1
|
Chung KP, Gonzalez-Duran E, Ruf S, Endries P, Bock R. Control of plastid inheritance by environmental and genetic factors. NATURE PLANTS 2023; 9:68-80. [PMID: 36646831 PMCID: PMC9873568 DOI: 10.1038/s41477-022-01323-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
The genomes of cytoplasmic organelles (mitochondria and plastids) are maternally inherited in most eukaryotes, thus excluding organellar genomes from the benefits of sexual reproduction and recombination. The mechanisms underlying maternal inheritance are largely unknown. Here we demonstrate that two independently acting mechanisms ensure maternal inheritance of the plastid (chloroplast) genome. Conducting large-scale genetic screens for paternal plastid transmission, we discovered that mild chilling stress during male gametogenesis leads to increased entry of paternal plastids into sperm cells and strongly increased paternal plastid transmission. We further show that the inheritance of paternal plastid genomes is controlled by the activity of a genome-degrading exonuclease during pollen maturation. Our data reveal that (1) maternal inheritance breaks down under specific environmental conditions, (2) an organelle exclusion mechanism and a genome degradation mechanism act in concert to prevent paternal transmission of plastid genes and (3) plastid inheritance is determined by complex gene-environment interactions.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Pierre Endries
- Universität Hamburg, Institut für Pflanzenwissenschaften und Mikrobiologie, Hamburg, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Clade-Specific Plastid Inheritance Patterns Including Frequent Biparental Inheritance in Passiflora Interspecific Crosses. Int J Mol Sci 2021; 22:ijms22052278. [PMID: 33668897 PMCID: PMC7975985 DOI: 10.3390/ijms22052278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plastid inheritance in angiosperms is presumed to be largely maternal, with the potential to inherit plastids biparentally estimated for about 20% of species. In Passiflora, maternal, paternal and biparental inheritance has been reported; however, these studies were limited in the number of crosses and progeny examined. To improve the understanding of plastid transmission in Passiflora, the progeny of 45 interspecific crosses were analyzed in the three subgenera: Passiflora, Decaloba and Astrophea. Plastid types were assessed following restriction digestion of PCR amplified plastid DNA in hybrid embryos, cotyledons and leaves at different developmental stages. Clade-specific patterns of inheritance were detected such that hybrid progeny from subgenera Passiflora and Astrophea predominantly inherited paternal plastids with occasional incidences of maternal inheritance, whereas subgenus Decaloba showed predominantly maternal and biparental inheritance. Biparental plastid inheritance was also detected in some hybrids from subgenus Passiflora. Heteroplasmy due to biparental inheritance was restricted to hybrid cotyledons and first leaves with a single parental plastid type detectable in mature plants. This indicates that in Passiflora, plastid retention at later stages of plant development may not reflect the plastid inheritance patterns in embryos. Passiflora exhibits diverse patterns of plastid inheritance, providing an excellent system to investigate underlying mechanisms in angiosperms.
Collapse
|
3
|
Schulte L, Bernhardt N, Stoof-Leichsenring K, Zimmermann HH, Pestryakova LA, Epp LS, Herzschuh U. Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Mol Ecol Resour 2021; 21:801-815. [PMID: 33319428 DOI: 10.1111/1755-0998.13311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Abstract
Siberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the world. It is important to understand the past dynamics of larches in order to predict their likely response to a changing climate in the future. Sedimentary ancient DNA extracted from lake sediment cores can serve as archives to study past vegetation. However, the traditional method of studying sedimentary ancient DNA-metabarcoding-focuses on small fragments, which cannot resolve Larix to species level nor allow a detailed study of population dynamics. Here, we use shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome to study Larix populations from a sediment core reaching back to 6700 years from the Taymyr region in northern Siberia. In comparison with shotgun sequencing, hybridization capture results in an increase in taxonomically classified reads by several orders of magnitude and the recovery of complete chloroplast genomes of Larix. Variation in the chloroplast reads corroborates an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. Since then, both species have been present at the site, although larch populations have decreased with only a few trees remaining in what was once a forested area. This study demonstrates for the first time that hybridization capture applied directly to ancient DNA of plants extracted from lake sediments can provide genome-scale information and is a viable tool for studying past genomic changes in populations of single species, irrespective of a preservation as macrofossil.
Collapse
Affiliation(s)
- Luise Schulte
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany.,Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany
| | - Nadine Bernhardt
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Kathleen Stoof-Leichsenring
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Heike H Zimmermann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Luidmila A Pestryakova
- Institute of Natural Sciences, North-Eastern Federal University of Yakutsk, Yakutsk, Russia
| | - Laura S Epp
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany
| | - Ulrike Herzschuh
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Forschungsstelle Potsdam, Potsdam, Germany.,Institut für Biochemie and Biologie, Universität Potsdam, Potsdam, Germany.,Institut für Geowissenschaften, Universität Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Xiao TW, Xu Y, Jin L, Liu TJ, Yan HF, Ge XJ. Conflicting phylogenetic signals in plastomes of the tribe Laureae (Lauraceae). PeerJ 2020; 8:e10155. [PMID: 33088627 PMCID: PMC7568859 DOI: 10.7717/peerj.10155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Gene tree discordance is common in phylogenetic analyses. Many phylogenetic studies have excluded non-coding regions of the plastome without evaluating their impact on tree topology. In general, plastid loci have often been treated as a single unit, and tree discordance among these loci has seldom been examined. Using samples of Laureae (Lauraceae) plastomes, we explored plastome variation among the tribe, examined the influence of non-coding regions on tree topology, and quantified intra-plastome conflict. Results We found that the plastomes of Laureae have low inter-specific variation and are highly similar in structure, size, and gene content. Laureae was divided into three groups, subclades I, II and III. The inclusion of non-coding regions changed the phylogenetic relationship among the three subclades. Topologies based on coding and non-coding regions were largely congruent except for the relationship among subclades I, II and III. By measuring the distribution of phylogenetic signal across loci that supported different topologies, we found that nine loci (two coding regions, two introns and five intergenic spacers) played a critical role at the contentious node. Conclusions Our results suggest that subclade III and subclade II are successively sister to subclade I. Conflicting phylogenetic signals exist between coding and non-coding regions of Laureae plastomes. Our study highlights the importance of evaluating the influence of non-coding regions on tree topology and emphasizes the necessity of examining discordance among different plastid loci in phylogenetic studies.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lu Jin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong-Jian Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Hai-Fei Yan
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xue-Jun Ge
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 2019; 14:e0216966. [PMID: 31291259 PMCID: PMC6619608 DOI: 10.1371/journal.pone.0216966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.
Collapse
MESH Headings
- Chromosome Mapping
- DNA, Ancient
- DNA, Chloroplast/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Genetic Variation
- Genetics, Population
- Genome, Chloroplast
- Genome, Mitochondrial
- Genome, Plant
- Haplotypes
- History, Ancient
- Larix/classification
- Larix/genetics
- Polymorphism, Single Nucleotide
- Siberia
- Taiga
- Tundra
Collapse
Affiliation(s)
- Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| | - Lars Harms
- Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laura S. Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nick Mewes
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Nadine Bernhardt
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Mareike Wieczorek
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Daronja Trense
- Institute for Integrated Natural Sciences, Biology, Koblenz-Landau University, Koblenz, Germany
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| |
Collapse
|
6
|
Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinformatics 2019; 20:38. [PMID: 30717673 PMCID: PMC6362560 DOI: 10.1186/s12859-018-2571-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The main objectives of this study were sequencing, assembling, and annotation of chloroplast genome of one of the main Siberian boreal forest tree conifer species Siberian larch (Larix sibirica Ledeb.) and detection of polymorphic genetic markers - microsatellite loci or simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RESULTS We used the data of the whole genome sequencing of three Siberian larch trees from different regions - the Urals, Krasnoyarsk, and Khakassia, respectively. Sequence reads were obtained using the Illumina HiSeq2000 in the Laboratory of Forest Genomics at the Genome Research and Education Center of the Siberian Federal University. The assembling was done using the Bowtie2 mapping program and the SPAdes genomic assembler. The genome annotation was performed using the RAST service. We used the GMATo program for the SSRs search, and the Bowtie2 and UGENE programs for the SNPs detection. Length of the assembled chloroplast genome was 122,561 bp, which is similar to 122,474 bp in the closely related European larch (Larix decidua Mill.). As a result of annotation and comparison of the data with the existing data available only for three larch species - L. decidua, L. potaninii var. chinensis (complete genome 122,492 bp), and L. occidentalis (partial genome of 119,680 bp), we identified 110 genes, 34 of which represented tRNA, 4 rRNA, and 72 protein-coding genes. In total, 13 SNPs were detected; two of them were in the tRNA-Arg and Cell division protein FtsH genes, respectively. In addition, 23 SSR loci were identified. CONCLUSIONS The complete chloroplast genome sequence was obtained for Siberian larch for the first time. The reference complete chloroplast genomes, such as one described here, would greatly help in the chloroplast resequencing and search for additional genetic markers using population samples. The results of this research will be useful for further phylogenetic and gene flow studies in conifers.
Collapse
Affiliation(s)
- Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Nataliya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
- Laboratory of Forest Genetics and Selection, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russian Federation
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333, Moscow, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
7
|
Epp LS, Kruse S, Kath NJ, Stoof-Leichsenring KR, Tiedemann R, Pestryakova LA, Herzschuh U. Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling. Sci Rep 2018; 8:17436. [PMID: 30498238 PMCID: PMC6265258 DOI: 10.1038/s41598-018-35550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/01/2018] [Indexed: 12/01/2022] Open
Abstract
Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.
Collapse
Affiliation(s)
- Laura S Epp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany.
| | - Stefan Kruse
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
| | - Nadja J Kath
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| | - Kathleen R Stoof-Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
| | - Ralph Tiedemann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| | - Luidmila A Pestryakova
- Department for Geography and Biology, North-Eastern Federal University of Yakutsk, Belinskogo 58, 67700, Yakutsk, Russia
| | - Ulrike Herzschuh
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Telegrafenberg A43, 14473, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
- Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str 24-25, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Li Y, Zhang J, Li L, Gao L, Xu J, Yang M. Structural and Comparative Analysis of the Complete Chloroplast Genome of Pyrus hopeiensis-"Wild Plants with a Tiny Population"-and Three Other Pyrus Species. Int J Mol Sci 2018; 19:ijms19103262. [PMID: 30347837 PMCID: PMC6214102 DOI: 10.3390/ijms19103262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Pyrus hopeiensis is a valuable wild resource of Pyrus in the Rosaceae. Due to its limited distribution and population decline, it has been listed as one of the “wild plants with a tiny population” in China. To date, few studies have been conducted on P. hopeiensis. This paper offers a systematic review of P. hopeiensis, providing a basis for the conservation and restoration of P. hopeiensis resources. In this study, the chloroplast genomes of two different genotypes of P. hopeiensis, P. ussuriensis Maxin. cv. Jingbaili, P. communis L. cv. Early Red Comice, and P. betulifolia were sequenced, compared and analyzed. The two P. hopeiensis genotypes showed a typical tetrad chloroplast genome, including a pair of inverted repeats encoding the same but opposite direction sequences, a large single copy (LSC) region, and a small single copy (SSC) region. The length of the chloroplast genome of P. hopeiensis HB-1 was 159,935 bp, 46 bp longer than that of the chloroplast genome of P. hopeiensis HB-2. The lengths of the SSC and IR regions of the two Pyrus genotypes were identical, with the only difference present in the LSC region. The GC content was only 0.02% higher in P. hopeiensis HB-1. The structure and size of the chloroplast genome, the gene species, gene number, and GC content of P. hopeiensis were similar to those of the other three Pyrus species. The IR boundary of the two genotypes of P. hopeiensis showed a similar degree of expansion. To determine the evolutionary history of P. hopeiensis within the genus Pyrus and the Rosaceae, 57 common protein-coding genes from 36 Rosaceae species were analyzed. The phylogenetic tree showed a close relationship between the genera Pyrus and Malus, and the relationship between P. hopeiensis HB-1 and P. hopeiensis HB-2 was the closest.
Collapse
Affiliation(s)
- Yongtan Li
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Jun Zhang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Longfei Li
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli 066600, China.
| | - Lijuan Gao
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli 066600, China.
| | - Jintao Xu
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli 066600, China.
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| |
Collapse
|
9
|
Dillenberger MS, Wei N, Tennessen JA, Ashman TL, Liston A. Plastid genomes reveal recurrent formation of allopolyploid Fragaria. AMERICAN JOURNAL OF BOTANY 2018; 105:862-874. [PMID: 29797560 DOI: 10.1002/ajb2.1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Recurrent formation of polyploid taxa is a common observation in many plant groups. Haploid, cytoplasmic genomes like the plastid genome can be used to overcome the problem of homeologous genes and recombination in polyploid taxa. Fragaria (Rosaceae) contains several octo- and decaploid species. We use plastome sequences to infer the plastid ancestry of these taxa with special focus on the decaploid Fragaria cascadensis. METHODS We used genome skimming of 96 polyploid Fragaria samples on a single Illumina HiSeq 3000 lane to obtain whole plastome sequences. These sequences were used for phylogenetic reconstructions and dating analyses. Ploidy of all samples was inferred with flow cytometry, and plastid inheritance was examined in a controlled cross of F. cascadensis. KEY RESULTS The plastid genome phylogeny shows that only the octoploid F. chiloensis is monophyletic, all other polyploid taxa were supported to be para- or polyphyletic. The decaploid Fragaria cascadensis has biparental plastid inheritance and four different plastid donors. Diversification of the F. cascadensis clades occurred in the last 230,000 years. The southern part of its distribution range harbors considerably higher genetic diversity, suggestive of a potential refugium. CONCLUSIONS Fragaria cascadensis had at least four independent origins from parents with different plastomes. In contrast, para- and polyphyletic taxa of the octoploid Fragaria species are best explained by incomplete lineage sorting and/or hybridization. Biogeographic patterns in F. cascadensis are probably a result of range shift during the last glacial maximum.
Collapse
Affiliation(s)
- Markus S Dillenberger
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
10
|
Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS One 2018; 13:e0192966. [PMID: 29596414 PMCID: PMC5875761 DOI: 10.1371/journal.pone.0192966] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species.
Collapse
|
11
|
Wang X, Agathokleous E, Qu L, Fujita S, Watanabe M, Tamai Y, Mao Q, Koyama A, Koike T. Effects of simulated nitrogen deposition on ectomycorrhizae community structure in hybrid larch and its parents grown in volcanic ash soil: The role of phosphorous. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:905-915. [PMID: 29055594 DOI: 10.1016/j.scitotenv.2017.08.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
With the rapid industrial development and modern agricultural practices, increasing nitrogen (N) deposition can cause nutrient imbalance in immature volcanic ash soil commonly found in Japan. Larch species, widely distributed in northeast Eurasia, are associated with ectomycorrhizal (ECM) fungi which play a critical role in nutrient acquisition for their hosts. In this study, we investigated species richness and diversity of ECM fungi associated with a hybrid larch (F1) and its parents, Dahurian larch (Larix gmelinii var. japonica) and Japanese larch (L. kaempferi), under simulated N deposition (0 and 100kgha-1yr-1) with/without phosphorous (P) (0 and 50kgha-1yr-1). Seedlings planted in immature volcanic ash with low nutrient availability were subjected to the N and P treatments for fifteen months. We found that response of ECM community structure to the increased nutrient availability depended on host genotypes. Nutrient addition significantly affected ECM structure in Japanese larch, but no such significant effect was found for Dahurian larch. Effects of the nutrient addition to ECM fungal community in F1 were intermediate. F1 was tolerant to high N loading, which was due to consistent, relatively high association with Suillus sp. and Hebeloma sp. F1 showed heterosis in relative biomass, which was most apparent under high N treatments. This co-variation of ECM fungal community structure and F1 biomass in response to N loading suggest that ECM community structure might play an important role in host growth. The present findings indicate effects of N deposition on ECM fungal community structure can depend on larch species, thus it is challenging to predict general trends.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding 071000, China
| | - Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Laiye Qu
- Research Center for Eco-Environment Sciences, Chinese Academy Sciences, Beijing 100085, China
| | - Saki Fujita
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yutaka Tamai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Qiaozhi Mao
- College of Resource and Environment, Southeast University, Chongqing 400715, China
| | - Akihiro Koyama
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario P6A 2G4, Canada
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
12
|
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae). Mol Biol Evol 2017; 34:1689-1701. [PMID: 28383641 PMCID: PMC5455968 DOI: 10.1093/molbev/msx111] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Stacey Lee Thompson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden.,Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Mazer SJ, Gorchov DL. PARENTAL EFFECTS ON PROGENY PHENOTYPE IN PLANTS: DISTINGUISHING GENETIC AND ENVIRONMENTAL CAUSES. Evolution 2017; 50:44-53. [PMID: 28568869 DOI: 10.1111/j.1558-5646.1996.tb04471.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1993] [Accepted: 09/06/1994] [Indexed: 11/29/2022]
Abstract
The experimental measurement of additive genetic variation in plant populations is complicated by the potential for non-Mendelian inheritance. Maternal influences on progeny phenotype resulting from the cytoplasmic inheritance of plastids or RNA transcripts and effects of the maternal environment have consequently been the focus of much research. To exclude or to control for these sources of variation, breeding designs (e.g., cross-factored, nested, or diallel) in which genetically unrelated pollen donors are mated to maternal genotypes have been adopted. Using these designs, some empirical studies have detected statistically significant differences among pollen donors in the mean performance of their pollen (the mature male gametophytes) or in the mean phenotype of their progeny. These statistical effects of pollen-donor identity on pollen performance or progeny phenotype have frequently been interpreted as evidence for additive genetic variance among pollen donors, although patrilineal cytoplasmic inheritance or effects of the paternal environment on pollen performance or gene expression are recognized as alternative explanations. We note that environment-specific selection among developing gametophytes-in which the environment experienced by developing pollen grains (or ovules) provides a selective force causing the differential survival of gametophyte genotypes (analagous to meiotic drive)-is an additional process that may cause genetically based paternal (or maternal) effects on gametophyte performance. If genes selected during this process are expressed in the sporophyte (postfertilization), this process could also influence the phenotype of the diploid progeny. Here, we review the potential causes of statistically significant differences in mean phenotype among the gametophytes or progeny of maternal (seed-bearing) or paternal (pollen-donating) parental plants. We suggest an experimental approach that permits the detection or elimination of selection among developing gametophytes as one such cause. Specifically, the replication of homozygous parental genotypes within and across environments allows the detection and measurement of paternal and maternal environmentally induced effects on gametophyte or offspring phenotype, while eliminating meiotic drive as a source of the phenotypic variation.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Biological Sciences, University of California, Santa Barbara, California, 93106
| | | |
Collapse
|
14
|
Tsumura Y, Suyama Y. DIFFERENTIATION OF MITOCHONDRIAL DNA POLYMORPHISMS IN POPULATIONS OF FIVE JAPANESEABIESSPECIES. Evolution 2017; 52:1031-1042. [DOI: 10.1111/j.1558-5646.1998.tb01831.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1997] [Accepted: 03/30/1998] [Indexed: 12/01/2022]
Affiliation(s)
- Yoshihiko Tsumura
- Bio-resources Technology Division; Forestry and Forest Products Research Institute; Kukizaki Ibaraki 305-8687 Japan
| | - Yoshihisa Suyama
- Bio-resources Technology Division; Forestry and Forest Products Research Institute; Kukizaki Ibaraki 305-8687 Japan
| |
Collapse
|
15
|
Wang XR, Szmidt AE. HYBRIDIZATION AND CHLOROPLAST DNA VARIATION IN APINUSSPECIES COMPLEX FROM ASIA. Evolution 2017; 48:1020-1031. [DOI: 10.1111/j.1558-5646.1994.tb05290.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1993] [Accepted: 09/14/1993] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Ru Wang
- Department of Forest Genetics and Plant Physiology; The Swedish University of Agricultural Sciences; S-901 83 Umeå Sweden
| | - Alfred E. Szmidt
- Department of Forest Genetics and Plant Physiology; The Swedish University of Agricultural Sciences; S-901 83 Umeå Sweden
| |
Collapse
|
16
|
Lacey EP. PARENTAL EFFECTS IN PLANTAGO LANCEOLATA L. I.: A GROWTH CHAMBER EXPERIMENT TO EXAMINE PRE- AND POSTZYGOTIC TEMPERATURE EFFECTS. Evolution 2017; 50:865-878. [PMID: 28568933 DOI: 10.1111/j.1558-5646.1996.tb03895.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1994] [Accepted: 02/06/1995] [Indexed: 11/30/2022]
Abstract
In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences for the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature. Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G × E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G × (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects.
Collapse
Affiliation(s)
- Elizabeth P Lacey
- Department of Biology, Eberhart Building, University of North Carolina, Greensboro, North Carolina, 27412
| |
Collapse
|
17
|
Crosby K, Smith DR. Does the mode of plastid inheritance influence plastid genome architecture? PLoS One 2012; 7:e46260. [PMID: 23029453 PMCID: PMC3459873 DOI: 10.1371/journal.pone.0046260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/31/2012] [Indexed: 01/24/2023] Open
Abstract
Plastid genomes show an impressive array of sizes and compactnesses, but the forces responsible for this variation are unknown. It has been argued that species with small effective genetic population sizes are less efficient at purging excess DNA from their genomes than those with large effective population sizes. If true, one may expect the primary mode of plastid inheritance to influence plastid DNA (ptDNA) architecture. All else being equal, biparentally inherited ptDNAs should have a two-fold greater effective population size than those that are uniparentally inherited, and thus should also be more compact. Here, we explore the relationship between plastid inheritance pattern and ptDNA architecture, and consider the role of phylogeny in shaping our observations. Contrary to our expectations, we found no significant difference in plastid genome size or compactness between ptDNAs that are biparentally inherited relative to those that are uniparentally inherited. However, we also found that there was significant phylogenetic signal for the trait of mode of plastid inheritance. We also found that paternally inherited ptDNAs are significantly smaller (n = 19, p = 0.000001) than those that are maternally, uniparentally (when isogamous), or biparentally inherited. Potential explanations for this observation are discussed.
Collapse
Affiliation(s)
- Kate Crosby
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
18
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
POLEZHAEVA MARIAA, LASCOUX MARTIN, SEMERIKOV VLADIMIRL. Cytoplasmic DNA variation and biogeography ofLarixMill. in Northeast Asia. Mol Ecol 2010; 19:1239-52. [DOI: 10.1111/j.1365-294x.2010.04552.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Kuroiwa T. Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids). JOURNAL OF PLANT RESEARCH 2010; 123:207-230. [PMID: 20145972 DOI: 10.1007/s10265-009-0306-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by "active digestion of male or female organelle nuclei (nucleoids, DNA)" which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.
Collapse
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Graduate School of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
21
|
|
22
|
Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC PLANT BIOLOGY 2008; 8:70. [PMID: 18570682 PMCID: PMC2443145 DOI: 10.1186/1471-2229-8-70] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. RESULTS The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. CONCLUSION The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the C. japonica cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.
Collapse
Affiliation(s)
- Tomonori Hirao
- Institute of Wood Technology, Akita Prefectural University, 11-1 Kaieisaka, Noshiro, Akita 016-0876, Japan
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Atsushi Watanabe
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Manabu Kurita
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Teiji Kondo
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Katsuhiko Takata
- Institute of Wood Technology, Akita Prefectural University, 11-1 Kaieisaka, Noshiro, Akita 016-0876, Japan
| |
Collapse
|
23
|
Abstract
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
24
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Acheré V, Faivre Rampant P, Pâques LE, Prat D. Chloroplast and mitochondrial molecular tests identify European x Japanese larch hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1643-1649. [PMID: 14991107 DOI: 10.1007/s00122-004-1595-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 01/05/2003] [Indexed: 05/24/2023]
Abstract
Hybrids between European and Japanese larches combine the properties of both parental species (drought resistance, canker resistance, stem straightness) and exhibit a fast growth rate. They are produced in seed orchards, generally by natural pollination. Seeds are collected and used for afforestation as interspecific hybrids. However, there are no convenient tests to assess the interspecific hybrid proportion. In the present study, we developed diagnostic molecular markers suitable for the individual identification of hybrids, whatever their developmental stage. Our strategy involved testing a combination of maternally inherited markers from the mitochondrial genome (mtDNA) and paternally inherited markers from the chloroplast genome (cpDNA). Hybrids were then identified by the presence of a mitochondrial sequence inherited from one parental species and a chloroplast sequence inherited from the other parental species. To achieve this aim, markers discriminating both parental species were first sought. Amplifications of mitochondrial and chloroplast sequences were performed using specific PCR primers. After testing 33 primer pairs in combination with nine restriction enzymes, we detected one mitochondrial marker, f13 which was amplified in Japanese larch and absent in European larch, and one chloroplast marker, ll- TaqI which showed different restriction patterns depending on the species. A restriction fragment of 601 bp was obtained in Japanese larch while two fragments of 120 bp and 481 bp were observed in European larch. These patterns were found in all 197 individuals tested from the two pure species. These markers were then used for the evaluation of the hybrid proportion in a seed lot produced from seed orchards; this was assessed as between 43% and 53% depending on the parental species. The male and female parental species could be determined for each progeny.
Collapse
Affiliation(s)
- V Acheré
- INRA, Unité Amélioration, Génétique et Physiologie Forestières, Avenue de la Pomme de Pin, BP 20619 Ardon, 45166 Olivet, Cedex, France
| | | | | | | |
Collapse
|
26
|
Marshall HD, Newton C, Ritland K. Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Mol Biol Evol 2001; 18:2136-8. [PMID: 11606712 DOI: 10.1093/oxfordjournals.molbev.a003757] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Isoda K, Shiraishi S, Watanabe S, Kitamura K. Molecular evidence of natural hybridization between abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Mol Ecol 2000; 9:1965-74. [PMID: 11123609 DOI: 10.1046/j.1365-294x.2000.01088.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sub-alpine Abies veitchii and A. homolepis are distributed in the central part of Honshu Island, Japan, and their habitats are segregated vertically. These species sometimes form a mixed forest in the overlapping area of the two species, that is, in the upper limit of the A. homolepis habitat and the lower limit of A. veitchii. These species have been considered to be distantly related because they were classified into different sections by most conventional classifications. No natural hybridization has been reported between the two species. The aim of this study was to demonstrate, through the use of molecular markers, whether natural hybridization takes place between these two species at two experimental sites on Mt. Fuji, where the species occur naturally. DNA markers from paternally inherited chloroplast DNA (cpDNA), maternally inherited mitochondrial DNA (mtDNA) and biparentally inherited nuclear DNA (nDNA), were used for this study. As organelle DNA markers, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) markers were developed to determine the maternal and paternal species for each individual. Two of 334 individuals possessed a cpDNA haplotype derived from A. homolepis and a mtDNA haplotype from A. veitchii. Furthermore, the nDNA of these two individuals was analysed using the random amplified polymorphic DNA (RAPD) assay to investigate their genomic composition. RAPD analysis indicated that the nuclear genomes of the two individuals were derived from both species. We conclude that A. veitchii and A. homolepis produce natural hybrids, and that their systematic relationship should be re-evaluated.
Collapse
Affiliation(s)
- K Isoda
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
28
|
Matos JA, Schaal BA. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization. Evolution 2000; 54:1218-33. [PMID: 11005290 DOI: 10.1111/j.0014-3820.2000.tb00556.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico.
Collapse
Affiliation(s)
- J A Matos
- Department of Biology, California State University, Northridge 91330, USA.
| | | |
Collapse
|
29
|
|
30
|
|
31
|
|
32
|
Cato SA, Richardson TE. Inter- and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1996; 93:587-92. [PMID: 24162352 DOI: 10.1007/bf00417952] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/1995] [Accepted: 02/02/1996] [Indexed: 05/09/2023]
Abstract
DNA sequence analysis of chloroplast genomes has revealed many short nucleotide repeats analogous to nuclear microsatellites, or simple sequence repeats (SSRs). We designed PCR primers flanking five of these regions identified in the chloroplast sequence from Pinus thunbergii and tested them for amplification in Pinus radiata, P. elliotii, P. taeda, P. strobus, Pseudotsuga menziesii, Cupressus macrocarpa, four New Zealand native conifer species (Podocarpus totara, Podocarpus hallii, Podocarpus nivalis, Agathis australis), and four angiosperms (Vitex lucens, Nestegis cunninghamii, Actinidia chinensis, and Arabidopsis thaliana). A PCR product in the expected size range was amplified from all species and interspecific polymorphism was detected at all five loci. Intraspecific polymorphism was detected in P. radiata with four of the five primer pairs. One of these polymorphic chloroplast SSR (cpSSR) was then used to determine the inheritance of chloroplasts in 206 progeny from four control-pollinated, full-sibling P. radiata families. Approximately 99% of the progeny had the cpSSR variant of the pollen parent indicating that in Pinus radiata, like most other conifers, chloroplasts are typically inherited from the paternal parent. These results suggest that polymorphic chloroplast SSRs will be a valuable tool for studying chloroplast diversity, cyto-nuclear disequilibrium, and plastid inheritance in a range of species, and for the analysis of gene flow via pollen and paternity in species with paternal transmission of chloroplasts.
Collapse
Affiliation(s)
- S A Cato
- New Zealand Forest Research Institute, Private Bag, 3020, Rotorua, New Zealand
| | | |
Collapse
|
33
|
Tsumura Y, Yoshimura K, Tomaru N, Ohba K. Molecular phytogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:1222-36. [PMID: 24170050 DOI: 10.1007/bf00220933] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/1995] [Accepted: 05/26/1995] [Indexed: 05/12/2023]
Abstract
We investigated the molecular phylogeny of conifers using restriction endonuclease fragment length polymorphism of six polymerase chain reaction-amplified chloroplast genes - frxC, rbcL, psbA, psbD, trnK, and 16S. We detected 227 total site changes among species, representing 23, 26, 38, 48, 67, and 25 site changes in frxC, psbA, psbD, rbcL, trnK and 16S, respectively. The mean nucleotide substitution was 10.75% (SD 0.573) among species in five families. Forty maximally parsimonious trees were obtained using the Wagner parsimony method, and a 50% majority-rule consensus tree was obtained from them. Data analysis produced similar basic patterns when both the Wagner parsimony and the neighbor-joining methods were applied, and the main lineages were clearly separated. Taxaceae and Cephalotaxaceae species were used as the out-groups when applying Wagner parsimony methods. With the Wagner method, the consistency index was 0.510, the retention index was 0.879, and tree length was 435 steps. Our results indicated that Cupressaceae and Taxodiaceae are closely related families and that Sciadopitys verticillata is the basal lineage of Cupressaceae and Taxodiaceae. The neighbor-joining tree is similar to the 50% majority-rule consensus of the 40 Wagner parsimony trees except for the position of Keteleeria daversifolia, the Picea and Cedrus group, and the divergence within Cupressaceae.
Collapse
Affiliation(s)
- Y Tsumura
- Bio-resources Technology Division, Forestry and Forest Products Research Institute, Kukizaki, 305, Ibaraki, Japan
| | | | | | | |
Collapse
|
34
|
Cipriani G, Testolin R, Morgante M. Paternal inheritance of plastids in interspecific hybrids of the genus Actinidia revealed by PCR-amplification of chloroplast DNA fragments. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:693-7. [PMID: 7616960 DOI: 10.1007/bf00290400] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RFLPs (restriction fragment length polymorphisms) of PCR (polymerase chain reaction) -amplified fragments were used to trace the pattern of plastid DNA inheritance in the genus Actinidia. A total of 51 progeny originating from interspecific crosses between three A. arguta cultivars and A. deliciosa, the kiwifruit, and 12 progeny originating from the cross between A. kolomikta and A. chinensis were analysed together with their parents. No reciprocal crosses could be tested since they all failed to set viable seeds. Attempts to rescue immature embryos failed in all cases as well. The A. argutaXA. deliciosa crosses were checked for the RFLP patterns of a sequence encoding part of the Rubisco large subunit (rbcL), using either AluI or MseI, and for a sequence encoding part of the photosystem II D1 protein (psbA), using HinfI. The A. kolomiktaXA. chinensis cross was checked for the RFLP patterns of sequences encoding the spacers between trnT and the 5'-trnL exon (a-b spacer DNA) and the trnL 3' exon and trnF (e-f spacer DNA), respectively. The first spacer revealed a natural polymorphism between the two parent species due to a large deletion occurring in A. kolomikta detectable without further restriction enzyme treatment. The e-f spacer DNA was digested with HinfI. The comparison of the RFLP patterns in the parents and their progeny showed a strictly paternal inheritance of chloroplast DNA in Actinidia, with no exception found in any of the crosses examined. As the reciprocal crosses were not available, we do not know whether paternal inheritance of plastids is restricted to the crosses we analysed or if this is the general rule for plastid inheritance in the genus Actinidia. Actinidia is dioecious and is the first purely outbreeding species for which a paternal plastid inheritance has so far been documented.
Collapse
Affiliation(s)
- G Cipriani
- Dipartimento di Produzione vegetale e tecnologie agrarie, University of Udine, Italy
| | | | | |
Collapse
|
35
|
Inheritance of RAPD fragments in haploid and diploid tissues of Pinus sylvestris (L.). Heredity (Edinb) 1995. [DOI: 10.1038/hdy.1995.82] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
36
|
Rajora OP, Dancik BP. Chloroplast DNA variation in Populus. III. Novel chloroplast DNA variants in natural Populus x canadensis hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:331-334. [PMID: 24173921 DOI: 10.1007/bf00221973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/1994] [Accepted: 08/09/1994] [Indexed: 06/02/2023]
Abstract
A rare phenomenon of the occurrence of novel non-parental chloroplast DNA (cpDNA) variants in natural sexual interspecific hybrids between Populus deltoides var deltoides and P. nigra, P. x canadensis is described. Restriction fragment variation of cpDNA in 17 P. x canadensis cultivars was examined and compared with that of representative samples of P. deltoides and P. nigra using 83 combinations of 16 restriction enzymes and six Petunia hybrida cpDNA probes. Twelve cultivars had one to five novel non-parental cpDNA fragments in the chloroplast genome region homologous to the 9.0-kb PstI cpDNA fragment of Petunia from the large single-copy region.
Collapse
Affiliation(s)
- O P Rajora
- Department of Renewable Resources, University of Alberta, T6G 2H1, Edmonton, Alberta, Canada
| | | |
Collapse
|
37
|
Tsumura Y, Suyama Y, Taguchi H, Ohba K. Geographical cline of chloroplast DNA variation in Abies mariesii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:922-926. [PMID: 24178104 DOI: 10.1007/bf00224518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/1993] [Accepted: 05/17/1994] [Indexed: 06/02/2023]
Abstract
Where its populations are isolated in higher mountain regions, Abies mariesii is one of the more important conifers of Japan's alpine forest zone. In this study we tried to clarify the genetic variation of chloroplast DNA (cpDNA) in A. mariesii. Cones and fresh needles were collected from seven mountain regions. Total DNAs were extracted from individual seedlings, and these were digested by 15 restriction endonucleases. Southern hybridization was then done using cpDNA clones of Cryptomeria japonica and tobacco as probes. CpDNA variation was detected with enzyme-probe combinations: HindIII+pCS10 probe, HindIII+pCS7, and BglII+pCS7 in preliminary screening. These variations were considered to be caused by the same insertion, deletion or inversion. All populations surveyed for the combination HindIII+pCS10 resulted in only two frequency variations in each population. This indicates a gradual cline along latitude and longitude.
Collapse
Affiliation(s)
- Y Tsumura
- Bio-resources Technology Division, Forestry and Forest Products Research Institute, Kukizaki, 305, Ibaraki, Japan
| | | | | | | |
Collapse
|
38
|
Boscherini G, Morgante M, Rossi P, Vendramin GG. Allozyme and chloroplast DNA variation in Italian and Greek populations of Pinus leucodermis. Heredity (Edinb) 1994; 73 ( Pt 3):284-90. [PMID: 7928395 DOI: 10.1038/hdy.1994.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Allozyme and chloroplast (cpDNA) variation was examined in five Italian and two Greek populations of Pinus leucodermis Ant. to estimate levels of genetic variability within and among populations and to establish the usefulness of allozyme and cpDNA markers in the taxonomic classification of these populations. Twenty-three isozyme gene loci were analysed, as well as restriction fragment length polymorphisms at two cpDNA spacer regions between tRNA genes. The level of genetic variability tended to be lower in the Greek populations but overall the observed levels of allozyme variation within and among populations were similar to those of other conifers. Identical cpDNA amplification and restriction patterns were observed among all individuals sampled from the seven populations. Taken together, the results of the allozyme and cpDNA analyses indicate that all seven populations belong to the same biological species.
Collapse
Affiliation(s)
- G Boscherini
- Istituto Miglioramento Genetico Piante Forestali, C.N.R., Firenze, Italy
| | | | | | | |
Collapse
|
39
|
Yao JL, Cohen D, Rowland RE. Plastid DNA inheritance and plastome-genome incompatibility in interspecific hybrids of Zantedeschia (Araceae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:255-260. [PMID: 24185935 DOI: 10.1007/bf00225906] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/1993] [Accepted: 09/09/1993] [Indexed: 06/02/2023]
Abstract
Plastid DNA (ptDNA) probes were used in RFLP analysis to determine ptDNA inheritance in interspecific hybrids in Zantedeschia. Biparental and maternal ptDNA inheritance was found in albino hybrids between the evergreen species Z. aethiopica and several winter-dormant species. From two albino hybrids, different types of ptDNA were detected in shoots derived from different parts of an embryo. This result indicates that plastids were sorted out during embryo development. Only maternal ptDNA was detected in the hybrids of Z. aethiopica × Z. odorata (a summer-dormant species) but paternal, biparental, and maternal ptDNA were found in the hybrids of the reciprocal cross. Z. odorata × Z. aethiopica. By correlating these ptDNA inheritance patterns with the leaf colour (albino, pale-green, and green) of the hybrids, it is suggested that the Z. odorata plastome is incompatible with the Z. aethiopica genome. The Z. aethiopica plastome is partially compatible with the Z. odorata genome but the development of Z. aethiopica plastids appears to be blocked by the presence of the Z. odorata plastids.
Collapse
Affiliation(s)
- J L Yao
- Department of Plant Biology, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
40
|
Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, Lanaud C. Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata). Curr Genet 1994; 25:265-9. [PMID: 7923414 DOI: 10.1007/bf00357172] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Restriction fragment length polymorphisms (RFLPs) were used as markers to determine the transmission of cytoplasmic DNA in diploid banana crosses. Progenies from two controlled crosses were studied with heterologous cytoplasmic probes. This analysis provided evidence for a strong bias towards maternal transmission of chloroplast DNA and paternal transmission of mitochondrial DNA in Musa acuminata. These results suggest the existence of two separate mechanisms of organelle transmission and selection, but no model to explain this can be proposed at the present time. Knowledge of the organelle mode of inheritance constitutes an important point for phylogeny analyses in bananas and may offer a powerful tool to confirm hybrid origins.
Collapse
Affiliation(s)
- S Fauré
- CIRAD-BIOTROP, Montpellier, France
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Tsumura Y, Ogihara Y, Sasakuma T, Ohba K. Physical map of chloroplast DNA in sugi, Cryptomeria japonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:166-172. [PMID: 24193456 DOI: 10.1007/bf00222075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/1992] [Accepted: 09/19/1992] [Indexed: 06/02/2023]
Abstract
To investigate the evolution of conifer species, we constructed a physical map of the chloroplast DNA of sugi, Cryptomeria japonica, with four restriction endonucleases, PstI, SalI, SacI and XhoI. The chloroplast genome of C. japonica was found to be a circular molecule with a total size of approximately 133 kb. This molecule lacked an inverted repeat. Twenty genes were localized on the physical map of C. japonica cpDNA by Southern hybridization. The chloroplast genome structure of C. japonica showed considerable rearrangements of the standard genome type found in vascular plants and differed markedly from that of tobacco. The difference was explicable by one deletion and five inversions. The chloroplast genome of C. japonica differed too from that of the genus Pinus which also lacks one of the inverted repeats. The results indicate that the conifer group originated monophyletically from an ancient lineage, and diverged independently after loss of an inverted repeat structure.
Collapse
Affiliation(s)
- Y Tsumura
- Bio-resource Technology Division, Forestry and Forest Products Research Institute, Kukizaki, 305, Ibaraki, Japan
| | | | | | | |
Collapse
|
43
|
Deverno LL, Charest PJ, Bonen L. Inheritance of mitochondrial DNA in the conifer Larix. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:383-388. [PMID: 24193487 DOI: 10.1007/bf00222106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/1992] [Accepted: 10/20/1992] [Indexed: 06/02/2023]
Abstract
Restriction fragment length polymorphisms between Larix leptolepis and Larix decidua were identified in heterologous hybridization experiments, using wheat mitochondrial DNA probes specific for atp9, coxI, nad3/rps12, and orf25. Analysis of eight individuals of each reciprocal hybrid of these two species revealed that mitochondrial DNA was maternally inherited. Furthermore, sequences homologous to wheat orf25 were also identified in Larix gmelini, Larix siberica, Larix olgensis, and Larix laricina, as well as Ginkgo biloba, Picea mariana, Picea glauca and Pinus contorta.
Collapse
Affiliation(s)
- L L Deverno
- Forestry Canada, Petawawa National Forestry Institute, P.O. Box 2000, K0J 1J0, Chalk River, Ontario, Canada
| | | | | |
Collapse
|
44
|
|
45
|
Sutton BC, Flanagan DJ, Gawley JR, Newton CH, Lester DT, El-Kassaby YA. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 82:242-8. [PMID: 24213073 DOI: 10.1007/bf00226220] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/1990] [Accepted: 01/08/1991] [Indexed: 05/11/2023]
Abstract
The cloning of white spruce (Picea glauca) mitochondrial DNA homologous to the cytochrome oxidase II and ATPaseα genes of maize is described. These probes were used to define restriction fragment length polymorphisms which distinguish the white, Engelmann (P. engelmannii) and Sitka spruce (P. sitchensis) populations that occur in British Columbia. Analysis of progeny from crosses between the species revealed that mitochondrial DNA was maternally inherited in all cases (32 progeny from five independent crosses). The inheritance of chloroplast DNA was determined using a probe described previously; in this case, all progeny exhibited paternal inheritance (27 progeny from four crosses). Mitochondrial and chloroplast probes were used to test trees from zones of introgression between coastal (Sitka) and interior spruces (white and Engelmann). In most cases mitochondria and chloroplasts within individuals were contributed by different species. The data shows that there is a significant Sitka spruce component in trees east of the coastal watershed in British Columbia.
Collapse
Affiliation(s)
- B C Sutton
- Forest Biotechnology Centre, British Columbia Research Corporation, 3650 Wesbrook Mall, V6S 2L2, Vancouver, B.C., Canada
| | | | | | | | | | | |
Collapse
|
46
|
Mejnartowicz M. Inheritance of chloroplast DNA inPopulus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 82:477-80. [PMID: 24213265 DOI: 10.1007/bf00588602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/1991] [Accepted: 04/30/1991] [Indexed: 05/26/2023]
Abstract
Restriction fragment length polymorphisms (RFLPs) were used as markers to determine the transmission of chloroplast DNA (cpDNA) in poplar crosses. The plant material studied included individual trees ofPopulus trichocarpa, P. maximowiczii xtrichocarpa, P. maximowiczii xnigra, and offspring from controlled crosses between these trees. RFLPs were identified by direct observation of stained restriction fragments, as well as by molecular hybridization with heterologous cpDNA probes. Analysis of the restriction fragment patterns in the parents and their progeny showed only the patterns of the maternal tree in the progeny, while no paternal type was found. These results provide clear evidence of a maternal mode of chloroplast inheritance in the poplar clones studied.
Collapse
Affiliation(s)
- M Mejnartowicz
- Department of Forest Genetics and Forest Plant Breeding, University of Göttingen, W-3400, Göttingen, FRG
| |
Collapse
|
47
|
Wagner DB, Dong J, Carlson MR, Yanchuk AD. Paternal leakage of mitochondrial DNA inPinus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 82:510-514. [PMID: 24213270 DOI: 10.1007/bf00588607] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/1991] [Accepted: 03/07/1991] [Indexed: 06/02/2023]
Abstract
We studied mitochondrial DNA restriction fragment length polymorphism in 11 parents and 125 seedlings of 23 controlled matings within and between jack pine (Pinus banksiana Lamb.) and lodgepole pine (P. contorta Dougl.). A potential mitochondrial distinction between these two conifers was evident in the parental samples. Only maternal mitochondrial restriction fragments were observed in a majority of the seedlings, which is consistent with results from angiosperms and other members of the genusPinus L. However, we detected exclusively paternal mitochondrial DNA in six of the seedlings. These unusual seedlings were not attributable to heteroplasmy or contamination of the experimental material, indicating that mitochondrial inheritance was not strictly maternal. Paternal mitochondrial leakage inPinus may permit novel insights into the transmission genetics and evolution of organellar polymorphisms.
Collapse
Affiliation(s)
- D B Wagner
- Department of Forestry, University of Kentucky, 40546-0073, Lexington, KY, USA
| | | | | | | |
Collapse
|
48
|
Lidholm J, Szmidt A, Gustafsson P. Duplication of the psbA gene in the chloroplast genome of two Pinus species. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:345-52. [PMID: 1840637 DOI: 10.1007/bf00260645] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The psbA gene, encoding the D1 protein of photosystem II, was found to be duplicated in the chloroplast genome of two pine species, Pinus contorta and P. banksiana. Analysis of cloned overlapping restriction fragments of P. contorta chloroplast DNA showed that the two psbA genes have the same orientation and are separated by approximately 3.3 kb. The nucleotide sequences of the coding and the upstream regions of the two psbA copies were found to be identical, whereas the downstream sequences diverged from a point 20 bp 3' of the stop codons. Downstream of the gene copy designated psbAII, a dyad symmetry which allows the formation of a strong mRNA hairpin structure, and a trnH gene were found. No such elements, which are characteristic of psbA downstream regions, were found 3' of psbAI. This suggests that psbAII is the ancestral gene copy in P. contorta. Upon comparison with psbA from other plants, the pine 353-codon sequence appeared almost as distant from the angiosperm as from the liverwort counterpart. As compared to tobacco, 14 substitutions in the predicted amino acid sequence were found, most of which were located in the terminal regions of the protein.
Collapse
Affiliation(s)
- J Lidholm
- Department of Plant Physiology, University of Umeå, Sweden
| | | | | |
Collapse
|
49
|
Kuroiwa T. The Replication, Differentiation, and Inheritance of Plastids with Emphasis on the Concept of Organelle Nuclei. INTERNATIONAL REVIEW OF CYTOLOGY 1991. [DOI: 10.1016/s0074-7696(08)60496-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
50
|
Ali IF, Neale DB, Marshall KA. Chloroplast DNA restriction fragment length polymorphism in Sequoia sempervirens D. Don Endl., Pseudotsuga menziesii (Mirb.) Franco, Calocedrus decurrens (Torr.), and Pinus taeda L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:83-89. [PMID: 24221163 DOI: 10.1007/bf00226116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/1990] [Accepted: 07/13/1990] [Indexed: 06/02/2023]
Abstract
The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis.
Collapse
Affiliation(s)
- I F Ali
- U.S. Department of Agriculture, Institute of Forest Genetics, Pacific Southwest Forest and Range Experiment Station, Forest Service, Box 245, 94701, Berkeley, CA, USA
| | | | | |
Collapse
|