is present in crocodilians, suggesting that avian EDDM arose by sequence modification of an epidermal differentiation gene present in a common ancestor of archosaurs. The EDDM protein contains multiple sequence repeats and a higher number of cysteine residues than any other protein encoded in the EDC. Immunohistochemical analysis of chicken skin and skin appendages showed expression of EDDM in barb and barbules of feathers as well as in the subperiderm on embryonic scutate scales. These results suggest that the diversification and differential expression of EDDM, besides other EDC genes, was instrumental in facilitating the evolution of the most complex molecular architecture of feathers.
Collapse
Affiliation(s)
- Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|