1
|
Yu Z, Niu L, Cai Q, Wei J, Shang L, Yang X, Ma R. Improved salt-tolerance of transgenic soybean by stable over-expression of AhBADH gene from Atriplex hortensis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03031-8. [PMID: 37195504 DOI: 10.1007/s00299-023-03031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance. However, very few field-tested transgenic cultivars have been reported, as most of the transgenic studies are limited to laboratory or green house experiments. In this study, we demonstrated through field experiments that AhBADH from Atriplex hortensis confers salt tolerance when transformed into soybean (Glycine max L.). AhBADH was successfully introduced into soybean by Agrobacterium mediated transformation. A total of 256 transgenic plants were obtained, out of which 47 lines showed significant enhancement of salt tolerance compared to non-transgenic control plants. Molecular analyses of the transgenic line TL2 and TL7 with the highest salt tolerance exhibited stable inheritance and expression of AhBADH in progenies with a single copy insertion. TL1, TL2 and TL7 exhibited stable enhanced salt tolerance and improved agronomic traits when subjected to 300mM NaCl treatment. Currently, the transgenic line TL2 and TL7 with stable enhanced salt tolerance, which have been cleared for environmental release, are under biosafety assessment. TL 2 and TL7 stably expressing AhBADH could then be applied in commercial breeding experiments to genetically improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lixia Shang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
2
|
Influences of Natural Antioxidants, Reactive Oxygen Species and Compatible Solutes of Panicum Miliaceum L. Towards Drought Stress. Cell Biochem Biophys 2023; 81:141-149. [PMID: 36261690 DOI: 10.1007/s12013-022-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
Abstract
In proso millet, in certain circumstances, drought stress greatly influences growth and metabolisms. Thus, the present study was aimed to examine morphological, biochemical and ROS mechanisms between plant and drought stress in Panicum miliaceum L. To create the drought condition, water irrigation was done at different time intervals including 4, 7, 10, 13 days and control. All the experiments were carried out at different maturity stages such as 30, 50, and 70 days (after sowing). The results demonstrated that the root length, proline, glycine betaine, amino acid and superoxide dismutase, catalase and peroxidase activities were boosted in all treatments as compared with control. As the proso millet matured, the length of shoots and the amount of chlorophyll pigment in the leaves reduced in all treatments as compared to control. Induced reduction of shoot growth, chlorophyll estimation and increases of root growth, osmolyte accumulations, antioxidant enzymes, were found to be drought-tolerant adaptative mechanisms in this study.
Collapse
|
3
|
Cao L, Lu X, Wang G, Zhang P, Fu J, Wang Z, Wei L, Wang T. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics 2021; 296:1203-1219. [PMID: 34601650 DOI: 10.1007/s00438-021-01820-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
Drought severely affects the growth and development of maize, but there is a certain degree of compensation effect after rewatering. This study intends to elaborate the response mechanism of maize at the physiological and molecular level as well as excavating potential genes with strong drought resistance and recovery ability. Physiological indexes analysis demonstrated that stomata conductance, transpiration rate, photosynthesis rate, antioxidant enzymes, and proline levels in maize were significantly altered in response to drought for 60 and 96 h and rewatering for 3 days. At 60 h, 96 h, and R3d, we detected 3095, 1941, and 5966 differentially expressed genes (DEGs) and 221, 226, and 215 differentially expressed miRNAs. Weighted correlation network analysis (WGCNA) showed that DEGs responded to maize drought and rewatering through participating in photosynthesis, proline metabolism, ABA signaling, and oxidative stress. Joint analysis of DEGs, miRNA, and target genes showed that zma-miR529, miR5072, zma-miR167e, zma-miR167f, zma-miR167j, miR397, and miR6214 were involved to regulate SBPs, MYBs, ARFs, laccases, and antioxidant enzymes, respectively. Hundreds of differentially expressed DNA methylation-related 24-nt siRNA clusters overlap with DEGs, indicating that DNA methylation is involved in responses under drought stress. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guorui Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiaxu Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenhua Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou, 450002, China.
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
5
|
Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Sci Rep 2020; 10:15835. [PMID: 32985535 PMCID: PMC7523002 DOI: 10.1038/s41598-020-72474-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/21/2020] [Indexed: 01/30/2023] Open
Abstract
Soil salinity affects the plant growth and productivity detrimentally, but Solanum chilense, a wild relative of cultivated tomato (Solanum lycopersicum L.), is known to have exceptional salt tolerance. It has precise adaptations against direct exposure to salt stress conditions. Hence, a better understanding of the mechanism to salinity stress tolerance by S. chilense can be accomplished by comprehensive gene expression studies. In this study 1-month-old seedlings of S. chilense and S. lycopersicum were subjected to salinity stress through application of sodium chloride (NaCl) solution. Through RNA-sequencing here we have studied the differences in the gene expression patterns. A total of 386 million clean reads were obtained through RNAseq analysis using the Illumina HiSeq 2000 platform. Clean reads were further assembled de novo into a transcriptome dataset comprising of 514,747 unigenes with N50 length of 578 bp and were further aligned to the public databases. Genebank non-redundant (Nr), Viridiplantae, Gene Ontology (GO), KOG, and KEGG databases classification suggested enrichment of these unigenes in 30 GO categories, 26 KOG, and 127 pathways, respectively. Out of 265,158 genes that were differentially expressed in response to salt treatment, 134,566 and 130,592 genes were significantly up and down-regulated, respectively. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in cytokinin, ethylene, auxin, abscisic acid, gibberellin, and Ca2+ mediated signaling pathways were up-regulated. Furthermore, GO enrichment analysis was performed using REVIGO and up-regulation of multiple genes involved in various biological processes in chilense under salinity were identified. Through pathway analysis of DEGs, “Wnt signaling pathway” was identified as a novel pathway for the response to the salinity stress. Moreover, key genes for salinity tolerance, such as genes encoding proline and arginine metabolism, ROS scavenging system, transporters, osmotic regulation, defense and stress response, homeostasis and transcription factors were not only salt-induced but also showed higher expression in S. chilense as compared to S. lycopersicum. Thus indicating that these genes may have an important role in salinity tolerance in S. chilense. Overall, the results of this study improve our understanding on possible molecular mechanisms underlying salt tolerance in plants in general and tomato in particular.
Collapse
|
6
|
Guo W, Li G, Wang N, Yang C, Zhao Y, Peng H, Liu D, Chen S. A Na +/H + antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). PLANT MOLECULAR BIOLOGY 2020; 102:553-567. [PMID: 31989373 DOI: 10.1007/s11103-020-00969-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 05/02/2023]
Abstract
Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression of stress-related genes, and improved regulation of metabolic pathways, such as the SOS pathway. Drought and salinity are major abiotic stressors which negatively impact cotton yield under field conditions. Here, a plasma membrane Na+/H+ antiporter gene, K2-NhaD, was introduced into upland cotton R15 using an Agrobacterium tumefaciens-mediated transformation system. Homozygous transgenic lines K9, K17, and K22 were identified by PCR and glyphosate-resistance. TAIL-PCR confirmed that T-DNA carrying the K2-NhaD gene in transgenic lines K9, K17 and K22 was inserted into chromosome 3, 19 and 12 of the cotton genome, respectively. Overexpression of K2-NhaD in transgenic cotton plants grown in greenhouse conditions and subjected to drought and salinity stress resulted in significantly higher relative water content, chlorophyll, soluble sugar, proline levels, and SOD, CAT, and POD activity, relative to non-transgenic plants. The expression of stress-related genes was significantly upregulated, and this resulted in improved regulation of metabolic pathways, such as the salt overly sensitive pathway. K2-NhaD transgenic plants growing under field conditions displayed strong salinity and drought tolerance, especially at high levels of soil salinity and drought. Seed cotton yields in transgenic line were significantly higher than in wild-type plants. In conclusion, the data indicate that K2-NhaD transgenic lines have great potential for the production of stress-tolerant cotton under field conditions.
Collapse
Affiliation(s)
- Wenfang Guo
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
7
|
Özkoç M, Karimkhani H, Kanbak G, Burukoğlu Dönmez D. Hepatotoxicity and nephrotoxicity following long-term prenatal exposure of paracetamol in the neonatal rat: is betaine protective? TURKISH JOURNAL OF BIOCHEMISTRY 2020; 45:99-107. [DOI: 10.1515/tjb-2018-0307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Abstract
Background
Paracetamol is one of the widely used antipyretic and analgesic drug around the world. Many researchers showed that paracetamol caused to hepatotoxicity or nephrotoxicity.
Objective
In the present study, we aimed to determine whether betaine has protective effects on hepatotoxicity and nephrotoxicity in neonate rats, following to long term maternal paracetamol exposure.
Materials and methods
Randomly chosen neonates, from the neonate pools, were divided into three groups; Control (n=13), APAP (n=13), and APAP+Betaine (n=13). Physiological saline, paracetamol (30 mg/kg/day), and paracetamol (30 mg/kg/day)+betaine (800 mg/kg/day) were orally administered to the relevant groups during the pregnancy period (approximately 21 day). Following to the birth, neonates were decapitated under anaesthesia and tissue samples were taken for biochemical and histological analyses.
Results
The statistical analysis showed that, malondialdehyde and nitric oxide levels increase significantly in APAP group, while paraoxonase, arylesterase activity and glutathione levels decrease. After the betaine administration, glutathione levels, paraoxonase and arylesterase activities increased while malondialdehyde and nitric oxide levels decreased in APAP+betaine group. These biochemical findings also were supported by histological results.
Conclusion
In this study, our biochemical and histological findings indicate that betaine can protect the tissue injury caused by paracetamol.
Collapse
Affiliation(s)
- Mete Özkoç
- Department of Biochemistry, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir 26480 , Turkey
| | - Hadi Karimkhani
- Department of Biochemistry, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Güngör Kanbak
- Department of Biochemistry, Faculty of Medicine , Istanbul Okan University , Istanbul , Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine , Eskişehir Osmangazi University , Eskişehir , Turkey
| |
Collapse
|
8
|
Arif MA, Alseekh S, Harb J, Fernie A, Frank W. Abscisic acid, cold and salt stimulate conserved metabolic regulation in the moss Physcomitrella patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1014-1022. [PMID: 29943488 DOI: 10.1111/plb.12871] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/22/2018] [Indexed: 05/08/2023]
Abstract
Salt and cold are major abiotic stresses that have adverse effects on plant growth and development. To cope with these stresses and their detrimental effects plants have evolved several metabolic, biochemical and physiological processes that are mainly triggered and mediated by the plant hormone abscisic acid (ABA). To elucidate the metabolic responses of the moss Physcomitrella patens, which serves as a model plant for abiotic stress adaptation, we performed GC-MS-based metabolic profiling of plants challenged for 5 and 28 h with either salt, cold or ABA. Our results indicate significant changes in the accumulation of several sugars including maltose, isomaltose and trehalose, amino acids including arginine, histidine, ornithine, tryptophan and tyrosine, and organic acids mainly citric acid and malonic acid. The metabolic responses provoked by ABA, cold and salt show considerable similarities. The accumulation of certain metabolites positively correlates with gene expression data whereas some metabolites do not show correlation with cognate transcript abundance. To place our results into an evolutionary context we compared the ABA- and stress-induced metabolic changes in moss to available metabolic profiles of the seed plant Arabidopsis thaliana. We detected considerable conservation between the species, indicating early evolution of stress-associated metabolic adaptations that probably occurred at the plant water-to-land transition.
Collapse
Affiliation(s)
- M A Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig Maximilian University of Munich, LMU Biocenter, Planegg-Martinsried, Munich, Germany
| | - S Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - J Harb
- Department of Biology and Biochemistry, Birzeit University, Birzeit, West Bank, Palestine
| | - A Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - W Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig Maximilian University of Munich, LMU Biocenter, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
9
|
Xu Z, Sun M, Jiang X, Sun H, Dang X, Cong H, Qiao F. Glycinebetaine Biosynthesis in Response to Osmotic Stress Depends on Jasmonate Signaling in Watermelon Suspension Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1469. [PMID: 30369936 PMCID: PMC6194323 DOI: 10.3389/fpls.2018.01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 05/02/2023]
Abstract
Glycinebetaine is an important non-toxic osmoprotectant, which is accumulated in higher plants under various stresses. The biosynthesis of glycinebetaine achieved via is a two-step oxidation from choline and betaine aldehyde, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Up-regulated gene expression of BADH and CMO induced by stress is clearly observed, but the signal transduction is poorly understood. Here, glycinebetaine accumulation in response to osmotic stress and growth recovery induced by exogenous glycinebetaine were observed in a watermelon cell line. When tracing back to the genome sequence of watermelon, it shows that there exists only one member of ClCMO or ClBADH corresponding to glycinebetaine biosynthesis. Both genes harbor a CGTCA-motif in their promoter region which is involved in methyl jasmonate (MeJA)-responsiveness. Amongst MeJA, Ethephon, abscisic acid (ABA), and salicylic acid (SA), MeJA was most effective in gene inducing the expression of ClCMO and ClBADH, and the accumulation of glycinebetaine could also reach an amount comparable to that after osmotic stress by mannitol. Moreover, when ibuprofen (IBU), a JA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, glycinebetaine accumulation was suppressed significantly. Interestingly, newly grown cells can keep a high content of glycinebetaine when they are sub-cultured from osmotic stressed cells. This study suggests that osmotic stress induced glycinebetaine biosynthesis occurs via JA signal transduction and not only plays a key role in osmotic stress resistance but also contributes to osmotic stress hardening.
Collapse
Affiliation(s)
- Zijian Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengli Sun
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuefei Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xuanmin Dang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
10
|
Song J, Zhang R, Yue D, Chen X, Guo Z, Cheng C, Hu M, Zhang J, Zhang K. Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:369-382. [PMID: 30080625 DOI: 10.1016/j.plantsci.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 05/02/2023]
Abstract
Salinity is a major factor limiting plant growth and agricultural production worldwide. Glycine betaine (GB) is one of the most universal osmoprotectants that protects plants from environmental stresses. In this study, transgenic cotton co-expressing ApGSMT2g and ApDMT2g was generated by Agrobacterium-mediated transformation. Compared with wild-type (WT), co-expression of ApGSMT2g and ApDMT2g in cotton results in higher GB amounts, higher relative water content (RWC), lower osmotic potential, more K+, and less Na+ under salt stress, which contributes to maintaining intracellular osmoregulation and K+/Na+ homeostasis and thus confers higher salt tolerance and more vigorous growth. Furthermore, co-expressing ApGSMT2g and ApDMT2g in cotton leads to better performance of PSII, greater photosynthesis capacity, and finally, improves plant growth and increases cotton seed yield compared to WT under salt stress. The reason for the better performance of PSII in transgenic cotton is the higher quantum yield and a more reasonable quantum ratio distribution than WT under salt stress. Co-expressing ApGSMT2g and ApDMT2g in cotton also reduces membrane damage and increases superoxide dismutase (SOD) activity compared to WT under salt stress. Our results indicate that transgenic ApGSMT2g and ApDMT2g cotton shows higher salt tolerance and more seed cotton yield in saline fields compared to wild-type.
Collapse
Affiliation(s)
- Jiuling Song
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Rui Zhang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Dan Yue
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Xiugui Chen
- Cotton Research Institute (CAAS), Anyang 455000, Henan Province, China
| | - Zhiqiang Guo
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Cheng Cheng
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Minghui Hu
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Juren Zhang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China
| | - Kewei Zhang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, School of Life Science, Shandong University, Qingdao 266237, Shandong Province, China.
| |
Collapse
|
11
|
Phillips K, Majola A, Gokul A, Keyster M, Ludidi N, Egbichi I. Inhibition of NOS- like activity in maize alters the expression of genes involved in H 2O 2 scavenging and glycine betaine biosynthesis. Sci Rep 2018; 8:12628. [PMID: 30135488 PMCID: PMC6105647 DOI: 10.1038/s41598-018-31131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Nitric oxide synthase-like activity contributes to the production of nitric oxide in plants, which controls plant responses to stress. This study investigates if changes in ascorbate peroxidase enzymatic activity and glycine betaine content in response to inhibition of nitric oxide synthase-like activity are associated with transcriptional regulation by analyzing transcript levels of genes (betaine aldehyde dehydrogenase) involved in glycine betaine biosynthesis and those encoding antioxidant enzymes (ascorbate peroxidase and catalase) in leaves of maize seedlings treated with an inhibitor of nitric oxide synthase-like activity. In seedlings treated with a nitric oxide synthase inhibitor, transcript levels of betaine aldehyde dehydrogenase were decreased. In plants treated with the nitric oxide synthase inhibitor, the transcript levels of ascorbate peroxidase-encoding genes were down-regulated. We thus conclude that inhibition of nitric oxide synthase-like activity suppresses the expression of ascorbate peroxidase and betaine aldehyde dehydrogenase genes in maize leaves. Furthermore, catalase activity was suppressed in leaves of plants treated with nitric oxide synthase inhibitor; and this corresponded with the suppression of the expression of catalase genes. We further conclude that inhibition of nitric oxide synthase-like activity, which suppresses ascorbate peroxidase and catalase enzymatic activities, results in increased H2O2 content.
Collapse
Affiliation(s)
- Kyle Phillips
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Anelisa Majola
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Arun Gokul
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ndiko Ludidi
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
- Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| | - Ifeanyi Egbichi
- Department of Biological and Environmental Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha, 5117, South Africa
| |
Collapse
|
12
|
Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 2017; 7:10031. [PMID: 28855698 PMCID: PMC5577154 DOI: 10.1038/s41598-017-10730-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.
Collapse
|
13
|
Functional and expression analyses of two kinds of betaine aldehyde dehydrogenases in a glycinebetaine-hyperaccumulating graminaceous halophyte, Leymus chinensis. SPRINGERPLUS 2015; 4:202. [PMID: 25992309 PMCID: PMC4431990 DOI: 10.1186/s40064-015-0997-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/23/2015] [Indexed: 01/24/2023]
Abstract
Glycinebetaine (GB) is an important compatible solute for salinity tolerance in many plants. In this study, we analyzed the enzymatic activity and the expression level of betaine aldehyde dehydrogenase (BADH), an important enzyme that catalyzes the last step in the GB synthesis in Leymus chinensis, a GB-hyperaccumulating graminaceous halophyte, and compared with those of barley, a graminaceous glycophyte. We have isolated cDNAs for two BADH genes, LcBADH1 and LcBADH2. LcBADH1 has a putative peroxisomal signal peptide (PTS1) at its C-terminus, while LcBADH2 does not have any typical signal peptide. Using immunofluorescent labeling, we showed that BADH proteins were localized to the cytosol and dot-shaped organelles in the mesophyll and bundle sheath cells of L.chinensis leaves. The affinity of recombinant LcBADH2 for betaine aldehyde was comparable to other plant BADHs, whereas recombinant LcBADH1 showed extremely low affinity for betaine aldehyde, indicating that LcBADH2 plays a major role in GB synthesis in L. chinensis. In addition, the recombinant LcBADH2 protein was tolerant to NaCl whereas LcBADH1 wasn't. The kinetics, subcellular and tissue localization of BADH proteins were comparable between L. chinensis and barley. The activity and expression level of BADH proteins were higher in L. chinensis compared with barley under both normal and salinized conditions, which may be related to the significant difference in the amount of GB accumulation between two plants.
Collapse
|
14
|
Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu BR, Liu Y. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2014; 86:443-454. [PMID: 25150410 DOI: 10.1007/s11103-014-0239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.
Collapse
Affiliation(s)
- Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Szafran M, Ostrowska K, Katrusiak A, Dega-Szafran Z. Spectral and structural studies of dimethylphenyl betaine hydrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:844-851. [PMID: 24704602 DOI: 10.1016/j.saa.2014.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Hydrates of betaines can be divided into four groups depending on the interactions of their water molecules with the carboxylate group. Dimethylphenyl betaine crystallizes as monohydrate (1), in which water molecules mediate in hydrogen bonds between the carboxylate groups. The water molecules are H-bonded only to one oxygen atom of the dimethylphenyl betaine molecules and link them into a chain via two O(1W)-H⋯O hydrogen bonds of the lengths 2.779(2) and 2.846(2)Å. The structures of monomer (2) and dimer (4) hydrates in vacuum, and the structure of monomer (3) in an aqueous environment have been optimized by the B3LYP/6-311++G(d,p) approach and the geometrical results have been compared with the X-ray diffraction data of 1. The calculated IR frequencies for the optimized structure have been used for the assignments of FTIR bands, the broad absorption band in the range 3415-3230 cm(-1) has been assigned to the O(1w)-H⋯O hydrogen bonds. The correlations between the experimental (1)H and (13)C NMR chemical shifts (δexp) of 1 in D2O and the magnetic isotropic shielding constants (σcalc) calculated by the GIAO/B3LYP/6-311G++(d,p) approach, using the screening solvation model (COSMO), δexp =a+b σcalc, for optimized molecule 3 in water solution are linear and well reproduce the experimental chemical shifts.
Collapse
Affiliation(s)
- M Szafran
- Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland.
| | - K Ostrowska
- Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland
| | - A Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland
| | - Z Dega-Szafran
- Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland
| |
Collapse
|
16
|
Li M, Guo S, Xu Y, Meng Q, Li G, Yang X. Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. PHYSIOLOGIA PLANTARUM 2014; 150:63-75. [PMID: 23627631 DOI: 10.1111/ppl.12067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/22/2013] [Accepted: 04/08/2013] [Indexed: 05/11/2023]
Abstract
Glycine betaine (GB) can enhance heat tolerance and the accumulation of heat-shock protein (HSP) in plants, but the effects of GB on HSP accumulation during salt stress were not previously known. To investigate the mechanism of how GB influences the expression of HSP, wild-type tobacco (Nicotiana tabacum) seedlings pretreated with exogenous GB and BADH-transgenic tobacco plants that accumulated GB in vivo were studied during NaCl stress. A transient Ca(2+) efflux was observed in the epidermal cells of the elongation zone of tobacco roots after NaCl treatment for 1-2 min. After 24 h of NaCl treatment, an influx of Ca(2+) was observed; a low concentration of GB significantly increased NaCl-induced Ca(2+) influx. GB increased the intracellular free calcium ion concentration and enhanced the expression of the calmodulin (CaM) and heat-shock transcription factor (HSF) genes resulting in potentiated levels of HSPs. Pharmacological experiments confirmed that Ca(2+) and CaM increased HSFs and HSPs gene expression, which coincided with increased the levels of HSP70 accumulation. These results suggest a mechanism by which GB acted as a cofactor in the NaCl induction of a Ca(2+) -permeable current. A possible regulatory model of Ca(2+) -CaM in the signal transduction pathway for induction of transcription and translation of the active HSPs is described.
Collapse
Affiliation(s)
- Meifang Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | | | | | | | | | | |
Collapse
|
17
|
Kumari A, Sairam RK. Moisture stress induced increases in the activity of enzymes of osmolytes biosynthesis are associated with stress tolerance in wheat genotypes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40502-013-0032-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Padmavathi TAV, Rao DM. Differential accumulation of osmolytes in 4 cultivars of peanut (Arachis hypogaea L.) under drought stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12892-012-0102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Wang JY, Lai LD, Tong SM, Li QL. Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochem Biophys Res Commun 2013; 432:262-7. [PMID: 23402752 DOI: 10.1016/j.bbrc.2013.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
To improve the stress tolerance of crops, many genes, including transcription factors, have been expressed in transgenic plants using either constitutive or stress-inducible promoters. However, transgenic plants that show strong constitutive expression of transcription factors often suffer from many undesirable phenotypes, such as stunted growth and reduced yield. In the present study, the betaine aldehyde dehydrogenase (BADH) gene, cloned from Suaeda liaotungensis and, controlled by the Cauliflower mosaic virus (CaMV) 35S promoter or stress-inducible promoter of BADH (P5: -300 to +62 bp), was transformed into tomato (Solanum lycopersicum). The transformants with single copy of SlBADH were determined by real time PCR. Expression of SlBADH in the P5:BADH transgenic plants exhibited salt induced and was higher than that in CaMV35S:BADH under salt stress. The SlBADH enhanced salt tolerance of P5:BADH and CaMV35S:BADH transformants. And SlBADH in P5:BADH plants did not affect the growth of transformants. Consequently, we conclude that the P5 promoter can drive increased expression of SlBADH in transgenic tomato under salt stress and increase salt tolerance without affecting plant growth.
Collapse
Affiliation(s)
- Jing-yu Wang
- College of Life Sciences, Liaoning Normal University, 1 South Liushu Street, Ganjingzi District, Dalian, Liaoning 116081, China
| | | | | | | |
Collapse
|
20
|
Luo D, Niu X, Yu J, Yan J, Gou X, Lu BR, Liu Y. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). PLANT CELL REPORTS 2012; 31:1625-35. [PMID: 22569963 DOI: 10.1007/s00299-012-1276-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/09/2012] [Accepted: 04/18/2012] [Indexed: 05/24/2023]
Abstract
UNLABELLED Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. KEY MESSAGE Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.
Collapse
Affiliation(s)
- Di Luo
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Debnath M, Pandey M, Bisen PS. An omics approach to understand the plant abiotic stress. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:739-62. [PMID: 22122668 DOI: 10.1089/omi.2010.0146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abiotic stress can lead to changes in development, productivity, and severe stress and may even threaten survival of plants. Several environmental stresses cause drastic changes in the growth, physiology, and metabolism of plants leading to the increased accumulation of secondary metabolites. As medicinal plants are important sources of drugs, steps are taken to understand the effect of stress on the physiology, biochemistry, genomic, proteomic, and metabolic levels. The molecular responses of plants to abiotic stress are often considered as a complex process. They are mainly based on the modulation of transcriptional activity of stress-related genes. Many genes have been induced under stress conditions. The products of stress-inducible genes protecting against these stresses includes the enzymes responsible for the synthesis of various osmoprotectants. Genetic engineering of tolerance to abiotic stresses help in molecular understanding of pathways induced in response to one or more of the abiotic stresses. Systems biology and virtual experiments allow visualizing and understanding how plants work to overcome abiotic stress. This review discusses the omic approach to understand the plant response to abiotic stress with special emphasis on medicinal plant.
Collapse
Affiliation(s)
- Mousumi Debnath
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, India.
| | | | | |
Collapse
|
22
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
23
|
DeRose-Wilson L, Gaut BS. Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 2011; 6:e22832. [PMID: 21857956 PMCID: PMC3155519 DOI: 10.1371/journal.pone.0022832] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
To characterize and dissect genetic variation for salinity tolerance, we assessed variation in salinity tolerance during germination and seedling growth for a worldwide sample of Arabidopsis thaliana accessions. By combining QTL mapping, association mapping and expression data, we identified genomic regions involved in salinity response. Among the worldwide sample, we found germination ability within a moderately saline environment (150 mM NaCl) varied considerable, from >90% among the most tolerant lines to complete inability to germinate among the most susceptible. Our results also demonstrated wide variation in salinity tolerance within A. thaliana RIL populations and identified multiple genomic regions that contribute to this variation. These regions contain known candidate genes, but at least four of the regions contain loci not yet associated with salinity tolerance response phenotypes. Our observations suggest A. thaliana natural variation may be an underutilized resource for investigating salinity stress response.
Collapse
Affiliation(s)
- Leah DeRose-Wilson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
24
|
Koh S, Kim H, Kim J, Goo E, Kim YJ, Choi O, Jwa NS, Ma J, Nagamatsu T, Moon JS, Hwang I. A novel light-dependent selection marker system in plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:348-358. [PMID: 20731786 DOI: 10.1111/j.1467-7652.2010.00557.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants.
Collapse
Affiliation(s)
- Serry Koh
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peel GJ, Mickelbart MV, Rhodes D. Choline metabolism in glycinebetaine accumulating and non-accumulating near-isogenic lines of Zea mays and Sorghum bicolor. PHYTOCHEMISTRY 2010; 71:404-14. [PMID: 20004921 DOI: 10.1016/j.phytochem.2009.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/01/2009] [Accepted: 11/09/2009] [Indexed: 05/04/2023]
Abstract
Glycinebetaine (GB) is a compatible solute that is accumulated by some plant species, especially under conditions leading to tissue osmotic stress. Genetic modification for accumulation of GB in an attempt to produce more stress tolerant plants has been a focus for several groups in recent years. However, attempts to increase tissue GB concentrations have been unsuccessful, with many transgenic lines accumulating far lower concentrations than naturally-occurring GB accumulators. A better understanding of the metabolic regulation of GB synthesis is necessary for successful molecular breeding and biotechnology. We utilized previously developed near-isogenic lines for GB accumulation to characterize the biochemical basis for GB deficiency in maize and sorghum. Salinity resulted in increased accumulation of choline in both accumulating and non-accumulating lines. When grown in the presence of NaCl, GB-non-accumulating lines had increased concentrations of choline and phosphocholine, but not GB. Decreased GB synthesis can be explained from the increased concentrations of phosphocholine in planta and the strong inhibition of N-phosphoethanolamine methyltransferase by phosphocholine observed in vitro. The lack of GB accumulation in GB-/- homozygous NILs was not due to the lack of the putative choline monooxygenase (the enzyme responsible for choline oxidation to betaine aldehyde) gene or protein that we describe. The previously identified bet1 locus does not appear to be choline monooxygenase. However, the lack of GB synthesis does affect the synthesis and turnover of choline moieties in GB non-accumulating lines, which may lead to alterations in overall 1-carbon metabolism in plants.
Collapse
Affiliation(s)
- Gregory J Peel
- Center for Plant Environmental Stress Physiology, Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN 47907-2010, USA
| | | | | |
Collapse
|
26
|
Kenter C, Hoffmann CM. Changes in the processing quality of sugar beet (Beta vulgarisL.) during long-term storage under controlled conditions. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2007.01641.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Fitzgerald TL, Waters DLE, Henry RJ. Betaine aldehyde dehydrogenase in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:119-30. [PMID: 19228319 DOI: 10.1111/j.1438-8677.2008.00161.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.
Collapse
Affiliation(s)
- T L Fitzgerald
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | | | |
Collapse
|
28
|
Hattori T, Mitsuya S, Fujiwara T, Jagendorf AT, Takabe T. Tissue specificity of glycinebetaine synthesis in barley. PLANT SCIENCE 2009. [PMID: 0 DOI: 10.1016/j.plantsci.2008.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
29
|
Pestsova E, Meinhard J, Menze A, Fischer U, Windhövel A, Westhoff P. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC PLANT BIOLOGY 2008; 8:122. [PMID: 19046420 PMCID: PMC2632670 DOI: 10.1186/1471-2229-8-122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. RESULTS To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. CONCLUSION This study provides an important step toward the understanding of main events and metabolic pathways during germination in sugar beet. The reported alterations of gene expression in response to stress shed light on sugar beet stress adaptation mechanisms. Some of the identified stress-responsive genes provide a new potential source for improvement of sugar beet stress tolerance during germination and field emergence.
Collapse
Affiliation(s)
- Elena Pestsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | - Andreas Menze
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Uwe Fischer
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Andrea Windhövel
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 2008; 9:553. [PMID: 19025623 PMCID: PMC2628679 DOI: 10.1186/1471-2164-9-553] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/24/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Drought is the major constraint to increase yield in chickpea (Cicer arietinum). Improving drought tolerance is therefore of outmost importance for breeding. However, the complexity of the trait allowed only marginal progress. A solution to the current stagnation is expected from innovative molecular tools such as transcriptome analyses providing insight into stress-related gene activity, which combined with molecular markers and expression (e)QTL mapping, may accelerate knowledge-based breeding. SuperSAGE, an improved version of the serial analysis of gene expression (SAGE) technique, generating genome-wide, high-quality transcription profiles from any eukaryote, has been employed in the present study. The method produces 26 bp long fragments (26 bp tags) from defined positions in cDNAs, providing sufficient sequence information to unambiguously characterize the mRNAs. Further, SuperSAGE tags may be immediately used to produce microarrays and probes for real-time-PCR, thereby overcoming the lack of genomic tools in non-model organisms. RESULTS We applied SuperSAGE to the analysis of gene expression in chickpea roots in response to drought. To this end, we sequenced 80,238 26 bp tags representing 17,493 unique transcripts (UniTags) from drought-stressed and non-stressed control roots. A total of 7,532 (43%) UniTags were more than 2.7-fold differentially expressed, and 880 (5.0%) were regulated more than 8-fold upon stress. Their large size enabled the unambiguous annotation of 3,858 (22%) UniTags to genes or proteins in public data bases and thus to stress-response processes. We designed a microarray carrying 3,000 of these 26 bp tags. The chip data confirmed 79% of the tag-based results, whereas RT-PCR confirmed the SuperSAGE data in all cases. CONCLUSION This study represents the most comprehensive analysis of the drought-response transcriptome of chickpea available to date. It demonstrates that--inter alias--signal transduction, transcription regulation, osmolyte accumulation, and ROS scavenging undergo strong transcriptional remodelling in chickpea roots already 6 h after drought stress. Certain transcript isoforms characterizing these processes are potential targets for breeding for drought tolerance. We demonstrate that these can be easily accessed by micro-arrays and RT-PCR assays readily produced downstream of SuperSAGE. Our study proves that SuperSAGE owns potential for molecular breeding also in non-model crops.
Collapse
Affiliation(s)
- Carlos Molina
- Biocenter, Frankfurt University, Max-von-Laue-Str, 9, 60439 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). PLANT MOLECULAR BIOLOGY 2008; 68:451-63. [PMID: 18688729 DOI: 10.1007/s11103-008-9382-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 07/23/2008] [Indexed: 05/11/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes a protein of 593 amino acids that shares high identity with the orthologs from Saccharum officinarum (95%), Oryza sativa (89%), Triticum aestivum (87%) and Arabidopsis thaliana (77%), respectively. Real-time PCR analysis indicates that ZmALDH22A1 is expressed differentially in different tissues. Various elevated levels of ZmALDH22A1 expression have been detected when the seedling roots exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Tomato stable transformation of construct expressing the ZmALDH22A1 signal peptide fused with yellow fluorescent protein (YFP) driven by the CaMV35S-promoter reveals that the fusion protein is targeted to plastid. Transgenic tobacco plants overexpressing ZmALDH22A1 shows elevated stresses tolerance. Stresses tolerance in transgenic plants is accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation.
Collapse
Affiliation(s)
- Weizao Huang
- Ministry of Education Key Laboratory for Southwest Bio-resource and Ecoenvironment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Justé A, Lievens B, Frans I, Marsh TL, Klingeberg M, Michiels CW, Willems KA. Genetic and physiological diversity of Tetragenococcus halophilus strains isolated from sugar- and salt-rich environments. Microbiology (Reading) 2008; 154:2600-2610. [DOI: 10.1099/mic.0.2008/018168-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Annelies Justé
- Research Group Process Microbial Ecology and Management and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Research Group Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Bart Lievens
- Research Group Process Microbial Ecology and Management and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Research Group Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium
| | - Ingeborg Frans
- Research Group Process Microbial Ecology and Management and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Research Group Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium
| | - Terence L. Marsh
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Klingeberg
- Department of Biotechnology, Südzucker AG, Mannheim/Ochsenfurt, ZAFES, Obrigheim/Pfalz, Germany
| | - Chris W. Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Kris A. Willems
- Research Group Process Microbial Ecology and Management and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department Microbial and Molecular Systems, Katholieke Universiteit Leuven Association, De Nayer Institute, B-2860 Sint-Katelijne-Waver, Belgium
- Research Group Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
33
|
Ship JA, McCutcheon JA, Spivakovsky S, Kerr AR. Safety and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy-induced dry mouth. J Oral Rehabil 2008; 34:724-32. [PMID: 17824884 DOI: 10.1111/j.1365-2842.2006.01718.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polypharmacy is a common cause of salivary hypofunction, producing symptoms of dry mouth or xerostomia, especially among older populations. As the number of older people continues to increase, polypharmacy-induced salivary hypofunction is becoming an increasing problem. Many over-the-counter products are available for relieving symptoms of dry mouth, but few have been tested in controlled clinical investigations. The purpose of this investigation was to evaluate the safety and efficacy of a group of topical dry mouth products (toothpaste, mouth rinse, mouth spray and gel) containing olive oil, betaine and xylitol. Forty adults were entered into this single-blinded, open-label, cross-over clinical study and 39 completed all the visits. Subjects were randomly assigned at baseline to using the novel topical dry mouth products daily for 1 week, or to maintain their normal dry mouth routine care. After 1 week, they were crossed over to the other dry mouth regimen. The results demonstrated that the use of the novel topical dry mouth products increased significantly unstimulated whole salivary flow rates, reduced complaints of xerostomia and improved xerostomia-associated quality of life. No clinically significant adverse events were observed. These data suggest that the daily use of topical dry mouth products containing olive oil, betaine and xylitol is safe and effective in relieving symptoms of dry mouth in a population with polypharmacy-induced xerostomia.
Collapse
Affiliation(s)
- J A Ship
- Department of Oral & Maxillofacial Pathology, Radiology, and Medicine, New York University College of Dentistry and the Bluestone Center for Clinical Research, New York, NY, USA.
| | | | | | | |
Collapse
|
34
|
Zhang Y, Yin H, Li D, Zhu W, Li Q. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. PLANT CELL REPORTS 2008; 27:585-92. [PMID: 17924116 DOI: 10.1007/s00299-007-0459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/10/2007] [Accepted: 09/19/2007] [Indexed: 05/10/2023]
Abstract
A 1,993 bp region upstream of the gene encoding the betaine aldehyde dehydrogenase (BADH) was isolated from Suaeda liaotungensis K., and the analysis of the promoter sequence has revealed the existence of several putative cis-elements by the PLACE database. In this study, according to the characteristic of the BADH promoter, five chimeric constructs varied in the length of promoter fragments from -1,993, -1,466, -1,084, -573 and -300 to +62 bp relative to the transcriptional start site were placed to the upstream of the beta-glucuronidase (GUS) coding region and transferred to Nicotiana tabacum L.cv.89 by Agrobacterium tumefaciens-mediated leaf-disc transformation. The functional properties of each promoter fragment were examined by GUS histochemical staining and fluorescence quantitative analyses in the transgenic tobacco leaves treated with different NaCl concentrations for 48 h. The results show that healthy transgenic plants had decreased GUS activity in leaves, whereas a higher GUS activity was observed when the transgenic plants were challenged with sodium chloride (NaCl). Induction levels were proportional to the concentration of NaCl treatment, allowing fine-tuning of protein expression. GUS enzyme activity was enhanced 6.3-fold in transgenic tobacco leaves containing -300 bp promoter fragment in the presence of 400 mmol/l NaCl compared to the noninductive leaves. This suggests that the smallest promoter fragment (-300 to +62 bp) possesses all the essential cis-acting elements and is sufficient for NaCl induction.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, Liaoning, China.
| | | | | | | | | |
Collapse
|
35
|
Oishi H, Ebina M. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1077-86. [PMID: 16255165 DOI: 10.1016/j.jplph.2005.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.
Collapse
Affiliation(s)
- Hideki Oishi
- Japan Grassland Farming and Forage Seed Association, Forage Crop Research Institute, Nishinasuno, Tochigi, Japan.
| | | |
Collapse
|
36
|
Kirch HH, Schlingensiepen S, Kotchoni S, Sunkar R, Bartels D. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2005; 57:315-32. [PMID: 15830124 DOI: 10.1007/s11103-004-7796-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 12/16/2004] [Indexed: 05/04/2023]
Abstract
Aldehyde dehydrogenase (ALDH) genes have been identified in almost all organisms from prokaryotes to eukaryotes, but particularly in plants knowledge is very limited with respect to their function. The data presented here are a contribution towards a functional analysis of selected Arabidopsis ALDH genes by using expression profiles in wild types and mutants. The Arabidopsis thaliana genome contains 14 genes which represent 9 families. To gain insight into the possible roles of aldehyde dehydrogenases from Arabidopsis, the expression patterns of five selected ALDH genes were analyzed under defined physiological conditions. Three genes (ALDH3I1, 3H1 and ALDH7B4) that belong to two different families are differentially activated by dehydration, high salinity and ABA in a tissue-specific manner. The other two genes (ALDH3F1 and ALDH22A1) are constitutively expressed at a low level. Transcript analysis of ALDH3I1 and ALDH7B4 in Arabidopsis mutants suggests that stress responses are differentially controlled by the phytohormone ABA as well as by pathways that affect sugar metabolism and fatty acid composition of membrane lipids. Our results indicate that the stress-associated ALDH genes participate in several pathways and that their regulation involves diverged signal transduction pathways.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Aldehyde Dehydrogenase/genetics
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Isoenzymes/genetics
- Models, Genetic
- Molecular Sequence Data
- Multigene Family/genetics
- Mutation
- Plant Roots/cytology
- Plant Roots/enzymology
- Plant Roots/genetics
- Plants, Genetically Modified
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Water/pharmacology
Collapse
Affiliation(s)
- Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Germany.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Betaine is distributed widely in animals, plants, and microorganisms, and rich dietary sources include seafood, especially marine invertebrates ( approximately 1%); wheat germ or bran ( approximately 1%); and spinach ( approximately 0.7%). The principal physiologic role of betaine is as an osmolyte and methyl donor (transmethylation). As an osmolyte, betaine protects cells, proteins, and enzymes from environmental stress (eg, low water, high salinity, or extreme temperature). As a methyl donor, betaine participates in the methionine cycle-primarily in the human liver and kidneys. Inadequate dietary intake of methyl groups leads to hypomethylation in many important pathways, including 1) disturbed hepatic protein (methionine) metabolism as determined by elevated plasma homocysteine concentrations and decreased S-adenosylmethionine concentrations, and 2) inadequate hepatic fat metabolism, which leads to steatosis (fatty accumulation) and subsequent plasma dyslipidemia. This alteration in liver metabolism may contribute to various diseases, including coronary, cerebral, hepatic, and vascular diseases. Betaine has been shown to protect internal organs, improve vascular risk factors, and enhance performance. Databases of betaine content in food are being developed for correlation with population health studies. The growing body of evidence shows that betaine is an important nutrient for the prevention of chronic disease.
Collapse
Affiliation(s)
- Stuart A S Craig
- Danisco USA Inc., 440 Saw Mill River Road, Ardsley, NY 10502, USA.
| |
Collapse
|
38
|
Gao XP, Pan QH, Li MJ, Zhang LY, Wang XF, Shen YY, Lu YF, Chen SW, Liang Z, Zhang DP. Abscisic acid is involved in the water stress-induced betaine accumulation in pear leaves. PLANT & CELL PHYSIOLOGY 2004; 45:742-750. [PMID: 15215509 DOI: 10.1093/pcp/pch089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABA exogenously applied to the leaves of the whole plants of pear (Pyrus bretschneideri Redh. cv. Suly grafted on Pyrus betulaefolia Rehd.) significantly increased the betaine concentrations in the leaves when the plants were well watered. The plants subjected to 'drought plus ABA' treatment had significantly higher betaine concentrations in their leaves than those given drought treatment alone. The 'drought plus ABA' treatment increased the amount of betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) and its activity in the leaves more than did the drought treatment alone. The experiments with detached leaves showed that ABA treatment significantly increased the concentration of betaine, activity of BADH and apparent amount of BADH in non-dehydrated leaves, and enhanced the accumulation of betaine, activity of BADH and apparent amount of BADH in dehydrated leaves. These effects of ABA were both time- and dose-dependent. Two ABA isomers, (-)-cis, trans-ABA and 2-trans, 4-trans-ABA, had no effect on the betaine accumulation in the leaves, showing that the ABA-induced effects are specific. These data demonstrate that ABA is involved in the drought-induced betaine accumulation in the pear leaves.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gao XP, Pan QH, Li MJ, Zhang LY, Wang XF, Shen YY, Lu YF, Chen SW, Liang Z, Zhang DP. Abscisic acid is involved in the water stress-induced betaine accumulation in pear leaves. PLANT & CELL PHYSIOLOGY 2004; 45:742-750. [PMID: 15215509 DOI: 10.1111/j.1365-3040.2004.01167.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABA exogenously applied to the leaves of the whole plants of pear (Pyrus bretschneideri Redh. cv. Suly grafted on Pyrus betulaefolia Rehd.) significantly increased the betaine concentrations in the leaves when the plants were well watered. The plants subjected to 'drought plus ABA' treatment had significantly higher betaine concentrations in their leaves than those given drought treatment alone. The 'drought plus ABA' treatment increased the amount of betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) and its activity in the leaves more than did the drought treatment alone. The experiments with detached leaves showed that ABA treatment significantly increased the concentration of betaine, activity of BADH and apparent amount of BADH in non-dehydrated leaves, and enhanced the accumulation of betaine, activity of BADH and apparent amount of BADH in dehydrated leaves. These effects of ABA were both time- and dose-dependent. Two ABA isomers, (-)-cis, trans-ABA and 2-trans, 4-trans-ABA, had no effect on the betaine accumulation in the leaves, showing that the ABA-induced effects are specific. These data demonstrate that ABA is involved in the drought-induced betaine accumulation in the pear leaves.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
González B, Pajares MA, Martínez-Ripoll M, Blundell TL, Sanz-Aparicio J. Crystal Structure of Rat Liver Betaine Homocysteine S-Methyltransferase Reveals New Oligomerization Features and Conformational Changes Upon Substrate Binding. J Mol Biol 2004; 338:771-82. [PMID: 15099744 DOI: 10.1016/j.jmb.2004.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/03/2004] [Accepted: 03/05/2004] [Indexed: 01/28/2023]
Abstract
Betaine homocysteine S-methyltransferase (BHMT) is one of the two enzymes known to methylate homocysteine to generate methionine in the liver. It presents a Zn(2+) atom linked to three essential Cys residues. The crystal structure of rat liver BHMT has been solved at 2.5A resolution, using crystals with P2(1) symmetry and 45% solvent content in the cell. The asymmetric unit contains the whole functional tetramer showing point symmetry 222. The overall fold of the subunit consists mostly of a (alpha/beta)(8) barrel, as for human BHMT. From the end of the barrel, the polypeptide chain extends away and makes many interactions with a different subunit, forming tight dimers. The most remarkable structural feature of rat liver BHMT is the presence of a helix including residues 381-407, at the C terminus of the chain, which bind together the dimers AB to CD. A strong ion-pair and more than 60 hydrophobic interactions keep this helix stacked to the segment 316-349 from the opposite subunit. Moreover, the crystal structure of free rat liver BHMT clearly shows that Tyr160 is the fourth ligand coordinated to Zn, which is replaced by Hcy upon binding. Two residues essential for substrate recognition, Phe76 and Tyr77, are provided by a conformational change in a partially disordered loop (L2). The crucial role of these residues is highlighted by site-directed mutagenesis.
Collapse
Affiliation(s)
- Beatriz González
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Kiyosawa K. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions. Biophys Chem 2003; 104:171-88. [PMID: 12834836 DOI: 10.1016/s0301-4622(02)00365-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.
Collapse
Affiliation(s)
- Keitaro Kiyosawa
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
42
|
Livingstone JR, Maruo T, Yoshida I, Tarui Y, Hirooka K, Yamamoto Y, Tsutui N, Hirasawa E. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. JOURNAL OF PLANT RESEARCH 2003; 116:133-140. [PMID: 12736784 DOI: 10.1007/s10265-003-0077-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/12/2002] [Indexed: 05/24/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is the enzyme that catalyzes the second step in the synthesis of the osmoprotectant, glycine betaine. NAD-dependent BADH was purified from Avena sativa shoots by DEAE Sephacel, hydroxyapatite, 5'-AMP Sepharose 4B, Mono Q and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE, and the properties of BADH were compared with those of aminoaldehyde dehydrogenase purified to homogeneity from A. sativa. The molecular mass estimated by both gel filtration using TSK-GEL column and Sephacryl S-200 was 120 and 115, kDa, respectively. The enzyme is a homodimer with a subunit molecular mass of 61 kDa as shown by SDS-PAGE. The pI value of the enzyme was found to be 6.3. The purified enzyme catalyzed not only the oxidation of betaine aldehyde (BAL), but also that of aminoaldehydes, 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL), and 4-guanidinobutyraldehyde (GBAL). The K(m) values for BAL, APAL, ABAL and GBAL were 5x10(-6), 5.4x10(-7), 2.4x10(-5) and 5x10(-5) M, respectively. APAL showed substrate inhibition at a concentration of 0.1 mM. A fragment of BADH cleaved by V8 protease shared homology with other plant BADHs.
Collapse
Affiliation(s)
- Jeyanthi Rebecca Livingstone
- Division of Bio- and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schwab U, Törrönen A, Toppinen L, Alfthan G, Saarinen M, Aro A, Uusitupa M. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am J Clin Nutr 2002; 76:961-7. [PMID: 12399266 DOI: 10.1093/ajcn/76.5.961] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Betaine (trimethylglycine) is found in several tissues in humans. It is involved in homocysteine metabolism as an alternative methyl donor and is used in the treatment of homocystinuria in humans. In pigs, betaine decreases the amount of adipose tissue. OBJECTIVE The aim of the study was to examine the effect of betaine supplementation on body weight, body composition, plasma homocysteine concentrations, blood pressure, and serum total and lipoprotein lipids. DESIGN Forty-two obese, white subjects (14 men, 28 women) treated with a hypoenergetic diet were randomly assigned to a betaine-supplemented group (6 g/d) or a control group given placebo for 12 wk. The intervention period was preceded by a 4-wk run-in period with a euenergetic diet. RESULTS Body weight, resting energy expenditure, and fat mass decreased significantly in both groups with no significant difference between the groups. Plasma homocysteine concentrations decreased in the betaine group ( +/- SD: 8.76 +/- 1.63 micro mol/L at 4 wk, 7.93 +/- 1.52 micro mol/L at 16 wk; P = 0.030 for the interaction of time and treatment). Diastolic blood pressure decreased without a significant difference between the groups. Serum total and LDL-cholesterol concentrations were higher in the betaine group than in the control group (P < 0.05). CONCLUSION A hypoenergetic diet with betaine supplementation (6 g daily for 12 wk) decreased the plasma homocysteine concentration but did not affect body composition more than a hypoenergetic diet without betaine supplementation did.
Collapse
Affiliation(s)
- Ursula Schwab
- Department of Clinical Nutrition, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Yin X, Zhao Y, Luo D, Zhang H. Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:452-6. [PMID: 12359336 DOI: 10.1016/s0167-4781(02)00495-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The betaine aldehyde dehydrogenase (AcBADH) gene of the halophyte Atriplex centralasiatica Iljin is induced by drought, salinity, cold stress and abscisic acid, in parallel with an increase in betaine level. In order to study the molecular basis of its expression and to obtain an effective stress-induced promoter, the 5' flanking region of betaine aldehyde dehydrogenase gene (about 1.2 kb) was isolated from the halophyte A. centralasiatica Iljin by screening the genomic library. The transcription start site, which localized at 84 bases upstream of the start ATG, was determined by primer extension and 5'-RACE method. To investigate the molecular mechanism of the stress-induced gene regulation, the AcBADH promoter-beta-glucuronidase chimeric gene constructs containing six deletions were introduced into tobacco by Agrobacterium-mediated transformation. The AcBADH 5'-flanking region, a promoter strongly induced by salt stress, contains two salt-responsive enhancer regions localized between -1115 and -890, -462 and -230 and one silencer region between -890 and -641.
Collapse
Affiliation(s)
- Xiaojun Yin
- Key Laboratory of Plant Stress, Shandong Normal University, 88 Wenhua Road East, Jinan, 250014 PR China
| | | | | | | |
Collapse
|
45
|
Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T. An isozyme of betaine aldehyde dehydrogenase in barley. PLANT & CELL PHYSIOLOGY 2001; 42:1088-92. [PMID: 11673624 DOI: 10.1093/pcp/pce136] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH) is an important enzyme for Gly betaine synthesis. We isolated two types of BADH cDNAs (BBD1 and BBD2) from barley. As BBD1 contained the signal sequence (SKL) targeting to microbodies, BBD2 was more similar to previously reported genes coding for BADH in dicotyledons (chloroplast type) than those in monocotyledons (microbody type). The two barley BADH genes showed different expression patterns. The BBD1 transcript was more abundant in roots than leaves and was induced to higher levels by salt, drought and abscisic acid (ABA) treatment. BBD2 transcript was more abundant in leaves and induced by salt, drought, PEG and ABA treatment. To understand the processing of these BADH proteins, we partially purified both enzymes and determined their N-terminal sequences. Based on comparisons of the N-terminal sequences to their deduced amino acid sequence, neither BBD1 nor BBD2 is processed at the N-terminus. These results suggest that BBD2 codes for a new type of BADH, which is not localized in either chloroplasts or mitochondria.
Collapse
Affiliation(s)
- T Nakamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
46
|
Meng YL, Wang YM, Zhang B, Nii N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res 2001; 11:187-93. [PMID: 11642403 DOI: 10.1038/sj.cr.7290085] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants synthesize the osmoprotectant glycine betaine (GB) via choline-->betaine aldehyde-->glycine betaine[1]. Two enzymes are involved in the pathway, choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH). A full length CMO cDNA (1,643bp) was cloned from Amaranthus tricolor. The open reading frame encoded a 442-amino acid polypeptide, which showed 69% identity with CMOs in Spinacia oleracea L. and Beta vulgaris L. DNA gel blot analysis indicated the presence of one copy of CMO gene in the A. tricolor genome. The expressions of CMO and BADH proteins in A.tricolor leaves significantly increased under salinization, drought and heat stress (42 degrees C), as determined by immunoblot analysis, but did not respond to cold stress (4 degrees C), or exogenous ABA application. The increase of GB content in leaves was parallel to CMO and BADH contents.
Collapse
Affiliation(s)
- Y L Meng
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
47
|
Deaton LE. Hyperosmotic volume regulation in the gills of the ribbed mussel, Geukensia demissa: rapid accumulation of betaine and alanine. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2001; 260:185-197. [PMID: 11358578 DOI: 10.1016/s0022-0981(01)00237-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The content of betaine and alanine in gills of the ribbed mussel Geukensia demissa increases rapidly following transfer of the tissues from 250 to 1000 mOsm seawater (SW). Increases in alanine, proline and glycine account for most of the increase in the amino acid pool. The betaine content increases from 45 to 150 &mgr;mol/g dry weight within 12 h. Transfer of isolated gills from 250 to 1000 mOsm SW results in a temporary cessation of all ciliary activity. Within 20-40 min following transfer, ciliary activity has recovered. Recovery of ciliary activity precedes recovery of tissue hydration. The uric acid content of gills is unchanged by exposure to hyperosmotic media, suggesting that uric acid is not a store of nitrogen for alanine synthesis from pyruvate. In other organisms, the accumulation of betaine in response to hyperosmotic stress is a slow (days to weeks) process that probably involves changes in gene expression. The rapid, large increases in betaine reported here suggest that gene expression is not a factor in volume recovery by euryhaline bivalve tissues exposed to acute hyperosmotic stress.
Collapse
Affiliation(s)
- L E. Deaton
- Biology Department, University of Louisiana at Lafayette, 70504, Lafayette, LA, USA
| |
Collapse
|
48
|
Sebela M, Brauner F, Radová A, Jacobsen S, Havlis J, Galuszka P, Pec P. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:329-41. [PMID: 11004571 DOI: 10.1016/s0167-4838(00)00086-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to our knowledge, this is the first purification method developed, enabling isolation of a homogeneous aminoaldehyde dehydrogenase (AMADH) from etiolated pea seedlings. The procedure involved initial purification with precipitants followed by three low pressure chromatographic steps. Partially purified enzyme was further subjected to fast protein liquid chromatography on a Mono Q column and to affinity-interaction chromatography on 5'-AMP Sepharose. Purity of the final enzyme preparation was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and chromatofocusing. Pea AMADH exists as a tetramer of 230 kDa in the native state, a molecular mass of one subunit was determined as 57 kDa. The enzyme was found to be an acidic protein with pI 5.4. AMADH showed a broad substrate specificity utilising various aminoaldehydes (C3-C6) as substrates. The best substrate of pea AMADH was 3-aminopropionaldehyde, the enzyme also efficiently oxidised 4-aminobutyraldehyde and omega-guanidinoanalogues of the aminoaldehydes. Pea AMADH was inhibited by SH reagents, several elementary aldehydes and metal-binding agents. Although AMADH did not oxidise betaine aldehyde at all, the N-terminal amino acid sequence of the enzyme shows a high degree of homology with those of plant betaine aldehyde dehydrogenases (BADHs) of spinach, sugar beet and amaranth. Several conserved amino acids were found in comparison with BADH from cod liver of known crystal structure.
Collapse
Affiliation(s)
- M Sebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. ACTA ACUST UNITED AC 2000; 51:463-499. [PMID: 15012199 DOI: 10.1146/annurev.arplant.51.1.463] [Citation(s) in RCA: 1687] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to those that regulate osmotic stress responses of yeast. There is evidence also of signaling cascades that are not known to exist in the unicellular eukaryote, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants. A complex set of stress-responsive transcription factors is emerging. The imminent availability of genomic DNA sequences and global and cell-specific transcript expression data, combined with determinant identification based on gain- and loss-of-function molecular genetics, will provide the infrastructure for functional physiological dissection of salt tolerance determinants in an organismal context. Furthermore, protein interaction analysis and evaluation of allelism, additivity, and epistasis allow determination of ordered relationships between stress signaling components. Finally, genetic activation and suppression screens will lead inevitably to an understanding of the interrelationships of the multiple signaling systems that control stress-adaptive responses in plants.
Collapse
Affiliation(s)
- Paul M. Hasegawa
- Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, Indiana 47907-1165; e-mail: , Departments of 1 Plant Sciences and 2Biochemistry, University of Arizona, Tucson, Arizona 85721; e-mail:
| | | | | | | |
Collapse
|
50
|
Perrino LA, Pierce SK. Betaine aldehyde dehydrogenase kinetics partially account for oyster population differences in glycine betaine synthesis. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-010x(20000215)286:3<238::aid-jez3>3.0.co;2-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|