1
|
Mantravadi KC, Martinez M, Rahmat FA, Achmadsyah A, Savira M, Birowo P. Fresh versus frozen micro-TESE sperm and outcomes. Asian J Androl 2025; 27:399-408. [PMID: 40247725 DOI: 10.4103/aja202513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025] Open
Abstract
ABSTRACT The use of fresh versus frozen spermatozoa in men with nonobstructive azoospermia (NOA) undergoing in vitro fertilization (IVF) has been a debated hot topic among reproductive specialists. Each approach presents distinct advantages and disadvantages, with fresh sperm typically showing superior sperm quality, while frozen sperm offers logistical flexibility and a reliable backup for repeated cycles. This review summarizes the latest advancements in sperm retrieval and cryopreservation techniques, providing practitioners with a comprehensive analysis of each option's strengths and limitations. Comparative studies indicate that, although fresh sperm often has better quality metrics, cryopreservation methods such as vitrification have significantly improved postthaw outcomes, making frozen sperm a viable choice in assisted reproductive technologies (ART). The findings show comparable rates for fertilization, implantation, clinical pregnancy, and live birth between fresh and frozen microdissection testicular sperm extraction (micro-TESE) sperm in many cases, although patient-specific factors such as timing, cost-effectiveness, and procedural convenience should guide the final decision. Ultimately, the choice of using fresh or frozen sperm should align with the individual needs and conditions of patients. This tailored approach, supported by the latest advancements, can optimize ART outcomes and provide personalized reproductive care.
Collapse
Affiliation(s)
- Krishna Chaitanya Mantravadi
- Department of Clinical Embryology, Oasis Fertility, Hyderabad 500034, India
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Marlon Martinez
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila 2000, Philippines
| | - Favian Ariiq Rahmat
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Urology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Armand Achmadsyah
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Urology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Missy Savira
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Urology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Ponco Birowo
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Urology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
Graziani A, Grande G, Martin M, Sorio D, Finocchi F, Corrò S, Passerin N, Presciutti A, Di Mambro A, Selice R, Garolla A, Ferlin A. Fertility Preservation in More than 7000 Male Patients: A Single-Center, Tertiary Care Registry Study over 30 Years. Cancers (Basel) 2025; 17:689. [PMID: 40002282 PMCID: PMC11852800 DOI: 10.3390/cancers17040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Semen cryopreservation has been widely used in recent decades, mainly in patients with male factor infertility (MFI) and patients with cancer (to preserve their fertility potential before undergoing gonadotoxic treatments, such as chemotherapy or radiotherapy). Methods: we evaluated the temporal trend and the existence of factors determining the usage of cryopreserved semen (in order, for instance, to conceive using assisted reproduction techniques (ARTs)). We evaluated 7044 patients who cryopreserved since 1991, evaluating clinical information such as the diagnosis, age, the method with which the collection took place and the number of pick-ups for use in ART. Results: The mean age of the patients was 33.12 ± 8.41 years. The most common cancers were testicular (1758/3262) and hematological cancers (942/3262). Patients who underwent cryopreservation for MFI picked up their samples much more than neoplastic patients (42.15% vs. 8.55%). Patients 35-40 years old picked up their samples more frequently when compared with other age groups. Moreover, we found several data regarding the sub-types of cancers and the methods of semen collection. Conclusions: According to our results, the indication for semen cryopreservation, age and the method of collection might represent a simple way to predict the future use of semen for ART.
Collapse
Affiliation(s)
- Andrea Graziani
- Department of Medicine, University of Padua, 35128 Padova, Italy (M.M.); (A.G.)
| | - Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Michel Martin
- Department of Medicine, University of Padua, 35128 Padova, Italy (M.M.); (A.G.)
| | - Donatella Sorio
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Federica Finocchi
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Sara Corrò
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Nicola Passerin
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Adriano Presciutti
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Antonella Di Mambro
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Riccardo Selice
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Andrea Garolla
- Department of Medicine, University of Padua, 35128 Padova, Italy (M.M.); (A.G.)
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| | - Alberto Ferlin
- Department of Medicine, University of Padua, 35128 Padova, Italy (M.M.); (A.G.)
- Unit of Andrology and Reproductive Medicine, Department of Systems Medicine, University Hospital of Padova, 35128 Padova, Italy; (G.G.); (D.S.); (S.C.); (N.P.); (A.D.M.); (R.S.)
| |
Collapse
|
3
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Zhang L, Jiang C, Wang X, Sohail T, Sun Y, Sun X, Wang J, Li Y. Freezing Hu ram semen: influence of different penetrating cryoprotectants and egg yolk level on the post-thaw quality of sperm. Anim Biosci 2024; 37:1548-1557. [PMID: 38938029 PMCID: PMC11366523 DOI: 10.5713/ab.24.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The Hu sheep is a renowned breed known for its high reproductive rate. It is in estrus all year round, and its breeding population is gradually expanding. However, the current techniques for cryopreserving semen have limited effectiveness, which hinders the continuous development of this species. The purpose of this study is to explore the effects of different penetrating cryoprotectants (CPAs) and egg yolk (EY) concentrations on the cryopreservation of Hu ram semen to determine the most effective combination. METHODS In this study, the effects of glycerol (GLY), ethylene glycol (EG), dimethylacetamide, dimethyl sulfoxide, different proportions of GLY and EG, EY on sperm quality after thawing were investigated by detecting sperm total motility (TM), progressive motility (PM), straight-line velocity, curvilinear velocity, average path velocity, amplitude of lateral head displacement, wobble movement coefficient, average motion degree, functional integrity (plasma membrane integrity, acrosome integrity) and reactive oxygen species (ROS) level. RESULTS When GLY and EG were added together, compared to other concentration groups, 6% GLY significantly (p<0.05) increased TM, PM, plasma membrane integrity, and acrosome integrity of thawed sperm. Additionally, it significantly (p<0.05) decreased the ROS level of sperm. In this study, the TM, PM, and membrane integrity of the 6% EG were significantly (p<0.05) higher than those of the control, 1% GLY+5% EG and 6% GLY+6% EG groups. Compared to other concentration groups, 20% EY significantly (p<0.05) improved the TM, PM, and plasma membrane integrity of thawed sperm. However, the integrity of the acrosome increased with the higher concentration of EY. CONCLUSION In conclusion, the post-thawed Hu ram semen diluted with a diluent containing 6% GLY and 20% EY exhibited higher quality compared to the other groups.
Collapse
Affiliation(s)
- Liuming Zhang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Caiyu Jiang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xuyang Wang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Tariq Sohail
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Yuxuan Sun
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Jian Wang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Yongjun Li
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
5
|
Valentini CG, Pellegrino C, Teofili L. Pros and Cons of Cryopreserving Allogeneic Stem Cell Products. Cells 2024; 13:552. [PMID: 38534396 PMCID: PMC10968795 DOI: 10.3390/cells13060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The COVID-19 pandemic has precipitously changed the practice of transplanting fresh allografts. The safety measures adopted during the pandemic prompted the near-universal graft cryopreservation. However, the influence of cryopreserving allogeneic grafts on long-term transplant outcomes has emerged only in the most recent literature. In this review, the basic principles of cell cryopreservation are revised and the effects of cryopreservation on the different graft components are carefully reexamined. Finally, a literature revision on studies comparing transplant outcomes in patients receiving cryopreserved and fresh grafts is illustrated.
Collapse
Affiliation(s)
- Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
| | - Claudio Pellegrino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
6
|
Lu Y, Cheng B, Shan Y, Zhou S, Xu C, Fei Y, Pan J, Piao J, Li F, Zhu Z, Zheng H. Lyophilization enhances the stability of Panax notoginseng total saponins-loaded transfersomes without adverse effects on ex vivo/in vivo skin permeation. Int J Pharm 2024; 649:123668. [PMID: 38048891 DOI: 10.1016/j.ijpharm.2023.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Transfersomes (TFSs) have been extensively investigated to enhance transdermal drug delivery. As a colloidal dispersion system, TFSs are prone to problems such as particle aggregation and sedimentation, oxidation and decomposition of phospholipids. To enhance the stability of panax notoginseng saponins (PNS)-loaded transfersomes (PNS-TFSs) without adverse influences on their skin permeation, we prepared lyophilized PNS-loaded transfersomes (PNS-FD-TFSs), clarified their physicochemical characteristics and investigated their in vitro drug release, ex vivo skin permeation/deposition and in vivo pharmacokinetics. In this study, a simple, fast and controllable process was developed for preparing lyophilized PNS-TFSs. In the optimized PNS-FD-TFS formulation, sucrose and trehalose were added to the PNS-TFS dispersion with a mass ratio of trehalose, sucrose, and phospholipid of 3:2:1, and the mixture was frozen at -80 °C for 12 h followed by lyophilization at -45 °C and 5 Pa for 24 h. The optimized formulation of PNS-FD-TFSs was screened based on the appearance and reconstitution time of the lyophilized products, vesicle size, and PDI of the freshly reconstituted dispersions. It maintained stable physicochemical properties for at least 6 months at 4 °C. The vesicle size of PNS-FD-TFSs was below 100 nm and homogenous with a polydispersity index of 0.2 after reconstitution. The average encapsulation efficiencies of the five index saponins notoginsenoside R1 (NGR1), ginsenoside Rg1 (GRg1), ginsenoside Re (GRe), ginsenoside Rb1 (GRb1) and ginsenoside Rd (GRd) in PNS-FD-TFSs were 68.41 ± 5.77%, 68.95 ± 6.08%, 65.46 ± 10.95%, 91.50 ± 5.62% and 95.78 ± 1.70%, respectively. The reconstituted dispersions of PNS-FD-TFSs were similar to PNS-TFSs in in vitro release, ex vivo skin permeation, and deposition. The pharmacokinetic studies showed that, compared with the PNS liposomes (PNS-LPS), the PNS-FD-TFS-loaded drug could permeate through the skin and enter the blood rapidly. It can be concluded that the lyophilization process can effectively improve the stability of PNS-TFSs without compromising their transdermal absorption properties.
Collapse
Affiliation(s)
- Yujie Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Bixin Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yujun Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Shanshan Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Chang Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yarong Fei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jialin Pan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zhihong Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
7
|
Parihar A, Kumar A, Panda U, Khan R, Parihar DS, Khan R. Cryopreservation: A Comprehensive Overview, Challenges, and Future Perspectives. Adv Biol (Weinh) 2023; 7:e2200285. [PMID: 36755194 DOI: 10.1002/adbi.202200285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Cryopreservation is the most prevalent method of long-term cell preservation. Effective cell cryopreservation depends on freezing, adequate storage, and correct thawing techniques. Recent advances in cryopreservation techniques minimize the cellular damage which occurs while processing samples. This article focuses on the fundamentals of cryopreservation techniques and how they can be implemented in a variety of clinical settings. The article presents a brief description of each of the standard cryopreservation procedures, such as slow freezing and vitrification. Alongside that, the membrane permeating and nonpermeating cryoprotectants are briefly discussed, along with current advancements in the field of cryopreservation and variables influencing the cryopreservation process. The diminution of cryoinjury incurred by the cell via the resuscitation process will also be highlighted. In the end application of cryopreservation techniques in many fields, with a special emphasis on stem cell preservation techniques and current advancements presented. Furthermore, the challenges while implementing cryopreservation and the futuristic scope of the fields are illustrated herein. The content of this review sheds light on various ways to enhance the output of the cell preservation process and minimize cryoinjury while improving cell revival.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Rukhsar Khan
- Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | | | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| |
Collapse
|
8
|
Zang Y, Cao B, Zhao H, Xie B, Ge Y, Yi Y, Liu H. On-site determination of water toxicity based on freeze-dried electrochemically active bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161432. [PMID: 36623651 DOI: 10.1016/j.scitotenv.2023.161432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Our previous studies have reported water toxicity determination with a fresh electrochemically active bacteria (EAB) suspension as the sensing element, which exhibits high sensitivity and has great prospects in providing early warning about water pollution. However, because the preparation of fresh EAB suspensions is time-consuming, these studies are not suitable for the on-site determination of water toxicity. To solve this problem, this study investigated the rapid preparation of an EAB suspension by the rehydration of freeze-dried EABs and established a novel method for the on-site determination of water toxicity based on the freeze-dried EAB model strain Shewanella oneidensis MR-1. The results demonstrate that the optimal cryoprotectant for S. oneidensis MR-1 freeze drying is 7.5 % (w/v) skimmed milk powder. Compared with fresh S. oneidensis MR-1, freeze-dried S. oneidensis MR-1 exhibits similar extracellular electron transfer (EET) performance (74.7 % ± 0.3 %) and slightly lower sensitivity for water toxicity determination (65.8 % ± 2.2 %) with the optimal cryoprotectant. On-site determination of water toxicity was realized by using freeze-dried S. oneidensis MR-1, and the detection limits of five common toxic pollutants (Cd2+, Pb2+, Cu2+, phenol and dichlorophenol) reached 0.5 mg/L. Water toxicity determination is capable of resisting common interferences, e.g., glucose, lactate, nitrate and nitrite, and shows high accuracy in practical applications.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, Guangdong Province, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, 100081, China.
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
9
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
10
|
Linkova DD, Rubtsova YP, Egorikhina MN. Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products. Cells 2022; 11:cells11172691. [PMID: 36078098 PMCID: PMC9454587 DOI: 10.3390/cells11172691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) manifest vast opportunities for clinical use due both to their ability for self-renewal and for effecting paracrine therapeutic benefits. At the same time, difficulties with non-recurrent generation of large numbers of cells due to the necessity for long-term MSC expansion ex vivo, or the requirement for repeated sampling of biological material from a patient significantly limits the current use of MSCs in clinical practice. One solution to these problems entails the creation of a biobank using cell cryopreservation technology. This review is aimed at analyzing and classifying literature data related to the development of protocols for the cryopreservation of various types of MSCs and tissue-engineered structures. The materials in the review show that the existing techniques and protocols for MSC cryopreservation are very diverse, which significantly complicates standardization of the entire process. Here, the selection of cryoprotectors and of cryoprotective media shows the greatest variability. Currently, it is the cryopreservation of cell suspensions that has been studied most extensively, whereas there are very few studies in the literature on the freezing of intact tissues or of tissue-engineered structures. However, even now it is possible to develop general recommendations to optimize the cryopreservation process, making it less traumatic for cells.
Collapse
|
11
|
Alvarez C, Berrospe-Rodriguez C, Wu C, Pasek-Allen J, Khosla K, Bischof J, Mangolini L, Aguilar G. Photothermal heating of titanium nitride nanomaterials for fast and uniform laser warming of cryopreserved biomaterials. Front Bioeng Biotechnol 2022; 10:957481. [PMID: 36091458 PMCID: PMC9455577 DOI: 10.3389/fbioe.2022.957481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.
Collapse
Affiliation(s)
- Crysthal Alvarez
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Carla Berrospe-Rodriguez
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Jacqueline Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lorenzo Mangolini
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| | - Guillermo Aguilar
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| |
Collapse
|
12
|
Kazemzadeh S, Mohammadpour S, Madadi S, Babakhani A, Shabani M, Khanehzad M. Melatonin in cryopreservation media improves transplantation efficiency of frozen-thawed spermatogonial stem cells into testes of azoospermic mice. Stem Cell Res Ther 2022; 13:346. [PMID: 35883101 PMCID: PMC9327150 DOI: 10.1186/s13287-022-03029-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cryostorage of spermatogonial stem cells (SSCs) is an appropriate procedure for long-term storage of SSCs for fertility preservation. However, it causes damage to cellular structures through overproduction of ROS and oxidative stress. In this study, we examined the protective effect of melatonin as a potent antioxidant in the basic freezing medium to establish an optimal cryopreservation method for SSCs. Methods SSCs were obtained from the testes of neonatal male mice aged 3–6 days. Then, 100 μM melatonin was added to the basic freezing medium containing DMSO for cryopreservation of SSCs. Viability, apoptosis-related markers (BAX and BCL2), and intracellular ROS generation level were measured in frozen–thawed SSCs before transplantation using the MTT assay, immunocytochemistry, and flow cytometry, respectively. In addition, Western blotting and immunofluorescence were used to evaluate the expression of proliferation (PLZF and GFRα1) and differentiation (Stra8 and SCP3) proteins in frozen–thawed SSCs after transplantation into recipient testes. Results The data showed that adding melatonin to the cryopreservation medium markedly increased the viability and reduced intracellular ROS generation and apoptosis (by decreasing BAX and increasing BCL2) in the frozen–thawed SSCs (p < 0.05). The expression levels of proliferation (PLZF and GFRα1) and differentiation (Stra8 and SCP3) proteins and resumption of spermatogenesis from frozen–thawed SSCs followed the same pattern after transplantation. Conclusions The results of this study revealed that adding melatonin as an antioxidant to the cryopreservation medium containing DMSO could be a promising strategy for cryopreservation of SSCs to maintain fertility in prepubertal male children who suffer from cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03029-1.
Collapse
Affiliation(s)
- Shokoofeh Kazemzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Mohammadpour
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soheila Madadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Azar Babakhani
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Effect of graphene oxide as cryoprotectant on post-thaw sperm functional and kinetic parameters of cross bred (HF X Sahiwal) and Murrah buffalo ( ) bulls. Cryobiology 2022; 106:102-112. [DOI: 10.1016/j.cryobiol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
|
14
|
Ma L, Kim DH, Jung EJ, Lee WJ, Hwang JM, Bae JW, Jung DJ, Yi JK, Lee SM, Ha JJ, Kwon WS. Effect of glycerol addition time on the cryopreserved Korean native brindle cattle (Chikso) sperm quality. Anim Reprod 2022; 19:e20210058. [PMID: 35432606 PMCID: PMC9000158 DOI: 10.1590/1984-3143-ar2021-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Although cryopreservation is an efficient method for maintaining the biological and genetic resources of sperm, the sperm damage during the cryopreservation process cannot be ignored. It should be possible to obtain the most effective cryopreservation performance by accurately grasping the effects of various factors on the cryopreservation of sperm. The previous study demonstrated that a suitable standard protocol for cryopreservation of Korean native brindled cattle (Chikso) does not exist, based on the methods for semen cryopreservation of Chikso differ in each research center. The most obvious difference between most of protocols is the addition of glycerol before and after cooling during the Chikso cryopreserved semen process. Therefore we focused on the effects of glycerol addition time on the quality of cryopreserved Chikso sperm. In the present study, 27 individual Chikso samples were collected by transrectal massage and divided into two parts: the “cryopreservation method A” group (adding glycerol before cooling) and the “cryopreservation method B” group (adding glycerol after cooling). Meanwhile, the values of various sperm parameters were derived from each group, including sperm motility, kinematics, capacitation status, cell viability, and intracellular ATP levels, which we used to compare and evaluate sperm function. The results of this study indicated that during the semen cryopreservation process of the Chikso, the addition of glycerol after cooling yielded superior results in a variety of sperm parameters, such as sperm motility, progressive motility, rapid motility, VCL, VSL, VAP, ALH, capacitation status, viability, and intracellular ATP level after freezing and thawing. Our study is suggested that the glycerol addition time during the cryopreservation process for Chikso should be considered. In addition, our results may be provided reference to develop suitable the cryopreservation procedure of the Chikso sperm.
Collapse
Affiliation(s)
- Lei Ma
- Kyungpook National University, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongbuk Livestock Research Institute, Republic of Korea
| | - Eun-Ju Jung
- Kyungpook National University, Republic of Korea
| | - Woo-Jin Lee
- Kyungpook National University, Republic of Korea
| | - Ju-Mi Hwang
- Kyungpook National University, Republic of Korea
| | | | - Dae-Jin Jung
- Gyeongbuk Livestock Research Institute, Republic of Korea
| | - Jun Koo Yi
- Gyeongbuk Livestock Research Institute, Republic of Korea
| | - Sang Moo Lee
- Kyungpook National University, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Republic of Korea
| | - Woo-Sung Kwon
- Kyungpook National University, Republic of Korea; Kyungpook National University, Republic of Korea
| |
Collapse
|
15
|
Wang HX, Lu XL, Li JT, Zhang JM. Transplantation of rat frozen-thawed testicular tissues: Does fragment size matter? Cryobiology 2021; 105:50-55. [PMID: 34919943 DOI: 10.1016/j.cryobiol.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Cryopreservation of testicular tissue from pre-pubertal boys before gonadotoxic treatment is an important step in fertility preservation. Yet, this approach remains experimental, and there is still few study measuring the effect of tissue size on the graft after cryopreservation and transplantation. The objective of this study is to detect the effect of varying tissue sizes on the efficacy of rat testicular tissue cryopreservation and transplantation. Varying sizes of rat testicular tissues were frozen-thawed and autografted. At the 30th day after grafting, the grafts were collected for histology assessment and immunohistochemistry assay for MAGE-A4 (germ cell marker) and CD34 (blood vessel marker). The transplant recovery, seminiferous tubule integrity, tubular diameter, spermatogonia number, and microsvessel density in testicular fragments sizing in 3 mm in length, 3 mm wide, and 3 mm in thickness were significantly lower than other groups. Whereas, the absorption rate of graft sizing in 1 mm in length, 1 mm in wide, and 1 mm in thickness was significantly higher than other groups. Testicular fragment sizing in 2-3 mm in length, 2-3 mm in wide, and 2 mm in thickness (8 mm3-18 mm3) is suitable for rat testicular tissue cryopreservation and transplantation.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Institute: Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, China
| | - Xi-Lan Lu
- Institute: Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, China
| | - Jun-Tao Li
- Institute: Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, China
| | | |
Collapse
|
16
|
Amstislavsky SY, Mokrousova VI, Okotrub SV, Brusentsev EY, Naprimerov VA. Application of the Cryobank Concept to Wild and Endangered Carnivora Species. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
18
|
Activity of Povidone in Recent Biomedical Applications with Emphasis on Micro- and Nano Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13050654. [PMID: 34064408 PMCID: PMC8147856 DOI: 10.3390/pharmaceutics13050654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Due to the unwanted toxic properties of some drugs, new efficient methods of protection of the organisms against that toxicity are required. New materials are synthesized to effectively disseminate the active substance without affecting the healthy cells. Thus far, a number of polymers have been applied to build novel drug delivery systems. One of interesting polymers for this purpose is povidone, pVP. Contrary to other polymeric materials, the synthesis of povidone nanoparticles can take place under various condition, due to good solubility of this polymer in several organic and inorganic solvents. Moreover, povidone is known as nontoxic, non-carcinogenic, and temperature-insensitive substance. Its flexible design and the presence of various functional groups allow connection with the hydrophobic and hydrophilic drugs. It is worth noting, that pVP is regarded as an ecofriendly substance. Despite wide application of pVP in medicine, it was not often selected for the production of drug carriers. This review article is focused on recent reports on the role povidone can play in micro- and nano drug delivery systems. Advantages and possible threats resulting from the use of povidone are indicated. Moreover, popular biomedical aspects are discussed.
Collapse
|
19
|
Pezo F, Zambrano F, Uribe P, Risopatrón J, Moya C, Cesar de Andrade AF, Burgos RA, Yeste M, Sánchez R. Oxidative and nitrosative stress in frozen-thawed pig spermatozoa. II: Effect of the addition of saccharides to freezing medium on sperm function. Cryobiology 2020; 97:5-11. [PMID: 33121933 DOI: 10.1016/j.cryobiol.2020.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Saccharides have bioprotective properties, with a high capacity to preserve biological proteins and membranes during sperm cryopreservation. The aim of this study was to evaluate how replacing the lactose of cryopreservation media by sucrose (SUC) or trehalose (TRE) at concentrations of 0.2 M (SUC-1 and TRE-1) and 0.25 M (SUC-2 and TRE-2) affects frozen/thawed pig spermatozoa. The media used were composed of medium A (saccharide/egg yolk) and B (saccharide/egg yolk/glycerol), their osmolality being determined prior to freezing. Cell viability, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), lipid peroxidation, thiol group oxidation, total reactive oxygen species (ROS), peroxynitrite and superoxide anion (O2●-) were determined through flow cytometry; total motility (TM), progressive motility (PM) and kinetic parameters motility were determined immediately after thawing (T0) and again 30 (T30) and 60 (T60) minutes later. The SUC-2 and TRE-2 groups maintained viability significantly and presented fewer lipid membrane disorders, respectively, both with a significant increase in MMP. The production of O2●- and peroxynitrite was lower in the TRE-2 groups compared to the control (P < 0.05). Total motility at T0 was greater in the TRE-2 group (P < 0.05). Sperm kinetics was not affected by the treatment. The use of saccharides SUC and TRE at a concentration of 0.25 M improves sperm quality, so that both non-penetrating cryoprotectants can be utilized in pig sperm freezing media.
Collapse
Affiliation(s)
- Felipe Pezo
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Chile
| | - Fabiola Zambrano
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatrón
- Department of Basic Science, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Claudia Moya
- Department of Agronomic Sciences and Natural Resources, Faculty of Agricultural Sciences and Forestry, Universidad de La Frontera, Temuco, Chile
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael A Burgos
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Raúl Sánchez
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
20
|
Fernández-Colino A, Jockenhoevel S. Advances in Engineering Venous Valves: The Pursuit of a Definite Solution for Chronic Venous Disease. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:253-265. [PMID: 32967586 DOI: 10.1089/ten.teb.2020.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Native venous valves enable proper return of blood to the heart. Under pathological conditions (e.g., chronic venous insufficiency), venous valves malfunction and fail to prevent backward flow. Clinically, this can result in painful swelling, varicose veins, edema, and skin ulcerations leading to a chronic wound situation. Surgical correction of venous valves has proven to drastically reduce these symptoms. However, the absence of intact leaflets in many patients limits the applicability of this strategy. In this context, the development of venous valve replacements represents an appealing approach. Despite acceptable results in animal models, no venous valve has succeeded in clinical trials, and so far no single prosthetic venous valve is commercially available. This calls for advanced materials and fabrication approaches to develop clinically relevant venous valves able to restore natural flow conditions in the venous circulation. In this study, we critically discuss the approaches attempted in the last years, and we highlight the potential of tissue engineering to offer new avenues for valve fabrication. Impact statement Venous valves prosthesis offer the potential to restore normal venous flow, and to improve the prospect of patients that suffer from chronic venous disease. Current venous valve replacements are associated with poor outcomes. A deeper understanding of the approaches attempted so far is essential to establish the next steps toward valve development, and importantly, tissue engineering constitutes a unique toolbox to advance in this quest.
Collapse
Affiliation(s)
- Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| |
Collapse
|
21
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
22
|
Rodin VV. NMR techniques in studying water in biotechnological systems. Biophys Rev 2020; 12:683-701. [PMID: 32557162 PMCID: PMC7311624 DOI: 10.1007/s12551-020-00694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different NMR methodologies have been considered in studying water as a part of the structure of heterogeneous biosystems. The current work mostly describes NMR techniques to investigate slow translational dynamics of molecules affecting anisotropic properties of polymers and biomaterials. With these approaches, information about organized structures and their stability could be obtained in conditions when external factors affect biomolecules. Such changes might include rearrangement of macromolecular conformations at fabrication of nano-scaffolds for tissue engineering applications. The changes in water-fiber interactions could be mirrored by the magnetic resonance methods in various relaxations, double-quantum filtered (DQF), 1D and 2D translational diffusion experiments. These findings effectively demonstrate the current state of NMR studies in applying these experiments to the various systems with the anisotropic properties. For fibrous materials, it is shown how NMR correlation experiments with two gradients (orthogonal or collinear) encode diffusion coefficients in anisotropic materials and how to estimate the permeability of cell walls. It is considered how the DQF NMR technique discovers anisotropic water in natural polymers with various cross-links. The findings clarify hydration sites, dynamic properties, and binding of macromolecules discovering the role of specific states in improving scaffold characteristics in tissue engineering processes. Showing the results in developing these NMR tools, this review focuses on the ways of extracting information about biophysical properties of biomaterials from the NMR data obtained.
Collapse
Affiliation(s)
- Victor V Rodin
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| |
Collapse
|
23
|
Qin Q, Zhao L, Liu Z, Liu T, Qu J, Zhang X, Li R, Yan L, Yan J, Jin S, Wang J, Qiao J. Bioinspired l-Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18352-18362. [PMID: 32227894 DOI: 10.1021/acsami.0c02719] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various types of cells are routinely cryopreserved in modern regenerative and cell-based medicines. For instance, the oocyte is one of the most demanding cells to be cryopreserved in genetic engineering and human-assisted reproductive technology (ART). However, the usage of cryopreserved oocytes in ART clinics is still limited mainly because of the unstable survival rate. This is due to the fact that oocytes are more prone to be damaged by ice crystals in comparison to other cells, as oocytes are larger in size and surface area. Meanwhile, oocytes contain more water, and thus, ice crystals are easier to form inside the cells. Currently, to avoid injury by the formed ice crystals, cryopreservation (CP) of oocytes has to use large amounts of small molecules as cryoprotectants such as dimethyl sulfoxide (DMSO) and ethylene glycol (EG), which can permeate into the cell and prevent ice formation inside. However, these molecules are chemically and epigenetically toxic to cells. Therefore, great efforts have been focused on reducing the amount of DMSO and EG used for oocyte CP. In nature, the antifreeze (glyco)proteins (AFGPs) locate extracellularly with the ability to protect living organisms from freezing damage via controlling ice growth. Inspired by this, biocompatible and nontoxic L-proline oligomers (L-Pron), which have the same polyproline II helix structure as that of AFGPs, are first employed for the CP of oocytes. The experimental results reveal that L-Pro8 has a profound activity in inhibiting ice growth as that of AFGP8. Also, by the addition of 50 mM L-Pro8, the amount of DMSO and EG can be greatly reduced by ca. 1.8 M for oocyte CP; moreover, the survival rate of the cryopreserved oocytes is increased up to 99.11%, and the coefficient of variance of the survival rate is decreased from 7.47 to 2.15%. These results mean that almost all oocytes can survive after CP with our method; importantly, the mitochondrial function as a critical criterion for the quality of the frozen-thawed oocytes is also improved. It is proposed that with the addition of L-Pro8, the extracellular ice growth is slowed down, which prevents the direct injuries of cells by large ice crystals and the accompanying osmotic pressure increase. As such, this work is not only significant for meeting the ever-increasing demand by the ART clinics but also gives guidance for designing materials in controlling ice growth during CP of other cells and tissues.
Collapse
Affiliation(s)
- Qingyuan Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhang Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Xiaowei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Shenglin Jin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| |
Collapse
|
24
|
Zhang JW, Dong DD, Guan XY, Zhang EM, Chen YM, Yang K, Zhang YX, Khan MMB, Arfat Y, Aziz Y. Physical Organohydrogels With Extreme Strength and Temperature Tolerance. Front Chem 2020; 8:102. [PMID: 32211372 PMCID: PMC7076117 DOI: 10.3389/fchem.2020.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tough gel with extreme temperature tolerance is a class of soft materials having potential applications in the specific fields that require excellent integrated properties under subzero temperature. Herein, physically crosslinked Europium (Eu)-alginate/polyvinyl alcohol (PVA) organohydrogels that do not freeze at far below 0°C, while retention of high stress and stretchability is demonstrated. These organohydrogels are synthesized through displacement of water swollen in polymer networks of hydrogel to cryoprotectants (e.g., ethylene glycol, glycerol, and d-sorbitol). The organohydrogels swollen water-cryoprotectant binary systems can be recovered to their original shapes when be bent, folded and even twisted after being cooled down to a temperature as low as -20 and -45°C, due to lower vapor pressure and ice-inhibition of cryoprotectants. The physical organohydrogels exhibit the maximum stress (5.62 ± 0.41 MPa) and strain (7.63 ± 0.02), which is about 10 and 2 times of their original hydrogel, due to the synergistic effect of multiple hydrogen bonds, coordination bonds and dense polymer networks. Based on these features, such physically crosslinked organohydrogels with extreme toughness and wide temperature tolerance is a promising soft material expanding the applications of gels in more specific and harsh conditions.
Collapse
Affiliation(s)
- Jing Wen Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Dian Dian Dong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Xiao Yu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - En Mian Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yun Xia Zhang
- Research Center for Semiconductor Materials and Devices, College of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an, China
| | - Malik Muhammad Bilal Khan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yasir Arfat
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Xi'an, China
| |
Collapse
|