1
|
Green M, Trivedi MH, Foster JA. Microbes and mood: innovative biomarker approaches in depression. Trends Mol Med 2025; 31:50-63. [PMID: 39353744 DOI: 10.1016/j.molmed.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Although the field of psychiatry has made gains in biomarker discovery, our ability to change long-term outcomes remains inadequate. Matching individuals to the best treatment for them is a persistent clinical challenge. Moreover, the development of novel treatments has been hampered in part due to a limited understanding of the biological mechanisms underlying individual differences that contribute to clinical heterogeneity. The gut microbiome has become an area of intensive research in conditions ranging from metabolic disorders to cancer. Innovation in these spaces has led to translational breakthroughs, offering novel microbiome-informed approaches that may improve patient outcomes. In this review we examine how translational microbiome research is poised to advance biomarker discovery in mental health, with a focus on depression.
Collapse
Affiliation(s)
- Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada; Center for Depression Research and Clinical Care, Department of Psychiatry and Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Duan ZM, Wu LF. Role of oral-gut-brain axis in psychiatric and neurological disorders. Shijie Huaren Xiaohua Zazhi 2024; 32:878-886. [DOI: 10.11569/wcjd.v32.i12.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The oral cavity and gut are two important microbial habitats in the human body, harboring the most ecologically rich and taxonomically diverse microbial communities in humans, which play a key role in microbiome related diseases. In recent years, the emerging concept of the oral-gut-brain axis has attracted widespread attention in the fields of neuroscience, digestive science, and microbiology. It is not only an anatomical description, but also a comprehensive concept that covers multiple physiological functions and pathological mechanisms. Simply put, the oral-gut-brain axis refers to the complex network that connects the mouth, gut, and brain tightly together through neural connections and hormonal and immune pathways. With the deepening of research on the oral-gut-brain axis theory, more and more evidence shows that it plays an important role in depression, Parkinson's disease, and other neurodegenerative diseases. This article reviews the recent progress in research of the oral-gut-brain axis in psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Zhi-Min Duan
- Department of Gastroenterology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
3
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
4
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
5
|
Witoszyńska-Sobkowiak J, Sikorska D, Niklas K, Żychowska I, Rutkowski R, Samborski W. The kynurenine pathway in patients with rheumatoid arthritis during tumor necrosis factor α inhibitors treatment. Reumatologia 2024; 62:220-225. [PMID: 39381728 PMCID: PMC11457307 DOI: 10.5114/reum/191752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis (RA). The aim of the study was to evaluate the effect of treatment with tumor necrosis factor α (TNF-α) inhibitors on the activity of the kynurenine pathway in patients with RA. Material and methods This was an investigator-initiated, prospective, observational study. The study was performed on 30 RA patients (Caucasian, 11 male, 19 female; mean age 45 ±16 years) treated with TNF-α inhibitors. All patients were assessed before and after 6 months of therapy. As a control group, age- and sex-matched, 20 healthy volunteers were recruited. Disease activity was evaluated by the Modified Disease Activity Score with 28-joint count (DAS28). Inflammatory markers were assessed routinely by the hospital central laboratory. Serum concentrations of kynurenine, serotonin and tryptophan were measured with specific immunoassays. To estimate indoleamine 2,3-dioxygenase (IDO) activity, kynurenine-to-tryptophan ratio was calculated. Results The results of our study showed changes in tryptophan metabolism in RA patients, compared with healthy controls. Surprisingly, RA patients had statistically significant decreased kynurenine-to-tryptophan ratio (p = 0.003), which could indicate diminished IDO activation in RA. Moreover, we found no significant changes in kynurenine-to-tryptophan ratio after treated with TNF-α inhibitors (p = 0.490), despite disease remission. Additionally, tryptophan metabolism activity did not correlate with objective markers of inflammation. Conclusions The RA patients had altered tryptophan metabolism, compared with healthy controls. The mechanisms affecting tryptophan metabolism in RA may be complex. We believe that continuing elucidation of pathophysiological pathways relevant in RA offer substantial hope for the development of specific pharmacotherapy for treatment of RA - especially for comorbidity of RA and depression.
Collapse
Affiliation(s)
| | - Dorota Sikorska
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Karolina Niklas
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Iwona Żychowska
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Rafał Rutkowski
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poland
| | - Włodzimierz Samborski
- Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
6
|
Kang P, Wang AZX. Microbiota-gut-brain axis: the mediator of exercise and brain health. PSYCHORADIOLOGY 2024; 4:kkae007. [PMID: 38756477 PMCID: PMC11096970 DOI: 10.1093/psyrad/kkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
The brain controls the nerve system, allowing complex emotional and cognitive activities. The microbiota-gut-brain axis is a bidirectional neural, hormonal, and immune signaling pathway that could link the gastrointestinal tract to the brain. Over the past few decades, gut microbiota has been demonstrated to be an essential component of the gastrointestinal tract that plays a crucial role in regulating most functions of various body organs. The effects of the microbiota on the brain occur through the production of neurotransmitters, hormones, and metabolites, regulation of host-produced metabolites, or through the synthesis of metabolites by the microbiota themselves. This affects the host's behavior, mood, attention state, and the brain's food reward system. Meanwhile, there is an intimate association between the gut microbiota and exercise. Exercise can change gut microbiota numerically and qualitatively, which may be partially responsible for the widespread benefits of regular physical activity on human health. Functional magnetic resonance imaging (fMRI) is a non-invasive method to show areas of brain activity enabling the delineation of specific brain regions involved in neurocognitive disorders. Through combining exercise tasks and fMRI techniques, researchers can observe the effects of exercise on higher brain functions. However, exercise's effects on brain health via gut microbiota have been little studied. This article reviews and highlights the connections between these three interactions, which will help us to further understand the positive effects of exercise on brain health and provide new strategies and approaches for the prevention and treatment of brain diseases.
Collapse
Affiliation(s)
- Piao Kang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
7
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
8
|
Bashir B, Alam S, Khandale N, Birla D, Vishwas S, Pandey NK, Gupta G, Paudel KR, Dureja H, Kumar P, Singh TG, Kuppusamy G, Zacconi FC, Pinto TDJA, Dhanasekaran M, Gulati M, Dua K, Singh SK. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res Rev 2024; 95:102236. [PMID: 38369026 DOI: 10.1016/j.arr.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated the significant involvement of the gut microbiome in both human physiology and pathology. Additionally, therapeutic interventions based on microbiome approaches have been employed to enhance overall health and address various diseases including aging and neurodegenerative disease (ND). Researchers have explored potential links between these areas, investigating the potential pathogenic or therapeutic effects of intestinal microbiota in diseases. This article provides a summary of established interactions between the gut microbiome and ND. Post-biotic is believed to mediate its neuroprotection by elevating the level of dopamine and reducing the level of α-synuclein in substantia nigra, protecting the loss of dopaminergic neurons, reducing the aggregation of NFT, reducing the deposition of amyloid β peptide plagues and ameliorating motor deficits. Moreover, mediates its neuroprotective activity by inhibiting the inflammatory response (decreasing the expression of TNFα, iNOS expression, free radical formation, overexpression of HIF-1α), apoptosis (i.e. active caspase-3, TNF-α, maintains the level of Bax/Bcl-2 ratio) and promoting BDNF secretion. It is also reported to have good antioxidant activity. This review offers an overview of the latest findings from both preclinical and clinical trials concerning the use of post-biotics in ND.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Shahbaz Alam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Street, Sao Paulo 05508-000, Brazil
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Kankaynar M, Ceyhun HA, Baran A, Sulukan E, Yildirim S, Bolat İ, Toraman E, Nadaroglu H, Arslan M, Ceyhun SB. The anxiolytic and circadian regulatory effect of agarwood water extract and its effects on the next generation; zebrafish modelling. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109621. [PMID: 37023882 DOI: 10.1016/j.cbpc.2023.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Anxiety is one of the most common psychiatric symptoms worldwide. Studies show that there is an increase of >25 % in the prevalence of anxiety with the onset of the COVID-19 pandemic process. Due to the various side effects of drugs used in the treatment of anxiety, interest in natural therapeutic alternatives has increased. Agarwood is a plant used as a natural therapeutic due to its sedative effect as well as many effects such as antioxidant and antibacterial. Although there are many studies with agarwood, comprehensive behavioral studies, including the next generation, are limited. In present study, zebrafish fed with diets containing 10-100 ppm water extract of Agarwood (AWE) for 3 and 8 weeks were exposed to predator stress using Oscar fish in order to test the potential anxiolytic effect of AWE. At the end of the period, zebrafish exposed to predator stress were subjected to anxiety and circadian tests. Histopathological evaluation and immunofluorescent analyzes of BDNF and 5HT4-R proteins were performed in the brains of zebrafish. The effects on the next generation were examined by taking offspring from zebrafish. According to the results, it was observed that AWE had a healing effect on anxiety-like behaviors and on the disrupted circadian rhythm triggered by the predatory stress it applied, especially in the 8 weeks 100 ppm group. Interestingly, it was also found to be effective in offspring of zebrafish fed diets with AWE.
Collapse
Affiliation(s)
- Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Department of Food Technology, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Murat Arslan
- Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
10
|
Wei S, Mai Y, Hu L, Zheng R, Zheng D, Chen W, Cai Y, Wang J. Altered gut microbiota in temporal lobe epilepsy with anxiety disorders. Front Microbiol 2023; 14:1165787. [PMID: 37283931 PMCID: PMC10239838 DOI: 10.3389/fmicb.2023.1165787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Patients with epilepsy are particularly vulnerable to the negative effects of anxiety disorders. In particular, temporal lobe epilepsy with anxiety disorders (TLEA) has attracted more attention in epilepsy research. The link between intestinal dysbiosis and TLEA has not been established yet. To gain deeper insight into the link between gut microbiota dysbiosis and factors affecting TLEA, the composition of the gut microbiome, including bacteria and fungi, has been examined. Methods The gut microbiota from 51 temporal lobe epilepsy patients has been subjected to sequencing targeting 16S rDNA (Illumina MiSeq) and from 45 temporal lobe epilepsy patients targeting the ITS-1 region (through pyrosequencing). A differential analysis has been conducted on the gut microbiota from the phylum to the genus level. Results TLEA patients' gut bacteria and fungal microbiota exhibited distinct characteristics and diversity as evidenced by high-throughput sequencing (HTS). TLEA patients showed higher abundances of Escherichia-Shigella (genus), Enterobacterales (order), Enterobacteriaceae (family), Proteobacteria (phylum), Gammaproteobacteria (class), and lower abundances of Clostridia (class), Firmicutes, Lachnospiraceae (family), Lachnospirales (order), and Ruminococcus (genus). Among fungi, Saccharomycetales fam. incertae sedis (family), Saccharomycetales (order), Saccharomycetes (class), and Ascomycota (phylum) were significantly more abundant in TLEA patients than in patients with temporal lobe epilepsy but without anxiety. Adoption and perception of seizure control significantly affected TLEA bacterial community structure, while yearly hospitalization frequency affected fungal community structures in TLEA patients. Conclusion Here, our study validated the gut microbiota dysbiosis of TLEA. Moreover, the pioneering study of bacterial and fungal microbiota profiles will help in understanding the course of TLEA and drive us toward preventing TLEA gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Shouchao Wei
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yingren Mai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Zhanjiang, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
| | - Ruxing Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Dongming Zheng
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wenrong Chen
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yan Cai
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Junjun Wang
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
12
|
Szala-Rycaj J, Szewczyk A, Zagaja M, Kaczmarczyk-Ziemba A, Maj M, Andres-Mach M. The Influence of Topinambur and Inulin Preventive Supplementation on Microbiota, Anxious Behavior, Cognitive Functions and Neurogenesis in Mice Exposed to the Chronic Unpredictable Mild Stress. Nutrients 2023; 15:2041. [PMID: 37432210 DOI: 10.3390/nu15092041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Daily living and functioning under stress can lead to mental health problems such as anxiety or depression. Over the past decades, a number of studies have been conducted to determine the relationship between the central nervous system (CNS), intestinal flora and bidirectional communication along the gut brain axis (GBA) in the maintaining of homeostasis. One of the most important factors regulating GBA functioning in exposure to stress may be a proper diet enriched in the supplementation with pre-, pro-and synbiotics. In the present study, we examined whether a 10-week oral preventive supplementation with natural prebiotics: topinambur powder (TPB) and chicory root inulin (INU) influenced an anxiety, depressive behavior and cognition in mice exposed to the chronic unpredictable mild stress (CUMS). Additionally, a fluoxetine (FLU) has been used as a reference antidepressive drug. Furthermore, we assessed the effect of TPB, INU and FLU administration on neurogenesis in mice exposed to CUMS and finally analyzed fecal microbiota for possible changes after TPB and INU supplementation in CUMS induced mice. Results obtained from the behavioral studies (elevated plaze maze, forced swim and Morris water maze test) indicated, that 10 week supplementation with TPB (250 mg/kg) and INU (66 mg/kg), similarly to FLU (12 mg/kg), significantly mitigated an anxiety and stress as well as protected learning and memory functions in the CUMS induced mice compared to the control stressed group. Additionally, TPB and INU CUMS mice showed significantly higher level of neurogenesis in comparison to control CUMS group. Interestingly, results obtained from the fecal microbiota analysis showed a beneficial effect of TPB and INU supplementation against CUMS-induced intestinal dysbiosis in mice. In conclusion, the obtained results showed that a long-term, preventive supplementation with TPB or INU alleviates the negative effects such as anxiety, cognitive disorders or dysbiosis in mice exposed to chronic unpredictable stress.
Collapse
Affiliation(s)
- Joanna Szala-Rycaj
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Agnieszka Kaczmarczyk-Ziemba
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, WitaStwosza 59, 80-308 Gdansk, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
13
|
Shan D, You L, Wan X, Yang H, Zhao M, Chen S, Jiang W, Xu Q, Yuan Y. Serum metabolomic profiling revealed potential diagnostic biomarkers in patients with panic disorder. J Affect Disord 2023; 323:461-471. [PMID: 36493940 DOI: 10.1016/j.jad.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Currently, specific metabolites and diagnostic biomarkers of panic disorder (PD) patients have not been identified in clinical practice. The aim of this study was to explore metabolites and metabolic pathways in serum through a metabolomics method. METHODS Fifty-five PD patients who completed 2 weeks of inpatient treatment and 55 healthy control subjects (HCs) matched for age, sex and BMI were recruited. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was used to detect metabolites in serum. Multivariate Statistical Analysis was used to identify differential metabolites. The relevant biometabolic pathways were further identified by the online tool MetaboAnalyst 5.0. RESULTS 43 different metabolites in PD patients compared to HCs (P < 0.05) were screened. Pathway analysis showed that these small molecules were mainly associated with amino acid metabolism. 14 metabolites were significantly changed after 2 weeks of drug treatment (P < 0.05), which were mainly associated with tryptophan metabolism. CONCLUSION In conclusion, our analysis of metabolomics of PD patients at baseline and two weeks after treatment screened for differential metabolites that could be potential diagnostic biomarkers involved in PD pathogenesis and influence some biometabolic pathways such as phenylalanine metabolism and tryptophan metabolism. In the future, we can summarize and observe the dynamic changes of differential metabolites that appear more frequently in similar studies to further explore the underlying mechanisms of PD evolution.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Linlin You
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Yonggui Yuan
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Baskerville R, McGrath T, Castell L. The effects of physical activity on glutamate neurotransmission in neuropsychiatric disorders. Front Sports Act Living 2023; 5:1147384. [PMID: 36949894 PMCID: PMC10025343 DOI: 10.3389/fspor.2023.1147384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Physical activity (PA) is an effective way of increasing cognitive and emotional health and counteracting many psychiatric conditions. Numerous neurobiological models for depression have emerged in the past 30 years but many struggle to incorporate the effects of exercise. The hippocampus and pre-frontal cortex (PFC) containing predominantly glutamate neurotransmission, are the centres of changes seen in depression. There is therefore increasing interest in glutamatergic systems which offers new paradigms of understanding mechanisms connecting physical activity, stress, inflammation and depression, not explained by the serotonin theories of depression. Similar hippocampal glutamate dysfunction is observed in many other neuropsychiatric conditions. Excitatory glutamate neurones have high functionality, but also high ATP requirements and are therefore vulnerable to glucocorticoid or pro-inflammatory stress that causes mitochondrial dysfunction, with synaptic loss, culminating in depressed mood and cognition. Exercise improves mitochondrial function, angiogenesis and synaptogenesis. Within the glutamate hypothesis of depression, the mechanisms of stress and inflammation have been extensively researched, but PA as a mitigator is less understood. This review examines the glutamatergic mechanisms underlying depression and the evidence of physical activity interventions within this framework. A dynamic glutamate-based homeostatic model is suggested whereby stress, neuroinflammation and PA form counterbalancing influences on hippocampal cell functionality, which manifests as depression and other neuropsychiatric conditions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
- Correspondence: Richard Baskerville
| | | | | |
Collapse
|
15
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Chojnacki C, Popławski T, Konrad P, Fila M, Błasiak J, Chojnacki J. Antimicrobial treatment improves tryptophan metabolism and mood of patients with small intestinal bacterial overgrowth. Nutr Metab (Lond) 2022; 19:66. [PMID: 36167589 PMCID: PMC9513933 DOI: 10.1186/s12986-022-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal composition of intestinal bacteria is an essential condition for good health. Excessive growth of these bacteria can cause various ailments. The aim of this study was to assess the mental state and gastrointestinal complaints of patients with small intestinal bacterial overgrowth (SIBO) in relation to tryptophan metabolism and rifaximin treatment. METHODS 120 subjects, aged 23-61 years, were enrolled in the study, and divided into 3 groups, 40 individuals each: healthy subjects (Controls), patients with SIBO and chronic diarrhea (SIBO-D), and with chronic constipation (SIBO-C). The lactulose hydrogen breath test (LHBT) was performed to diagnose SIBO. The mental state of patients was assessed using the Hamilton Anxiety Rating Scale (HAM-A), and the Hamilton Depression Rating Scale (HAM-D). L-tryptophan (TRP) and its metabolites: 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), xanthurenic acid (XA) and quinolinic acid (QA) were measured in urine by liquid-chromatography-tandem mass spectrometry and related to creatinine level. Patients with SIBO were recommended to take rifaximin for 10 days at daily dose 1200 mg, and this cycle was repeated in subsequent two months. RESULTS Mild and moderate anxiety, as well as mild depression were diagnosed in all SIBO patients. Changes in TRP metabolism were also observed in these patients. Specifically, an increase in the activity of the serotonin pathway of TRP metabolism in the group SIBO-D was observed. The SIBO-C patients showed an increase in the concentration of KYN, XA and QA. 5-HIAA/TRP and KYN/TRP ratios significantly decreased in group SIBO-D, and KYN and QA levels decreased in group SIBO-C after treatment with rifaximin. The levels of anxiety and depression decreased in both groups. CONCLUSION Rifaximin treatment of SIBO patients ameliorated their mood disorders and gastrointestinal aliments underlined by changes in tryptophan metabolism. Trial registration Retrospectively registered (if applicable).
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry Medical, University of Lodz, 90-136, Lodz, Poland.,Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland
| | - Michał Fila
- Department of Developmental Neurology and Epileptology, Polish Mother Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, Haller square 1, 90-647, Lodz, Poland.
| |
Collapse
|
17
|
Chojnacki C, Konrad P, Błońska A, Medrek-Socha M, Przybylowska-Sygut K, Chojnacki J, Poplawski T. Altered Tryptophan Metabolism on the Kynurenine Pathway in Depressive Patients with Small Intestinal Bacterial Overgrowth. Nutrients 2022; 14:nu14153217. [PMID: 35956393 PMCID: PMC9370164 DOI: 10.3390/nu14153217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The causes of depression are diverse and are still not fully understood. Recently, an increasing role is attributed to nutritional and inflammatory factors. The aim of this study was to evaluate selected metabolites of the tryptophan kynurenine pathway in depressive patients with small intestinal bacterial overgrowth (SIBO). The study involved 40 healthy people (controls) and 40 patients with predominant small intestinal bacterial overgrowth (SIBO-D). The lactulose hydrogen breath test (LHBT) was performed to diagnose SIBO. The severity of symptoms was assessed using the Gastrointestinal Symptom Rating Scale (GSRS–IBS) and the Hamilton Depression Rating Scale (HAM-D). The concentration of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QA) in urine was determined using an LC–MS/MS method, before and after cyclic treatment with an antibiotic drug, rifaximin, for three months. The number of intraepithelial lymphocytes (IELs) in the duodenum and small intestinal mucosa, fecal calprotectin (FC) and serum level of C-reactive protein (CRP) were also determined. In patients with SIBO, a higher level of KYN and QA were found as compared to the control group. These two groups also differed in KYN/TRP (higher in SIBO) and KYNA/KYN ratios (lower in SIBO). A positive correlation was found between HAM-D and the number of IELs and the level of FC. Treatment with rifaximin improves the kynurenic pathway, as well as abdominal and mental complaints. Therefore, small intestinal bacterial overgrowth can be a cause of abdominal symptoms, but also mental disorders.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Aleksandra Błońska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marta Medrek-Socha
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | | | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
- Correspondence: (J.C.); (T.P.)
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (J.C.); (T.P.)
| |
Collapse
|
18
|
Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:3339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
Affiliation(s)
- Eirini Martinou
- Department of Upper Gastrointestinal Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Evangelia Iosif
- Department of General Surgery, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Ramprasath T, Han YM, Zhang D, Yu CJ, Zou MH. Tryptophan Catabolism and Inflammation: A Novel Therapeutic Target For Aortic Diseases. Front Immunol 2021; 12:731701. [PMID: 34630411 PMCID: PMC8496902 DOI: 10.3389/fimmu.2021.731701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Aortic diseases are the primary public health concern. As asymptomatic diseases, abdominal aortic aneurysm (AAA) and atherosclerosis are associated with high morbidity and mortality. The inflammatory process constitutes an essential part of a pathogenic cascade of aortic diseases, including atherosclerosis and aortic aneurysms. Inflammation on various vascular beds, including endothelium, smooth muscle cell proliferation and migration, and inflammatory cell infiltration (monocytes, macrophages, neutrophils, etc.), play critical roles in the initiation and progression of aortic diseases. The tryptophan (Trp) metabolism or kynurenine pathway (KP) is the primary way of degrading Trp in most mammalian cells, disturbed by cytokines under various stress. KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), etc. Depends on the cell types, these metabolites can elicit both hyper- and anti-inflammatory effects. Accumulating evidence obtained from various animal disease models indicates that KP contributes to the inflammatory process during the development of vascular disease, notably atherosclerosis and aneurysm development. This review outlines current insights into how perturbed Trp metabolism instigates aortic inflammation and aortic disease phenotypes. We also briefly highlight how targeting Trp metabolic pathways should be considered for treating aortic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
20
|
Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules 2021; 11:biom11071000. [PMID: 34356624 PMCID: PMC8301955 DOI: 10.3390/biom11071000] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The brain–gut–microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.
Collapse
|
21
|
Sun Q, Cheng L, Zhang X, Wu Z, Weng P. The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders. Food Funct 2021; 12:952-962. [PMID: 33439201 DOI: 10.1039/d0fo02791j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tea polyphenols (TP) are the most bioactive components in tea extracts. It has been reported that TP can regulate the composition and the function of the intestinal flora. Meanwhile, intestinal microorganisms improve the bioavailability of TP, and the corresponding metabolites of TP can regulate intestinal micro-ecology and promote human health more effectively. The dysfunction of the microbiota-gut-brain axis is the main pathological basis of depression, and its abnormality may be the direct cause and potential influencing factor of psychiatric disorders. The interrelationship between TP and intestinal microorganisms is discussed in this review, which will enable us to better evaluate the potential preventive effects of TP on psychiatric disorders by modulating host intestinal microorganisms.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| |
Collapse
|
22
|
Tryptophan Metabolism and Gut-Brain Homeostasis. Int J Mol Sci 2021; 22:ijms22062973. [PMID: 33804088 PMCID: PMC8000752 DOI: 10.3390/ijms22062973] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tryptophan is an essential amino acid critical for protein synthesis in humans that has emerged as a key player in the microbiota-gut-brain axis. It is the only precursor for the neurotransmitter serotonin, which is vital for the processing of emotional regulation, hunger, sleep, and pain, as well as colonic motility and secretory activity in the gut. Tryptophan catabolites from the kynurenine degradation pathway also modulate neural activity and are active in the systemic inflammatory cascade. Additionally, tryptophan and its metabolites support the development of the central and enteric nervous systems. Accordingly, dysregulation of tryptophan metabolites plays a central role in the pathogenesis of many neurologic and psychiatric disorders. Gut microbes influence tryptophan metabolism directly and indirectly, with corresponding changes in behavior and cognition. The gut microbiome has thus garnered much attention as a therapeutic target for both neurologic and psychiatric disorders where tryptophan and its metabolites play a prominent role. In this review, we will touch upon some of these features and their involvement in health and disease.
Collapse
|
23
|
Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110145. [PMID: 33203568 DOI: 10.1016/j.pnpbp.2020.110145] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
The intestine and the gut-associated limphoid tissue constitute the largest immunity organ of the human body. Among several possible tryptophan metabolism routes, the kynurenine pathway can be influenced by the gut microbiota. Disturbances of gut biodiversity may cause increased gut permeability and cause systemic inflammation, also related to central nervous system. Proinflammatory cytokines induce kynurenine pathway enzymes resulting in formation of neuroactive metabolites, which are being associated with several psychiatric disorders. The kynurenine pathway may also be influenced by certain bacteria species directly. The aim of this review is to highlight the current knowledge on the interaction of gut microbiota and the central nervous system with the kynurenine pathway taken into special account. Up to date study results on specific psychiatric disorders such as schizophrenia, bipolar disorder, Alzheimer's disease, autism spectrum disorders, depression and alcoholism are presented. Available evidence suggests that toxicity of kynurenine metabolites may be reduced by adjunction of probiotics which can affect proinflammatory cytokines. Due to their potential for modulation of the kynurenine pathway, gut microbiota pose an interesting target for future therapies.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland.
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| | | | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
24
|
Evrensel A, Ünsalver BÖ, Ceylan ME, Tarhan N. Vaccination and Immunotherapy for Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:503-513. [PMID: 33834415 DOI: 10.1007/978-981-33-6044-0_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Depression is a very common disease with increasing incidence resulting from complex interactions of genetic, environmental, and immunological processes. To this day, the etiopathogenesis and treatment of depression unfortunately seem to be stuck in the synaptic gap. Despite highly potent antidepressants, the treatment rate cannot reach 100%, the treatment resistant group cannot be eliminated, and relapse cannot be prevented. These problems lead researchers to further and different research to understand and treat psychopathology. Immune dysfunction and neuroinflammation have been one of the main issues that psychiatry has focused on in recent years and helps us to understand depression. Extraneuronal components of all neuropsychiatric disorders, especially depression, have begun to be revealed in detail thanks to a better understanding of the immune system and an increase in experimental and technological possibilities. There is increasing evidence of a causal relationship between the etiopathogenesis of major depression and low-level chronic neuroinflammation. In this article, the role of neuroinflammation in the etiopathogenesis of depression and the possibilities of vaccination and immunotherapy are discussed.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, NP Brain Hospital, Saray Mah. Ahmet Tevfik İleri Cad. No: 18 PK:34768 Umraniye, Uskudar University, Istanbul, Turkey.
| | - Barış Önen Ünsalver
- Vocational School of Health Services, Department of Medical Documentation and Secretariat, Uskudar University, Istanbul, Turkey
| | - Mehmet Emin Ceylan
- Departments of Psychology and Philosophy, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
25
|
Evrensel A, Tarhan N. Inflammation Biomarkers in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2020. [DOI: 10.2174/2666082216999200625115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
There has long been a need for diagnostic, theragnostic, and prognostic
biomarkers for psychiatric disorders. Biomarkers help in reducing ambiguity and arbitrariness and
increase objectivity. In this context, many candidates for hormonal, immunological, serological, and
neuroimaging markers have been proposed, but none of these marker candidates alone nor a biomarker
panel has been approved for any disease. The fact that almost all psychiatric disorders are
heterogeneous makes this process challenging. However, strong biomarker candidates have been
identified, especially in light of the large number of clinical and preclinical studies conducted within
the last five years.
Objective:
The aim of this article was to compile and discuss the current information on immune
biomarkers in major psychiatric disorders, such as schizophrenia, depression, bipolar disorder, and
anxiety disorders.
Methods:
In this study, respected scientific databases were searched using key terms related to the
subject, and the related literature was examined in detail.
Results:
There are many relationships between psychiatric disorders and immune system parameters.
Evidence also suggests that neuroinflammation is involved in the etiopathogenesis of psychiatric
disorders. Markers, such as proinflammatory cytokines, tumor necrosis factor alpha, and C-reactive
protein have been associated with psychiatric disorders in numerous studies.
Conclusions:
The neuroinflammation hypothesis has an important place in the etiopathogenesis of
psychiatric disorders. Uncertainty remains as to whether neuroinflammation is a cause or consequence
of psychiatric disorders. Some researchers have indicated that intestinal microbiota composition
disorders and dysbiosis are sources of neuroinflammation. Immune marker studies are of
great importance in terms of eliminating this uncertainty and overcoming diagnostic and treatment
difficulties in the clinic. In this review, biomarker studies on psychiatric disorders were examined
from the viewpoint of the immune system and discussed in light of the current studies.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Saray Mah. Ahmet Tevfik IleriCad. Umraniye, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, NP Brain Hospital, Saray Mah. Ahmet Tevfik IleriCad. Umraniye, Istanbul, Turkey
| |
Collapse
|
26
|
Anderson G, Carbone A, Mazzoccoli G. Aryl Hydrocarbon Receptor Role in Co-Ordinating SARS-CoV-2 Entry and Symptomatology: Linking Cytotoxicity Changes in COVID-19 and Cancers; Modulation by Racial Discrimination Stress. BIOLOGY 2020; 9:E249. [PMID: 32867244 PMCID: PMC7564943 DOI: 10.3390/biology9090249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
There is an under-recognized role of the aryl hydrocarbon receptor (AhR) in co-ordinating the entry and pathophysiology of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that underpins the COVID-19 pandemic. The rise in pro-inflammatory cytokines during the 'cytokine storm' induce indoleamine 2,3-dioxygenase (IDO), leading to an increase in kynurenine that activates the AhR, thereby heightening the initial pro-inflammatory cytokine phase and suppressing the endogenous anti-viral response. Such AhR-driven changes underpin the heightened severity and fatality associated with pre-existent high-risk medical conditions, such as type II diabetes, as well as to how racial discrimination stress contributes to the raised severity/fatality in people from the Black Asian and Minority Ethnic (BAME) communities. The AhR is pivotal in modulating mitochondrial metabolism and co-ordinating specialized, pro-resolving mediators (SPMs), the melatonergic pathways, acetyl-coenzyme A, and the cyclooxygenase (COX) 2-prostaglandin (PG) E2 pathway that underpin 'exhaustion' in the endogenous anti-viral cells, paralleling similar metabolic suppression in cytolytic immune cells that is evident across all cancers. The pro-inflammatory cytokine induced gut permeability/dysbiosis and suppression of pineal melatonin are aspects of the wider pathophysiological underpinnings regulated by the AhR. This has a number of prophylactic and treatment implications for SARS-CoV-2 infection and cancers and future research directions that better investigate the biological underpinnings of social processes and how these may drive health disparities.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PB, UK;
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Laboratory, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, 71013 Foggia, Italy;
| |
Collapse
|