1
|
Chaube R, Rawat A, Inbaraj RM, Joy KP. Cloning and characterization of estrogen hydroxylase (cyp1a1 and cyp1b1) genes in the stinging catfish Heteropneustes fossilis and induction of mRNA expression during final oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110863. [PMID: 33301890 DOI: 10.1016/j.cbpa.2020.110863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Estrogen hydroxylases (EHs) are cytochrome P450 Family 1 (Cyp1, Clan 2) proteins involved in estrogen hydroxylations at 2-, 4- or 16- carbon positions to form catecholestrogens. EHs are encoded by CYP1A1, CYP1A2 and CYP1B1 in mammals. In the catfish Heteropneustes fossilis, cyp1a1 and cyp1b1 cDNAs were cloned and characterized from liver and ovary. The cyp1a1 cDNA is 2071 bp long and codes for a 518 amino acids (aa) long protein. The cloned cyp1b1 cDNA is 1927 bp long and codes for a 509 residue protein. The deduced proteins clustered distinctly into teleost Cyp1a1 and Cyp1b1 clades, distinct from the tetrapod clusters and featured common function domains and homology with other teleost proteins. In the qPCR assay, the transcripts were the most abundant in the liver, followed by brain and ovary, and moderate in gill, kidney and muscle. Evidence was presented to show the involvement of the genes in reproduction. Expression of brain and ovarian transcripts showed significant seasonal variations with the highest abundance in the spawning phase. In situ hybridization showed the transcripts in the follicular layer (theca and granulosa) of the ovarian follicles. Periovulatory changes in the expression cyp1a1 and cyp1b1 were obtained during final oocyte maturation (FOM) and ovulation induced by human chorionic gonadotropin (hCG), both in vivo and in vitro, and by 2-hydroxyestradiol-17β (catecholestrogen) in vitro. In the brain, the transcript levels increased with time but in the ovary, the increase was maximal at 16 h and decreased at 24 h. The periovulatory activation of the cyp1 genes was reported in this study and discussed on the basis of complex regulation of FOM and ovulation.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - A Rawat
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - R M Inbaraj
- Department of Zoology, Madras Christian College, Chennai 600059, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
2
|
Semenova S, Rozov S, Panula P. Distribution, properties, and inhibitor sensitivity of zebrafish catechol-O-methyl transferases (COMT). Biochem Pharmacol 2017; 145:147-157. [PMID: 28844929 DOI: 10.1016/j.bcp.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Catechol-O-methyltransferase (COMT; EC 2.1.1.6) is an enzyme with multiple functions in vertebrates. COMT methylates and thus inactivates catecholamine neurotransmitters and metabolizes xenobiotic catechols. Gene polymorphism rs4680 that influences the enzymatic activity of COMT affects cognition and behavior in humans. The zebrafish is widely used as an experimental animal in many areas of biomedical research, but most aspects of COMT function in this species have remained uncharacterized. We hypothesized that both comt genes play essential roles in zebrafish. Both comt-a and comt-b were widely expressed in zebrafish tissues, but their relative abundance varied considerably. Homogenates of zebrafish organs, including the brain, showed enzymatic COMT activity that was the highest in the liver and kidney. Treatment of larval zebrafish with the COMT inhibitor Ro41-0960 shifted the balance of catecholamine metabolic pathways towards increased oxidative metabolism. Whole-body concentrations of dioxyphenylacetic acid (DOPAC), a product of dopamine oxidation, were increased in the inhibitor-treated larvae, although the dopamine levels were unchanged. Thus, COMT is likely to participate in the processing of catecholamine neurotransmitters in the zebrafish, but the inhibition of COMT in larval fish is compensated efficiently and does not have pronounced effects on dopamine levels.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stanislav Rozov
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
3
|
Chaube R, Rawat A, Inbaraj RM, Bobe J, Guiguen Y, Fostier A, Joy KP. Identification and characterization of a catechol-o-methyltransferase cDNA in the catfish Heteropneustes fossilis: Tissue, sex and seasonal variations, and effects of gonadotropin and 2-hydroxyestradiol-17β on mRNA expression. Gen Comp Endocrinol 2017; 246:129-141. [PMID: 27939670 DOI: 10.1016/j.ygcen.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is involved in the methylation and inactivation of endogenous and xenobiotic catechol compounds, and serves as a common biochemical link in the catecholamine and catecholestrogen metabolism. Studies on cloning, sequencing and function characterization comt gene in lower vertebrates like fish are fewer. In the present study, a full-length comt cDNA of 1442bp with an open-reading frame (ORF) of 792bp, and start codon (ATG) at nucleotide 162 and stop codon (TAG) at nucleotide 953 was isolated and characterized in the stinging catfish Heteropneustes fossilis (accession No. KT597925). The ORF codes for a protein of 263 amino acid residues, which is also validated by the catfish transcriptome data analysis. The catfish Comt shared conserved putative structural regions important for S-adenosyl methionine (AdoMet)- and catechol-binding, transmembrane regions, two glycosylation sites (N-65 and N-91) at the N-terminus and two phosphorylation sites (Ser-235 and Thr-240) at the C-terminus. The gene was expressed in all tissues examined and the expression showed significant sex dimorphic distribution with high levels in females. The transcript was abundant in the liver, brain and gonads and low in muscles. The transcripts showed significant seasonal variations in the brain and ovary, increased progressively to the peak levels in spawning phase and then declined. The brain and ovarian comt mRNA levels showed periovulatory changes after in vivo and in vitro human chorionic gonadotropin (hCG) treatments with high fold increases at 16 and 24h in the brain and at 16h in the ovary. The catecholestrogen 2-hydroxyE2 up regulated ovarian comt expression in vitro with the highest fold increase at 16h. The mRNA and protein was localized in the follicular layer of the vitellogenic follicles and in the cytoplasm of primary follicles. The data were discussed in relation to catecholamine and catecholestrogen-mediated functions in the brain and ovary of the stinging catfish.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - A Rawat
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - R M Inbaraj
- Department of Zoology, Madras Christian College, Chennai 600059, India
| | - J Bobe
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - Y Guiguen
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - A Fostier
- INRA LPGP UR037, Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes Cedex, France
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
4
|
Chourasia TK, Joy KP. Seasonal variation in tissue estrogen-2/4-hydroxylases (EH) and in vitro effects of steroids on ovarian EH activity in the catfish Heteropneustes fossilis. Steroids 2010; 75:1097-105. [PMID: 20708024 DOI: 10.1016/j.steroids.2010.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 05/23/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
A radiometric assay was used to measure microsomal EH activity from tritiated H(2)O formed during the conversion of [2,4 (3)H] estradiol-17β into catecholestrogens in the microsomal fractions of liver, brain and ovary of the catfish Heteropneustes fossilis. The validation data show that enzyme activity increased with incubation time, and substrate and cofactor (NADPH) concentrations, elicited temperature optima of 30-37°C and pH optima of 6.8-7.8. EH activity was strongly NADPH-dependent and in its absence only 13.48% activity was recorded. Liver recorded the highest enzyme activity, followed by brain and ovary. EH activity showed a significant seasonal variation with the peak activity in spawning phase and the lowest activity in resting phase. In the ovary, the follicular layer (theca and granulosa) elicited the highest activity over that of the denuded oocytes. Modulatory effects of steroids on ovarian enzyme activity were further demonstrated. The incubation of postvitellogenic follicles with 1, 10 or 100 nM concentrations of various steroids for 24 h produced varied effects on EH activity. Progesterone and 2-hydroxyestradiol-17β elicited strong suppressive effects on enzyme activity. Estrogens (E(1), E(2) and E(3)) suppressed the activity in a concentration-dependent manner. Among the progestins tested, 17,20α-dihydroxy-4-pregnen-3-one, the isomer of 17,20β-dihydroxy-4-pregnen-3-one (a teleost maturation-inducing steroid) showed the lowest depressing effect. Among androgens, the testosterone metabolite 11-ketotestosterone (functional teleost androgen) showed a high suppressing effect. Corticosteroids elicited low activity with cortisol suppressed the activity at higher concentrations. The study will form a basis to understand the physiological role of catecholestrogens in ovarian functions.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Center of Advanced Study, Banaras Hindu University, Varanasi, UP, India
| | | |
Collapse
|
5
|
Kleitz-Nelson HK, Dominguez JM, Ball GF. Dopamine release in the medial preoptic area is related to hormonal action and sexual motivation. Behav Neurosci 2010; 124:773-9. [PMID: 21133533 PMCID: PMC3003599 DOI: 10.1037/a0021490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To help elucidate how general the role of dopamine (DA) release in the medial preoptic area (mPOA) is for the activation of male sexual behavior in vertebrates, we recently developed an in vivo microdialysis procedure in the mPOA of Japanese quail. Using these techniques in the present experiment, the temporal pattern of DA release in relation to the precopulatory exposure to a female and to the expression of both appetitive and consummatory aspects of male sexual behavior was investigated. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, while viewing, while in physical contact with, and after exposure to a female. In the absence of a precopulatory rise in DA, males failed to copulate when the barrier separating them from the female was removed. In contrast, males that showed a substantial increase in mPOA DA during precopulatory interactions behind the barrier, copulated with females after its removal. However, there was no difference in DA during periods when the quail were copulating as compared to when the female was present but the males were not copulating. In addition, we show that precopulatory DA predicts future DA levels and copulatory behavior frequency. Furthermore, the size of the cloacal gland, an accurate indicator of testosterone action, is positively correlated with precopulatory DA. Taken together, these results provide further support for the hypothesis that DA action in the mPOA is specifically linked to sexual motivation as compared to copulatory behavior per se.
Collapse
Affiliation(s)
- Hayley K Kleitz-Nelson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
6
|
Chourasia TK, Joy KP. Estrogen-2/4-hydroxylase activity is stimulated during germinal vesicle breakdown induced by hCG, IGF-1, GH and insulin in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 2008; 155:413-21. [PMID: 17822703 DOI: 10.1016/j.ygcen.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 07/05/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Estrogen-2/4-hydroxylase (EH) activity was measured radiometrically in ovaries of catfish injected with hCG intraperitoneally and in postvitellogenic follicles incubated with different concentrations of hCG, catfish (Clarias batrachus) growth hormone (GH), bovine insulin or recombinant human insulin-like growth factor-I (rhIGF-I). The change in enzyme activity was correlated with germinal vesicle breakdown (GVBD), an index of oocyte maturation. A single intraperitoneal injection of hCG (100 IU/fish) stimulated EH activity both at 8 and 16 h prior to stripping of eggs. The activity decreased significantly at 24 h, following ovulation. The follicles incubated with hCG, rhIGF-I, insulin or GH elicited biphasic effects on EH activity. rhIGF-I, insulin and GH increased enzyme activity at the lower or median concentrations. hCG and rhIGF-I stimulated EH activity higher than GH or insulin. All the hormones elicited a dose-dependent increase in GVBD, the effect was greater with rhIGF-I (100 nM) and hCG (5.0 IU/ml). The significance of changes in EH activity (E2 hydroxylation) and GVBD were discussed.
Collapse
Affiliation(s)
- T K Chourasia
- Center of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
7
|
Mishra A, Joy KP. HPLC-electrochemical detection of ovarian estradiol-17beta and catecholestrogens in the catfish Heteropneustes fossilis: seasonal and periovulatory changes. Gen Comp Endocrinol 2006; 145:84-91. [PMID: 16139282 DOI: 10.1016/j.ygcen.2005.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/18/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
A high performance liquid chromatography-electrochemical (HPLC-EC) detection method was used to characterize estradiol-17beta (E2) and its metabolites (2-hydroxyE2, 4-hydroxyE2, and 2-methoxyE2) and investigate their seasonal and periovulatory changes in the ovary of the catfish Heteropneustes fossilis. The retention times in minutes of standards determined by individual and mixture applications are: 2-OHE2-6.6, 4-OHE2-7.0, 4-OHE1-11.2, E2-12.0, and 2-methoxyE2-15.2. Since the retention times of 2-OHE2 and 4-OHE2 merged at higher concentrations, the elution peaks of the sample were taken as due to both (2/4-OHE2) for analysis. The steroids were not detectable in the resting and postspawning phases and 2-methoxyE2 was not detectable in the recrudescent (preparatory, prespawning, and spawning) phases as well. E2 and 2/4-OHE2 have maintained an inverse relationship in the recrudescent phase. The E2 concentration was the highest in the preparatory phase (April) with active vitellogenic activity and declined significantly across prespawning and spawning phases (P<0.001, one way ANOVA; P<0.05, Newman-Keuls' test). On the other hand, the concentration of 2/4-OHE2, which was the lowest in the preparatory phase, increased significantly to the peak level in the spawning phase. A single intraperitoneal injection of hCG (100 IU/fish) stimulated significantly the formation of 2/4-OHE2 at 8 h with a simultaneous reduction in E2. 2-MethoxyE2 was detected only after 16 h of the hCG injection. The functional significance of catecholestrogens in the seasonal reproductive cycle and during the hCG-induced ovulation of the catfish was discussed.
Collapse
Affiliation(s)
- A Mishra
- Department of Zoology, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
8
|
Balthazart J, Baillien M, Cornil CA, Ball GF. Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiol Behav 2005; 83:247-70. [PMID: 15488543 DOI: 10.1016/j.physbeh.2004.08.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In many species, copulatory behavior and appetitive (anticipatory/motivational) aspects of male sexual behavior are activated by the action in the preoptic area of estrogens locally produced by testosterone aromatization. Estrogens bind to intracellular receptors, which then act as transcription factors to activate the behavior. Accordingly, changes in aromatase activity (AA) result from slow steroid-induced modifications of enzyme transcription. More recently, rapid nongenomic effects of estrogens have been described and evidence has accumulated indicating that AA can be modulated by rapid (minutes to hour) nongenomic mechanisms in addition to the slower transcriptional changes. Hypothalamic AA is rapidly down-regulated in conditions that enhance protein phosphorylation, in particular, increases in the intracellular calcium concentration, such as those triggered by neurotransmitter (e.g., glutamate) activity. Fast changes in brain estrogens can thus be caused by aromatase phosphorylation as a result of changes in neurotransmission. In parallel, recent studies demonstrate that the pharmacological blockade of AA by specific inhibitors rapidly (within 15-45 min) down-regulates motivational and consummatory aspects of male sexual behavior in quail while injections of estradiol can rapidly increase the expression of copulatory behavior. These data collectively support an emerging concept in neuroendocrinology, namely that estrogen, locally produced in the brain, regulates male sexual behavior via a combination of genomic and nongenomic mechanisms. Rapid and slower changes of brain AA match well with these two modes of estrogen action and provide temporal variations in the estrogen's bioavailability that can support the entire range of established effects for this steroid.
Collapse
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour (Bat. L1), B-4020 Liège, Belgium.
| | | | | | | |
Collapse
|
9
|
Baillien M, Foidart A, Balthazart J. Regional distribution and control of tyrosine hydroxylase activity in the quail brain. Brain Res Bull 1999; 48:31-7. [PMID: 10210165 DOI: 10.1016/s0361-9230(98)00141-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tyrosine hydroxylase (TH) activity, the rate-limiting step in the synthesis of catecholamines, was quantified in the preoptic area-hypothalamus of adult male Japanese quail by a new assay measuring the tritiated water production from 3,5-[3H]-L-tyrosine. Maximal levels of activity were observed at a 20-25 microM concentration of substrate, with more than 50% inhibition of the activity being recorded at a 100 microM concentration. TH activity was linear as a function of the incubation time during the first 20 min and maximal at a pH of 6.0. TH was heterogeneously distributed in the quail brain with highest levels of activity being found (in decreasing order) in the mesencephalon, diencephalon, and telencephalon. Given the large size of the telencephalon, this is the brain area that contains, as a whole, the highest level of enzyme activity. TH inhibitors that have been well-characterized in mammals, such as 3-iodo-L-tyrosine and L-alpha-methyl-p-tyrosine (AMPT) completely inhibited the enzyme activity at a 100 microM concentration. In mammals, the accumulation of catecholamines exerts a negative feedback control on TH activity. Similar controls were observed in the quail brain. Two inhibitors of the DOPA decarboxylase that should lead to accumulation of DOPA depressed TH activity by 60% or more, and the inhibitor of the dopamine beta-hydroxylase, fusaric acid that should cause an accumulation of dopamine, suppressed 90% of the TH activity. The addition of exogenous DOPA, dopamine, or norepinephrine to the brain homogenates also strongly inhibited TH activity, independently confirming the feedback effects of the enzyme products on the enzyme activity. These data demonstrate that TH activity in the quail brain is heterogeneously distributed and acutely regulated, as it is in mammals, by the accumulation of its products and of the derived catecholamines.
Collapse
Affiliation(s)
- M Baillien
- University of Liège, Laboratory of Biochemistry, Research Group in Behavioral Neuroendocrinology, Belgium
| | | | | |
Collapse
|
10
|
Balthazart J, Ball GF. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci 1998; 21:243-9. [PMID: 9641536 DOI: 10.1016/s0166-2236(97)01221-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the brain, conversion of androgens into estrogens by the enzyme aromatase (estrogen synthase) is a key mechanism by which testosterone regulates many physiological and behavioral processes, including the activation of male sexual behavior, brain sexual differentiation and negative feedback effects of steroid hormones on gonadotropin secretion. Studies on the distribution and regulation of brain aromatase have led to a new perspective on the control and function of this enzyme. A growing body of evidence indicates that the estrogen regulation of aromatase is, at least in part, trans-synaptic. Afferent catecholamine pathways appear to regulate aromatase activity in some brain areas and thereby provide a way for environmental cues to modulate this enzyme. The localization of aromatase in pre-synaptic boutons suggests possible roles for estrogens at the synapse.
Collapse
Affiliation(s)
- J Balthazart
- Laboratoire de Biochimie, Unité de Recherches en Neuroendocrinologie du Comportement, Université de Liège, Belgium
| | | |
Collapse
|
11
|
Balthazart J, Foidart A, Baillien M, Harada N, Ball GF. Anatomical relationships between aromatase and tyrosine hydroxylase in the quail brain: Double-label immunocytochemical studies. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980209)391:2<214::aid-cne5>3.0.co;2-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Joy KP, Senthilkumaran B. Annual and diurnal variations in, and effects of altered photoperiod and temperature, ovariectomy, and estradiol-17 beta replacement on catechol-O-methyltransferase level in brain regions of the catfish, Heteropneustes fossilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:37-44. [PMID: 9568371 DOI: 10.1016/s0742-8413(97)00177-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The annual data show that catechol-O-methyltransferase (COMT) content increases with the progress of ovarian recrudescence in all the brain regions (telencephalon, hypothalamus, thalamus + tegmentum, and medulla oblongata) and declines after spawning to low values in quiescent phase. Diurnal variation in enzyme concentration with peak values at 24 hr was noticed in the hypothalamus throughout the reproductive cycle; in other brain regions, it was observed only in February and March. The stimulatory response of the enzyme to photoperiod and temperature alterations was differential and region-specific; an effect of photoperiod change was noticed only in the hypothalamus and was less in magnitude compared to the temperature effect. The response of the enzyme to ovariectomy (OVX) and E2 supplementation was region-specific (hypothalamus only), season-specific (prespawning phase), and varied:inhibitory at 3 and 4 weeks, stimulatory at 6-week of OVX and after 0.05, 0.1, 5, and 10 micrograms/g doses of E2, and none at week 2 and 5 of OVX and after 0.5 and 1 microgram/g doses of E2. The season-specific changes in hypothalamic COMT may be indicative of its involvement in catecholamine (and possibly catecholestrogen)-mediated neuroendocrine control of gonadotropin.
Collapse
Affiliation(s)
- K P Joy
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
13
|
Abstract
In the quail preoptic area (POA) anatomical and pharmacological data suggest that catecholamines may be implicated in the control of testosterone (T) aromatization into estrogens. The biochemical mechanism(s) mediating this control of the enzyme activity is (are) however unexplored. The present studies were carried out to investigate whether the catecholamines, dopamine (DA) and norepinephrine (NE) are able to directly affect aromatase activity (AA) measured during in vitro incubations of POA homogenates. AA was quantified in the POA-hypothalamus of adult male Japanese quail by measuring the tritiated water production from [1beta-3H]-androstenedione. Enzyme activity was linear as a function of the incubation time and of the protein content of homogenates. It exhibited a typical Michaelis-Menten kinetics, with an apparent Km of 2.8 nM and a Vmax of 266.6 fmol h(-1) mg wet weight(-1). AA was then measured at a substrate concentration of 25 nM in the presence of catecholamines and some of their receptor agonists or antagonists, at two concentrations, 10(-3) and 10(-6) M. Norepinephrine and prazosin (alpha1-adrenergic antagonist) had no or very limited effects on AA at both concentrations. In contrast, DA and some D1 and/or D2 receptor agonists (apomorphine[D1/D2], SKF-38393 [D1] and RU-24213 [D2]) depressed AA by 40 to 70% at the 10(-3) M concentration. One D2 receptor antagonist also produced a major inhibition of AA (sulpiride) while other antagonists either had no significant effect or only produced moderate decreases in enzyme activity (SCH-23390 [D1], spiperone [D2], pimozide [D2]) as did two DA indirect agonists, amfonelic acid and nomifensine. The inhibitory effect of the agonists was not antagonized by the less active antagonists, SCH-23390 [D1] or spiperone [D2]. Taken together these results suggest that the inhibitory effects do not involve specific binding of DA or its agonists/antagonists to dopaminergic receptors mediating changes in cAMP concentration. This conclusion is also supported by the observation that addition of dibutyryl cAMP did not change brain AA. It appears more likely that DA and dopaminergic drugs inhibit AA by a direct effect on the enzyme, as suggested by the competitive nature of DA and SKF-38393 inhibition of AA (Ki's of 59 and 84 microM, respectively). The functional significance of this effect should still be demonstrated but this mechanism may represent an important physiological pathway through which neurotransmitters could rapidly affect steroid-dependent processes such as the neural synthesis of estrogens. This would provide a mean by which environmental stimuli could affect reproductive behavior and physiology.
Collapse
Affiliation(s)
- M Baillien
- Laboratory of Biochemistry, University of Liège, Belgium
| | | |
Collapse
|
14
|
Karayiorgou M, Altemus M, Galke BL, Goldman D, Murphy DL, Ott J, Gogos JA. Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessive-compulsive disorder. Proc Natl Acad Sci U S A 1997; 94:4572-5. [PMID: 9114031 PMCID: PMC20764 DOI: 10.1073/pnas.94.9.4572] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1997] [Accepted: 02/24/1997] [Indexed: 02/04/2023] Open
Abstract
In the present study, we address the role of the gene for catechol-O-methyltransferase (COMT), a key modulator of dopaminergic and noradrenergic neurotransmission, in the genetic predisposition to obsessive-compulsive disorder (OCD). We show that a common functional allele of this gene, which results in a 3- to 4-fold reduction in enzyme activity, is significantly associated in a recessive manner with susceptibility to OCD, particularly in males. This association is further supported by psychiatric evaluation of patients who carry microdeletions encompassing the comt gene. The mechanism underlying this sex-selective association remains to be defined and may include a sexual dimorphism in COMT activity, although close linkage with a nearby disease susceptibility locus cannot be excluded at this point.
Collapse
Affiliation(s)
- M Karayiorgou
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Balthazart J, Foidart A, Absil P, Harada N. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior. J Steroid Biochem Mol Biol 1996; 56:185-200. [PMID: 8603040 DOI: 10.1016/0960-0760(95)00236-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA) of male Japanese quail is a limiting step in the activation by T of copulatory behavior. Aromatase-immunoreactive (ARO-ir) cells of the POA are specifically localized within the cytoarchitectonic boundaries of the medial preoptic nucleus(POM), a sexually dimorphic and steroid-sensitive structure that is a necessary and sufficient site of steroid action in the activation of behavior. Stereotaxic implantation of aromatase inhibitors in but not around the POM strongly decreases the behavioral effects of a systemic treatment with T of castrated males. AA is decreased by castration and increased by aromatizable androgens and by estrogens. These changes have been independently documented at three levels of analysis: the enzymatic activity measured by radioenzymatic assays in vitro, the enzyme concentration evaluated semi-quantitatively by immunocytochemistry and the concentration of its messenger RNA quantified by reverse transcription-polymerase chain reaction (RT-PCR). These studies demonstrate that T acting mostly through its estrogenic metabolites regulates brain aromatase by acting essentially at the transcriptional level. Estrogens produced by central aromatization of T therefore have two independent roles: they activate male copulatory behavior and they regulate the synthesis of aromatase. Double label immunocytochemical studies demonstrate that estrogen receptors(ER) are found in all brain areas containing ARO-ir cells but the extent to which these markers are colocalized varies from one brain region to the other. More than 70% of ARO-ir cells contain detectable ER in the tuberal hypothalamus but less than 20% of the cells display this colocalization in the POA. This absence of ER in ARO-ir cells is also observed in the POA of the rat brain. This suggests that locally formed estrogens cannot control the behavior and the aromatase synthesis in an autocrine fashion in the cells where they were formed. Multi-neuronal networks need therefore to be considered. The behavioral activation could result from the action of estrogens in ER-positive cells located in the vicinity of the ARO-ir cells where they were produced (paracrine action). Alternatively, actions that do not involve the nuclear ER could be important. Immunocytochemical studies at the electron microscope level and biochemical assays of AA in purified synaptosomes indicate the presence of aromatase in presynaptic boutons. Estrogens formed at this level could directly affect the pre-and post-synaptic membrane or could directly modulate neurotransmission namely through their metabolization into catecholestrogens (CE) which are known to be powerful inhibitors of the catechol- omicron - methyl transferase (COMT). The inhibition of COMT should increase the catecholaminergic transmission. It is significant to note, in this respect, that high levels of 2-hydroxylase activity, the enzyme that catalyzes the transformation of estrogens in CE, are found in all brain areas that contain aromatase. On the other hand, the synthesis of aromatase should also be controlled by estrogens in an indirect, transynaptic manner very reminiscent of the way in which steroids indirectly control the production of LHRH. Fibers that are immunoreactive for tyrosine hydroxylase (synthesis of dopamine), dopamine beta-hydroxylase (synthesis of norepinephrine) or vasotocine have been identified in the close vicinity of ARO-ir cells in the POM and retrograde tracing has identified the origin of the dopaminergic and noradrenergic innervation of these areas. A few preliminary physiological experiments suggest that these catecholaminergic inputs regulate AA and presumably synthesis.
Collapse
Affiliation(s)
- J Balthazart
- Laboratory of Biochemistry, University of Liege, Belgium
| | | | | | | |
Collapse
|
16
|
Balthazart J, Stoop R, Foidart A, Granneman JC, Lambert JG. Distribution and regulation of estrogen-2-hydroxylase in the quail brain. Brain Res Bull 1994; 35:339-45. [PMID: 7850484 DOI: 10.1016/0361-9230(94)90111-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The anatomical distribution and endocrine regulation of the estrogen-2-hydroxylase activity were investigated in the brain of adult male and female Japanese quail. Significant levels of enzymatic activity were detected in all brain regions that were studied, but the highest levels were observed in preoptic and hypothalamic brain nuclei that are known to contain high levels of aromatase activity. These data are consistent with previous results suggesting that the placental aromatase is also responsible for the estrogen-2-hydroxylase activity. However, there is a marked sex difference and a control by T of aromatase activity in the quail brain, and no such difference in 2-hydroxylase activity could generally be detected except in the VMN. Further studies will be needed to know whether the previously published conclusions concerning the human placenta also apply to the brain. The present data are consistent with the idea that estrogens formed locally in the brain by testosterone aromatization could affect reproduction by interfering with the catecholaminergic transmission after being metabolized into catechol-estrogens.
Collapse
Affiliation(s)
- J Balthazart
- Laboratory of Biochemistry, University of Liège (BAT. L1), Belgique
| | | | | | | | | |
Collapse
|
17
|
Schulz RW, Paczoska-Eliasiewicz H, Satijn DG, Goos HJ. The feedback regulation of pituitary GTH-II secretion in male African catfish (Clarias gariepinus): Participation of 11-ketotestosterone. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:107-115. [PMID: 24202466 DOI: 10.1007/bf00004556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
11-ketotestosterone (OT) is a typical androgen of male teleost fish, but information on the question if it is involved in the feedback regulation of pituitary gonadotropin II (GTH-II) secretion is controversial. We have therefore studied the effects of OT on gonadotropin releasing-hormone (GnRH) stimulated GTH-II secretion in male African catfish Clarias gariepinus). In vivo experiments were carried out with intact and castrated fish. OT plasma levels were increased by implantation of silastic capsules containing 11-ketoandrostenedione (OA) which is converted to OT in both intact and castrated fish. When intact males received OA- or blank-capsules, treatment with salmon gonadotropin releasing-hormone analogue (Des-Gly(10)-D-Arg(6)-sGnRH-NEt; 0.2 μg sGnRHa/kg body weight) elevated the plasma GTH-11 levels in both groups. However, the levels were about 2 times higher in blank- than in OA-implanted fish. When castrated fish received either blank-or OA-capsules, sGnRHa treatment led to plasma GTH levels significantly higher than in sham-operated fish. However, there was no difference between the blank- or OA-implanted castrates, though OA implantation led to a restoration of OT plasma levels. This suggests that replacement ofOT is insufficient to reverse castration-induced effects. In vitro experiments were carried out with pituitary tissue fragments using a static culture system. The tissue remained sensitive to sGnRHa (5 × 10(-9)M) for 4 days after the beginning of incubation. Preincubation of pituitary tissue for 24 hours with 25 ng OT/ml medium (80 nM) completely abolished the stimulatory effect of sGnRHa on GTH-II secretion. Tritiated OT was not metabolized by pituitary tissue during 6 hours of incubation. We conclude that 11-ketotestosterone, a quantitatively prominent and non-aromatizeable circulating androgen participates, at least in part by direct action on the pituitary, in the negative feedback regulation of GnRH-stimulated GTH-II secretion in male African catfish.
Collapse
Affiliation(s)
- R W Schulz
- Research Group for Comparative Endocrinology, Faculty of Biology, University of Utrecht, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
18
|
Sloley BD, Trudeau VL, Peter RE. Dopamine catabolism in goldfish (Carassius auratus) brain and pituitary: Lack of influence of catecholestrogens on dopamine catabolism and gonadotropin secretion. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/jez.1402630407] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Corio M, Peute J, Steinbusch HW. Distribution of serotonin- and dopamine-immunoreactivity in the brain of the teleost Clarias gariepinus. J Chem Neuroanat 1991; 4:79-95. [PMID: 2059346 DOI: 10.1016/0891-0618(91)90033-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of serotonergic and dopaminergic cell bodies and varicose fibres in the brain of the teleost Clarias gariepinus was studied immunohistochemically using antisera against formaldehyde-conjugated serotonin and dopamine. Many serotonergic and dopaminergic fibres innervated the areas dorsalis telencephali pars medialis and pars lateralis dorsalis, as well as the area ventralis telencephali pars ventralis. In the diencephalon, a large number of serotonergic and some dopaminergic fibres were found in the preoptic nucleus, innervating the cells of this nucleus. In addition, serotonergic and dopaminergic fibres were observed in the pituitary stalk and in all regions of the pituitary gland. Moreover, the diencephalon contained the highest number of serotonin- or dopamine-immunoreactive cell bodies. These cells were confined to the same periventricular nuclei as the nucleus ventromedialis thalami, the nucleus posterior periventricularis, the nucleus lateralis tuberis, the nuclei recessus lateralis and recessus posterioris. Most cells of these nuclei were in contact with the cerebrospinal fluid of the third ventricle. The brainstem contained serotonergic cell bodies in the raphe nuclei and a few serotonergic and dopaminergic fibres. The torus semicircularis was densely innervated by serotonergic fibres and, to a lesser extent, dopaminergic fibres. In the midbrain of Clarias gariepinus, no dopaminergic homologue of the substantia nigra was observed. The results are discussed both in a comparative and a physiological context. In this regard, special attention has been paid to the contribution of hypothalamic monoamines in the regulation of gonadotropin secretion as an essential step in the neuro-endocrine control of reproduction.
Collapse
Affiliation(s)
- M Corio
- Centre de Neurochimie, Strasbourg, France
| | | | | |
Collapse
|