1
|
Corrêa CCG, Barroso TS, Xavier LR, Pinto VB, Reis RS, Pena GF, Santa-Catarina C, Vivas M, do Amaral Júnior AT, Silveira V. Comparative Proteomic Analysis of Popcorn Genotypes Identifies Differentially Accumulated Proteins Associated with Resistance Pathways to Southern Leaf Blight Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:426. [PMID: 39942988 PMCID: PMC11819967 DOI: 10.3390/plants14030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Southern leaf blight (SLB), caused by Bipolaris maydis, poses a significant threat to maize and popcorn production. To understand the molecular mechanisms underlying SLB resistance, we conducted a high-throughput proteomic analysis comparing SLB-resistant (L66) and SLB-susceptible (L51) popcorn genotypes at four and ten days after inoculation (DAI). A total of 717 proteins were identified, with 151 differentially accumulated proteins (DAPs) between the genotypes. Eighteen DAPs exhibited the same regulatory pattern in both the SLB-resistant and SLB-susceptible genotypes at four (R4/S4) and ten (R10/S10) DAI. The protein-protein interaction (PPI) network of differentially accumulated proteins (DAPs) linked to SLB resistance and susceptibility enriched specific metabolic pathways in the SLB response, including photosynthesis, ribosome, ascorbate and aldarate metabolism, glutathione metabolism, and carbon metabolism. Proteins such as photosystem II 11 kD protein (B4FRJ4, PSB27-1), which was up-regulated at both time points (R4/S4 and R10/S10), and 60S acidic ribosomal protein P0 (A0A1D6LEZ7, RPP0B), which was unique to the resistant genotype at both time points (R4 and R10), highlighted the importance of maintaining photosynthetic efficiency and protein synthesis during pathogen attack. Additionally, dehydroascorbate reductase like-3 (B4F817, DHAR3) was consistently up-regulated at both time points in resistant genotypes, emphasizing its role in redox balance and ROS detoxification. In contrast, glyceraldehyde-3-phosphate dehydrogenase (K7UGF5, GAPC2), a glycolytic enzyme, was unique to the susceptible genotype, suggesting its involvement in managing energy metabolism under stress conditions. Our findings suggest that resistance to SLB in popcorn involves a combination of enhanced photosynthetic repair, redox homeostasis, and ribosomal protein activity, providing new potential molecular targets, such as DHAR3 and RPP0B, for genetic improvement in SLB resistance. These results offer valuable insights into breeding programs aimed at developing SLB-resistant popcorn varieties.
Collapse
Affiliation(s)
- Caio Cézar Guedes Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Tatiana Santos Barroso
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alto Universitário s/n, Alegre 29500-000, ES, Brazil
| | - Lucas Rodrigues Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Guilherme Ferreira Pena
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (G.F.P.); (A.T.d.A.J.)
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Marcelo Vivas
- Laboratório de Engenharia Agrícola, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Antonio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (G.F.P.); (A.T.d.A.J.)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (C.C.G.C.); (L.R.X.); (R.S.R.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
2
|
Liu C, Wang Y, Du Y, Kang Z, Guo J, Guo J. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici targets and stabilizes TaGAPDH2 that promotes stripe rust disease. PLANT, CELL & ENVIRONMENT 2024; 47:947-960. [PMID: 38105492 DOI: 10.1111/pce.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells and manipulate host processes. In a previous study, we identified a glycine-serine-rich effector PstGSRE4, which was proven to regulate the reactive oxygen species (ROS) pathway by interacting with TaCZSOD2. In this study, we further demonstrated that PstGSRE4 interacts with wheat glyceraldehyde-3-phosphate dehydrogenase TaGAPDH2, which is related to ROS signalling. In wheat, silencing of TaGAPDH2 by virus-induced gene silencing increased the accumulation of ROS induced by the Pst virulent race CYR31. Overexpression of TaGAPDH2 decreased the accumulation of ROS induced by the avirulent Pst race CYR23. In addition, TaGAPDH2 suppressed Pst candidate elicitor Pst322-triggered cell death by decreasing ROS accumulation in Nicotiana benthamiana. Knocking down TaGAPDH2 expression attenuated Pst infection, whereas overexpression of TaGAPDH2 promoted Pst infection, indicating that TaGAPDH2 is a negative regulator of plant defence. In N. benthamiana, PstGSRE4 stabilized TaGAPDH2 through inhibition of the 26S proteasome-mediated destabilization. Overall, these results suggest that TaGAPDH2 is hijacked by the Pst effector as a negative regulator of plant immunity to promote Pst infection in wheat.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Identification of Key Gene Network Modules and Hub Genes Associated with Wheat Response to Biotic Stress Using Combined Microarray Meta-analysis and WGCN Analysis. Mol Biotechnol 2023; 65:453-465. [PMID: 35996047 DOI: 10.1007/s12033-022-00541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum) is one of the major crops worldwide and a primary source of calories for human food. Biotic stresses such as fungi, bacteria, and diseases limit wheat production. Although plant breeding and genetic engineering for biotic stress resistance have been suggested as promising solutions to handle losses caused by biotic stress factors, a comprehensive understanding of molecular mechanisms and identifying key genes is a critical step to obtaining success. Here, a network-based meta-analysis approach based on two main statistical methods was used to identify key genes and molecular mechanisms of the wheat response to biotic stress. A total of 163 samples (21,792 genes) from 10 datasets were analyzed. Fisher Z test based on the p-value and REM method based on effect size resulted in 533 differentially expressed genes (p < 0.001 and FDR < 0.001). WGCNA analysis using a dynamic tree-cutting algorithm was used to construct a co-expression network and three significant modules were detected. The modules were significantly enriched by 16 BP terms and 4 KEGG pathways (Benjamini-Hochberg FDR < 0.001). A total of nine hub genes (a top 1.5% of genes with the highest degree) were identified from the constructed network. The identification of DE genes, gene-gene co-expressing network, and hub genes may contribute to uncovering the molecular mechanisms of the wheat response to biotic stress.
Collapse
|
4
|
Hydrogen Peroxide and GA 3 Levels Regulate the High Night Temperature Response in Pistils of Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:antiox12020342. [PMID: 36829898 PMCID: PMC9952169 DOI: 10.3390/antiox12020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
High night temperature (HNT) impairs crop productivity through the reproductive failure of gametes (pollen and pistil). Though female gametophyte (pistil) is an equal partner in the seed-set, the knowledge of the antioxidant system(s) and hormonal control of HNT tolerance or susceptibility of pistils is limited and lacking. The objectives of this study were to determine the antioxidant mechanism for homeostatic control of free radicals, and the involvement of abscisic acid (ABA) and gibberellic acid (GA3) in HNT stress protection in the wheat pistils of contrasting wheat genotypes. We hypothesized that HNT tolerance is attributed to the homeostatic control of reactive oxygen species (ROS) and hormonal readjustment in pistils of the tolerant genotype. The ears of two contrasting wheat genotypes-HD 2329 (susceptible) and Raj 3765 (tolerant) were subjected to two HNTs (+5 °C and +8 °C) over ambient, in the absence and presence of dimethylthiourea (DMTU), a chemical trap of hydrogen peroxide (H2O2). Results showed that HNTs significantly increased ROS in pistils of susceptible genotype HD 2329 to a relatively greater extent compared to tolerant genotype Raj 3765. The response was similar in the presence or absence of DMTU, but the H2O2 values were lower in the presence of DMTU. The ROS levels were balanced by increased activity of peroxidase under HNT to a greater extent in the tolerant genotype. Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) activity was inversely related to H2O2 production within a critical range in Raj 3765, indicating its modulation by H2O2 levels as no change was observed at the transcriptional level. The hormonal status showed increased ABA and decreased GA3 contents with increasing temperature. Our study elucidates the role of H2O2 and GA3 in stress tolerance of pistils of tolerant genotype where GAPC acts as a ROS sensor due to H2O2-mediated decrease in its activity.
Collapse
|
5
|
Teng Z, Zheng W, Jiang S, Hong SB, Zhu Z, Zang Y. Role of melatonin in promoting plant growth by regulating carbon assimilation and ATP accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111276. [PMID: 35487649 DOI: 10.1016/j.plantsci.2022.111276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/27/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is a phytohormone important in mediating diverse plant growth processes. In this study, we performed transcriptomic, qRT-PCR, physiological and biochemical analyses of Brassica rapa seedlings in order to understand how MT promotes plant growth. The results showed that exogenous MT increased the rate of cyclic electron flow around photosystem (PS) I, fluorescence quantum yield, and electron transport efficiency between PSII and PSI to promote the vegetative growth of B. rapa seedlings without affecting oxidative stress level, as compared to control. However, MT treatment significantly reduced photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) by 2.25-, 1.23- and 3.50-fold at 0.05 level, respectively. This occurred in parallel with the down-regulation of the genes for carbon fixation in photosynthetic organisms in a KEGG pathway enrichment. More accelerated plant growth despite the reduced photosynthesis rate and the enhanced electron transport rate suggested that NADPH and adenosine triphosphate (ATP) were preferentially diverted into other anabolic reactions than the Calvin cycle upon MT application. MT treatment increased ATP level and facilitated carbon assimilation into primary metabolism that led to a significant enhancement of soluble protein, sucrose, and fructose, but a significant decrease in glucose content. MT-induced carbon assimilation into primary metabolism was driven by up-regulation of the genes for glutathione metabolism, Krebs cycle, ribosome, and DNA replication in a KEGG pathway enrichment, as well as down-regulation of the genes for secondary metabolites. Our results provide an insight into MT-mediated metabolic adjustments triggered by coordinate changes in a wide range of gene expression profiles to help improve the plant functionality.
Collapse
Affiliation(s)
- Zhiyan Teng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Weiwei Zheng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Shufang Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Yunxiang Zang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
6
|
Ríos-Meléndez S, Valadez-Hernández E, Delgadillo C, Luna-Guevara ML, Martínez-Núñez MA, Sánchez-Pérez M, Martínez-Y-Pérez JL, Arroyo-Becerra A, Cárdenas L, Bibbins-Martínez M, Maldonado-Mendoza IE, Villalobos-López MA. Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. PLANT MOLECULAR BIOLOGY 2021; 107:387-404. [PMID: 34189708 PMCID: PMC8648698 DOI: 10.1007/s11103-021-01167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.
Collapse
Affiliation(s)
- Selma Ríos-Meléndez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Emmanuel Valadez-Hernández
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Claudio Delgadillo
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria L Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72000, Puebla, Puebla, México
| | - Mario A Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 97302, Mérida, Yucatán, México
| | - Mishael Sánchez-Pérez
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - José L Martínez-Y-Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, C.P. 90210, Ixtacuixtla, Tlaxcala, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Martha Bibbins-Martínez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Ignacio E Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, C.P. 81049, Guasave, Sinaloa, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
7
|
Pereyra-Bistraín LI, Ovando-Vázquez C, Rougon-Cardoso A, Alpuche-Solís ÁG. Comparative RNA-Seq Analysis Reveals Potentially Resistance-Related Genes in Response to Bacterial Canker of Tomato. Genes (Basel) 2021; 12:genes12111745. [PMID: 34828351 PMCID: PMC8618811 DOI: 10.3390/genes12111745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tomato is one of the most important crops for human consumption. Its production is affected by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), one of the most devastating bacterial pathogens of this crop. Several wild tomato species represent a source of natural resistance to Cmm. Here, we contrasted the transcriptomes of the resistant wild tomato species Solanum arcanum LA2157 and the susceptible species Solanum lycopersicum cv. Ailsa Craig, during the first 24 h of challenge with Cmm. We used three analyses approaches which demonstrated to be complementary: mapping to S. lycopersicum reference genome SL3.0; semi de novo transcriptome assembly; and de novo transcriptome assembly. In a global context, transcriptional changes seem to be similar between both species, although there are some specific genes only upregulated in S. arcanum during Cmm interaction, suggesting that the resistance regulatory mechanism probably diverged during the domestication process. Although S. lycopersicum showed enriched functional groups related to defense, S. arcanum displayed a higher number of induced genes related to bacterial, oomycete, and fungal defense at the first few hours of interaction. This study revealed genes that may contribute to the resistance phenotype in the wild tomato species, such as those that encode for a polyphenol oxidase E, diacyl glycerol kinase, TOM1-like protein 6, and an ankyrin repeat-containing protein, among others. This work will contribute to a better understanding of the defense mechanism against Cmm, and the development of new control methods.
Collapse
Affiliation(s)
- Leonardo I. Pereyra-Bistraín
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico;
| | - Cesaré Ovando-Vázquez
- Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica A.C., Consejo Nacional de Ciencia y Tecnología, San Luis Potosí 78216, Mexico;
| | - Alejandra Rougon-Cardoso
- Laboratory of Agrigenomic Sciences, Universidad Nacional Autónoma de México, ENES-León, León 37689, Mexico
- Correspondence: (A.R.-C.); (Á.G.A.-S.); Tel.: +52-(444)-834-2000 (Á.G.A.-S.)
| | - Ángel G. Alpuche-Solís
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico;
- Correspondence: (A.R.-C.); (Á.G.A.-S.); Tel.: +52-(444)-834-2000 (Á.G.A.-S.)
| |
Collapse
|
8
|
Li F, Zhang L, Ji H, Xu Z, Zhou Y, Yang S. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110460. [PMID: 32539996 DOI: 10.1016/j.plantsci.2020.110460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 05/28/2023]
Abstract
Drought is one of the most common abiotic stresses, and can limit wheat yield, crops and productivity. GAPCs play vital roles under drought stress conditions in multiple species. The aim of this experiment was to determine the regulatory mechanism of TaGAPC5 under drought stress. In this study, the genes and promoters of TaGAPC5 in diverse drought-tolerant cultivars were cloned. The amino acid sequences were conserved, while the promoter fragments were not identical. Under abiotic stress, the expression level of TaGAPC5 was substantially different among the diverse drought-tolerant cultivars and the promoter activities were significantly improved. The yeast one-hybrid system and Electrophoretic mobility shift assay (EMSA) demonstrated that TaWRKYs bound to specific W-boxes: TaWRKY28, TaWRKY33, TaWRKY40 and TaWRKY47 bind to G/ATGACG/C/A, C/G/ATGACG, C/ATGACC and C/ATGACC/G, respectively. By analyzing different 5' deletion mutants of these promoters, it was determined that these W-boxes in CW-TaGAPC5 promoter (-1262, -1202, -904, -880 and -207) and ZY-TaGAPC5 promoter (-697 and -220) bound by these four TaWRKYs and were functional under drought stress. The deletion or addition of specific W-boxes in the promoter fragments significantly restrained or advanced the promoter activity under drought stress, and these results further confirmed that these W-boxes play vital roles in improving transcription levels under drought stress. The W-boxes in CW-TaGAPC5P (-1262, -1202, -904, -880 and -207) and ZY-TaGAPC5P (-697 and -220) were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaWRKY.
Collapse
Affiliation(s)
- Fangfang Li
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lin Zhang
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Zhiyong Xu
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Ye Zhou
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Sánchez-Pujante PJ, Gionfriddo M, Sabater-Jara AB, Almagro L, Pedreño MA, Diaz-Vivancos P. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153136. [PMID: 32120144 DOI: 10.1016/j.jplph.2020.153136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Elicited broccoli suspension-cultured cells (SCC) provide a useful system for obtaining bioactive compounds, including glucosinolates (GS) and phenolic compounds (PCs). In this work, coronatine (Cor) and methyl jasmonate (MJ) were used to increase the bioactive compound production in broccoli SCC. Although the use of Cor and MJ in secondary metabolite production has already been described, information concerning how elicitors affect cell metabolism is scarce. It has been suggested that Cor and MJ trigger defence reactions affecting the antioxidative metabolism. In the current study, the concentration of 0.5 μM Cor was the most effective treatment for increasing both the total antioxidant capacity (measured as ferulic acid equivalents) and glucosinolate content in broccoli SCC. The elicited broccoli SCC also showed higher polyphenol oxidase activity than the control cells. Elicitation altered the antioxidative metabolism of broccoli SCC, which displayed biochemical changes in antioxidant enzymes, a decrease in the glutathione redox state and an increase in lipid peroxidation levels. Furthermore, we studied the effect of elicitation on the protein profile and observed an induction of defence-related proteins. All of these findings suggest that elicitation not only increases bioactive compound production, but it also leads to mild oxidative stress in broccoli SCC that could be an important factor triggering the production of these compounds.
Collapse
Affiliation(s)
| | - Matteo Gionfriddo
- Department of Medicine, Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain
| | - Pedro Diaz-Vivancos
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia Spain.
| |
Collapse
|
10
|
Pariyar SR, Erginbas-Orakci G, Dadshani S, Chijioke OB, Léon J, Dababat AA, Grundler FMW. Dissecting the Genetic Complexity of Fusarium Crown Rot Resistance in Wheat. Sci Rep 2020; 10:3200. [PMID: 32081866 PMCID: PMC7035263 DOI: 10.1038/s41598-020-60190-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) is one of the most important diseases of wheat (Triticum aestivum L.). FCR is mainly caused by the fungal pathogens Fusarium culmorum and F. pseudograminearum. In order to identify new sources of resistance to FCR and to dissect the complexity of FCR resistance, a panel of 161 wheat accessions was phenotyped under growth room (GR) and greenhouse conditions (GH). Analysis of variance showed significant differences in crown rot development among wheat accessions and high heritability of genotype-environment interactions for GR (0.96) and GH (0.91). Mixed linear model analysis revealed seven novel quantitative trait loci (QTLs) linked to F. culmorum on chromosomes 2AL, 3AS, 4BS, 5BS, 5DS, 5DL and 6DS for GR and eight QTLs on chromosomes on 3AS, 3BS, 3DL, 4BS (2), 5BS, 6BS and 6BL for GH. Total phenotypic variances (R²) explained by the QTLs linked to GR and GH were 48% and 59%, respectively. In addition, five favorable epistasis interactions among the QTLs were detected for both GR and GH with and without main effects. Epistatic interaction contributed additional variation up to 21% under GR and 7% under GH indicating strong effects of environment on the expression of QTLs. Our results revealed FCR resistance responses in wheat to be complex and controlled by multiple QTLs.
Collapse
Affiliation(s)
- Shree R Pariyar
- Forschungszentrum Jülich GmbH, Institut für Bio- und Geowissenschaften (IBG)-2, Pflanzenwissenschaften, D-52425, Jülich, Germany.,Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany
| | - Gul Erginbas-Orakci
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Oyiga Benedict Chijioke
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany.
| |
Collapse
|
11
|
Yu J, Li R, Fan N, Yang Z, Huang B. Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass. FRONTIERS IN PLANT SCIENCE 2017; 8:1506. [PMID: 28974955 PMCID: PMC5610700 DOI: 10.3389/fpls.2017.01506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/15/2017] [Indexed: 05/21/2023]
Abstract
Global climate changes involve elevated temperature and CO2 concentration, imposing significant impact on plant growth of various plant species. Elevated temperature exacerbates heat damages, but elevated CO2 has positive effects on promoting plant growth and heat tolerance. The objective of this study was to identify metabolic pathways affected by elevated CO2 conferring the improvement of heat tolerance in a C4 perennial grass species, bermudagrass (Cynodon dactylon Pers.). Plants were planted under either ambient CO2 concentration (400 μmol⋅mol-1) or elevated CO2 concentration (800 μmol⋅mol-1) and subjected to ambient temperature (30/25°C, day/night) or heat stress (45/40°C, day/night). Elevated CO2 concentration suppressed heat-induced damages and improved heat tolerance in bermudagrass. The enhanced heat tolerance under elevated CO2 was attributed to some important metabolic pathways during which proteins and metabolites were up-regulated, including light reaction (ATP synthase subunit and photosystem I reaction center subunit) and carbon fixation [(glyceraldehyde-3-phosphate dehydrogenase, GAPDH), fructose-bisphosphate aldolase, phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase and sugars) of photosynthesis, glycolysis (GAPDH, glucose, fructose, and galactose) and TCA cycle (pyruvic acid, malic acid and malate dehydrogenase) of respiration, amino acid metabolism (aspartic acid, methionine, threonine, isoleucine, lysine, valine, alanine, and isoleucine) as well as the GABA shunt (GABA, glutamic acid, alanine, proline and 5-oxoproline). The up-regulation of those metabolic processes by elevated CO2 could at least partially contribute to the improvement of heat tolerance in perennial grass species.
Collapse
Affiliation(s)
- Jingjin Yu
- College of Agro-grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Ran Li
- College of Agro-grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Ningli Fan
- College of Agro-grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New BrunswickNJ, United States
| |
Collapse
|
12
|
Zeng L, Deng R, Guo Z, Yang S, Deng X. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics 2016; 17:240. [PMID: 26984398 PMCID: PMC4793594 DOI: 10.1186/s12864-016-2527-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. Results A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Conclusions Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2527-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingfeng Zeng
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Rong Deng
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Ziping Guo
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, PR China.
| | - Xiping Deng
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, 712100, Yangling, Shaanxi, PR China
| |
Collapse
|
13
|
Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 2015; 396:523-37. [DOI: 10.1515/hsz-2014-0295] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023]
Abstract
Abstract
Cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH, E.C. 1.2.1.12) is present in all organisms and catalyzes the oxidation of triose phosphate during glycolysis. GAPDH is one of the most prominent cellular targets of oxidative modifications when reactive oxygen and nitrogen species are formed during metabolism and under stress conditions. GAPDH harbors a strictly conserved catalytic cysteine, which is susceptible to a variety of thiol modifications, including S-sulfenylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. Upon reversible oxidative thiol modification of GAPDH, glycolysis is inhibited leading to a diversion of metabolic flux through the pentose-phosphate cycle to increase NADPH production. Furthermore, oxidized GAPDH may adopt new functions in different cellular compartments including the nucleus, as well as in new microcompartments associated with the cytoskeleton, mitochondria and plasma membrane. This review focuses on the recently discovered mechanism underlying the eminent reactivity between GAPDH and hydrogen peroxide and the subsequent redox-dependent moonlighting functions discriminating between the induction either of adaptive responses and adjustment of metabolism or of cell death in yeast, plants, and mammals. In light of the summarized results, cytosolic GAPDH might function as a sensor for redox signals and an information hub to transduce these signals for appropriate responses.
Collapse
|
14
|
Kim JY, Wu J, Kwon SJ, Oh H, Lee SE, Kim SG, Wang Y, Agrawal GK, Rakwal R, Kang KY, Ahn IP, Kim BG, Kim ST. Proteomics of rice and Cochliobolus miyabeanus
fungal interaction: Insight into proteins at intracellular and extracellular spaces. Proteomics 2014; 14:2307-18. [DOI: 10.1002/pmic.201400066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 07/17/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Jin Yeong Kim
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Jingni Wu
- Department of Plant Microbe Interactions; Max-Planck Institute for Plant Breeding Research; Cologne Germany
| | - Soon Jae Kwon
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Haram Oh
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - So Eui Lee
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| | - Sang Gon Kim
- National Institute of Crop Science; Rural Development Administration; Suwon South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions; Max-Planck Institute for Plant Breeding Research; Cologne Germany
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Pvt. Ltd; Birgunj Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu Nepal
- GRADE Academy Pvt. Ltd; Birgunj Nepal
- Organization for Educational Initiatives; University of Tsukuba; Tsukuba Ibaraki Japan
- Department of Anatomy I; Showa University School of Medicine; Shinagawa Tokyo Japan
| | - Kyu Young Kang
- Division of Applied Life Science; Gyeongsang National University; Jinju South Korea
| | - Il-Pyung Ahn
- Molecular Breeding division; National Academy of Agricultural Science, RDA; Suwon South Korea
| | - Beom-Gi Kim
- Molecular Breeding division; National Academy of Agricultural Science, RDA; Suwon South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience; Life and Industry Convergence Research Institute, Pusan National University; Miryang South Korea
| |
Collapse
|
15
|
Mustafa G, Komatsu S. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. FRONTIERS IN PLANT SCIENCE 2014; 5:627. [PMID: 25477889 PMCID: PMC4235293 DOI: 10.3389/fpls.2014.00627] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/22/2014] [Indexed: 05/22/2023]
Abstract
Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
- *Correspondence: Setsuko Komatsu, National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan e-mail:
| |
Collapse
|
16
|
Zhang X, Fu J, Hiromasa Y, Pan H, Bai G. Differentially expressed proteins associated with Fusarium head blight resistance in wheat. PLoS One 2013; 8:e82079. [PMID: 24376514 PMCID: PMC3869672 DOI: 10.1371/journal.pone.0082079] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1. METHODS The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1(+) NIL were also compared to identify pathogen-responsive proteins. RESULTS Eight proteins were either induced or upregulated in inoculated Fhb1(+) NIL when compared with mock-inoculated Fhb1(+) NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1(+) NIL when compared with Fusarium-inoculated Fhb1(-) NIL. Proteins that were differentially expressed in the Fhb1(+) NIL, not in the Fhb1(-) NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification. CONCLUSIONS Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1(+) NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance.
Collapse
Affiliation(s)
- Xianghui Zhang
- Jinlin University, Changchun, Jilin, People's Republic of China
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianming Fu
- United States Department of Agriculture/Agricultural Service, Hard Winter Wheat Genetics Research Unit, Kansas State University, Manhattan, Kansas, United States of America
| | - Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Hongyu Pan
- Jinlin University, Changchun, Jilin, People's Republic of China
| | - Guihua Bai
- United States Department of Agriculture/Agricultural Service, Hard Winter Wheat Genetics Research Unit, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
17
|
Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. C R Biol 2013; 336:530-45. [DOI: 10.1016/j.crvi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
18
|
Arasimowicz-Jelonek M, Kosmala A, Janus Ł, Abramowski D, Floryszak-Wieczorek J. The proteome response of potato leaves to priming agents and S-nitrosoglutathione. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199689 DOI: 10.1016/j.plantsci.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The primed mobilization for more potent defense responses to subsequent stress has been shown for many plant species, but there is a growing need to identify reliable molecular markers for this unique phenomenon. In the present study a proteomic approach was used to screen similarities in protein abundance in leaves of primed potato (Solanum tuberosum L.) treated with four well-known inducers of plant resistance, i.e. β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), Laminarin and 2,6-dichloroisonicotinic acid (INA), respectively. Moreover, to gain insight into the importance of nitric oxide (NO) in primed protein accumulation the potato leaves were supplied by S-nitrosoglutathione (GSNO), as an NO donor. The comparative analysis, using two-dimensional electrophoresis and mass spectrometry, revealed that among 25 proteins accumulated specifically after BABA, GABA, INA and Laminarin treatments, 13 proteins were accumulated also in response to GSNO. Additionally, overlapping proteomic changes between BABA-primed and GSNO-treated leaves showed 5 protein spots absent in the proteome maps obtained in response to the other priming agents. The identified 18 proteins belonged, in most cases, to functional categories of primary metabolism. The selected proteins including three redox-regulated enzymes, i.e. glyceraldehyde 3-phosphate dehydrogenase, carbonic anhydrase, and fructose-bisphosphate aldolase, were discussed in relation to the plant defence responses. Taken together, the overlapping effects in the protein profiles obtained between priming agents, GSNO and cPTIO treatments provide insight indicating that the primed potato exhibits unique changes in the primary metabolism, associated with selective protein modification via NO.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | | | | | | | |
Collapse
|
19
|
Sun Q, Liu J, Zhang Q, Qing X, Dobson G, Li X, Qi B. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from Phytophthora infestans. Appl Microbiol Biotechnol 2012; 97:7689-97. [PMID: 23229570 DOI: 10.1007/s00253-012-4613-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/15/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Phytophthora infestans is the causative agent of potato blight that resulted in the great famine in Ireland in the nineteenth century. This microbe can release large amounts of the C20 very long-chain polyunsaturated fatty acids arachidonic acid (ARA; 20:4Δ(5, 8, 11, 14)) and eicosapentaenoic acid (EPA; 20:5Δ(5, 8, 11, 14, 17)) upon invasion that is known to elicit a hypersensitive response to their host plant. In order to identify enzymes responsible for the biosynthesis of these fatty acids, we blasted the recently fully sequenced P. infestans genome and identified three novel putatively encoding desaturase sequences. These were subsequently functionally characterized by expression in Saccharomyces cerevisiae and confirmed that they encode desaturases with Δ12, Δ6 and Δ5 activity, designated here as PinDes12, PinDes6 and PinDes5, respectively. This, together with the combined fatty acid profiles and a previously identified Δ6 elongase activity, implies that the ARA and EPA are biosynthesized predominantly via the Δ6 desaturation pathways in P. infestans. Elucidation of ARA and EPA biosynthetic mechanism may provide new routes to combating this potato blight microbe directly or by means of conferring resistance to important crops.
Collapse
Affiliation(s)
- Quanxi Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271000, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Liao C, Hochholdinger F, Li C. Comparative analyses of three legume species reveals conserved and unique root extracellular proteins. Proteomics 2012; 12:3219-28. [DOI: 10.1002/pmic.201100629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 07/26/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Chengsong Liao
- Key Laboratory of Plant-Soil Interactions; Ministry of Education; Center for Resources; Environment and Food Security; China Agricultural University; Beijing China
| | | | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions; Ministry of Education; Center for Resources; Environment and Food Security; China Agricultural University; Beijing China
| |
Collapse
|
21
|
Dahal D, Mooney BP, Newton KJ. Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:70-83. [PMID: 22607058 DOI: 10.1111/j.1365-313x.2012.05056.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phenomenon of hybrid vigor (heterosis) has long been harnessed by plant breeders to improve world food production. However, the changes that are essential for heterotic responses and the mechanisms responsible for heterosis remain undefined. Large increases in biomass and yield in high-heterosis hybrids suggest that alterations in bioenergetic processes may contribute to heterosis. Progeny from crosses between various inbred lines vary in the extent of vigor observed. Field-grown maize F₁ hybrids that consistently exhibited either low or high heterosis across a variety of environments were examined for changes in proteins that may be correlated with increased plant vigor and yield. Unpollinated ears at the time of flowering (ear shoots) were selected for the studies because they are metabolically active, rich in mitochondria, and the sizes of the ears are diagnostic of yield heterosis. Total protein and mitochondrial proteomes were compared among low- and higher-heterosis hybrids. Two-dimensional difference gel electrophoresis was used to identify allelic and/or isoform differences linked to heterosis. Identification of differentially regulated spots by mass spectrometry revealed proteins involved in stress responses as well as primary carbon and protein metabolism. Many of these proteins were identified in multiple spots, but analysis of their abundances by label-free mass spectrometry suggested that most of the expression differences were due to isoform variation rather than overall protein amount. Thus, our proteomics studies suggest that expression of specific alleles and/or post-translational modification of specific proteins correlate with higher levels of heterosis.
Collapse
Affiliation(s)
- Diwakar Dahal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
22
|
Zhang Z, Lin H, Shen Y, Gao J, Xiang K, Liu L, Ding H, Yuan G, Lan H, Zhou S, Zhao M, Gao S, Rong T, Pan G. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol Biol Rep 2012; 39:8137-46. [PMID: 22562381 PMCID: PMC3383953 DOI: 10.1007/s11033-012-1661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/16/2012] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu Campus, 211 Huimin Road, Wenjiang 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaschani F, Clerc J, Krahn D, Bier D, Hong TN, Ottmann C, Niessen S, Colby T, van der Hoorn RAL, Kaiser M. Identification of a selective, activity-based probe for glyceraldehyde 3-phosphate dehydrogenases. Angew Chem Int Ed Engl 2012; 51:5230-3. [PMID: 22489074 DOI: 10.1002/anie.201107276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Farnusch Kaschani
- Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaschani F, Clerc J, Krahn D, Bier D, Hong TN, Ottmann C, Niessen S, Colby T, van der Hoorn RAL, Kaiser M. Identifizierung einer selektiven aktivitätsbasierten Sonde für Glycerinaldehyd-3-phosphat-Dehydrogenasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Selim M, Legay S, Berkelmann-Löhnertz B, Langen G, Kogel KH, Evers D. Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem. PLANT CELL REPORTS 2012; 31:205-16. [PMID: 22006104 DOI: 10.1007/s00299-011-1156-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/13/2023]
Abstract
Due to its reproducibility and sensitivity, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) has become the method of choice for quantifying gene expression. However, the accuracy of RT-qPCR is prone to bias if proper precautions are not taken, e.g. starting with intact, non-degraded RNA, considering the PCR efficiency and using the right reference gene(s) for normalization. It has been reported that some of the well-known reference genes are differentially regulated under certain experimental conditions suggesting that there is no gene that could be used as a universal reference. This paper aims at selecting the most suitable reference gene(s) out of six putative genes to be used as normalizer(s) for quantification of gene expression in the grapevine-downy mildew interaction as well as upon induced resistance with chemical elicitors. Moreover, the paper aims at determining the optimal number of reference genes to be used in normalization, since it has been emphasized in the literature that using multiple reference genes increases accuracy. Two different software tools, geNorm and Normfinder, were used to identify the most stable reference genes in grapevine under the aforementioned conditions. The importance of the choice of adequate reference genes is highlighted by studying chitinase expression.
Collapse
Affiliation(s)
- M Selim
- Department of Environment and Agro-Biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg.
| | | | | | | | | | | |
Collapse
|
26
|
Milli A, Cecconi D, Bortesi L, Persi A, Rinalducci S, Zamboni A, Zoccatelli G, Lovato A, Zolla L, Polverari A. Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. J Proteomics 2011; 75:1284-302. [PMID: 22120121 DOI: 10.1016/j.jprot.2011.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/13/2011] [Accepted: 11/04/2011] [Indexed: 11/26/2022]
Abstract
We analyzed the proteome of grapevine (Vitis vinifera) leaves 24, 48 and 96 h post infection (hpi) with the downy mildew pathogen Plasmopara viticola. Total proteins were separated on 2-DE gels. By MS analysis, we identified 82 unique grapevine proteins differentially expressed after infection. Upregulated proteins were often included in the functional categories of general metabolism and stress response, while proteins related to photosynthesis and energy production were mostly downregulated. As expected, the activation of a defense reaction was observed more often at the late time point, consistent with the establishment of a compatible interaction. Most proteins involved in resistance were isoforms of different PR-10 pathogenesis-related proteins. Although >50 differentially expressed protein isoforms were observed at 24 and 96 hpi, only 18 were detected at 48 hpi and no defense-related proteins were among this group. This profile suggests a transient breakdown in defense responses accompanying the onset of disease, further supported by gene expression analyses and by a western blot analysis of a PR-10 protein. Our data reveal the complex modulation of plant metabolism and defense responses during compatible interactions, and provide insight into the underlying molecular processes which may eventually yield novel strategies for pathogen control in the field.
Collapse
Affiliation(s)
- Alberto Milli
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao Y, Du H, Wang Z, Huang B. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon. PHYSIOLOGIA PLANTARUM 2011; 141:40-55. [PMID: 21029106 DOI: 10.1111/j.1399-3054.2010.01419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The study was conducted to examine differential proteomic responses to water-deficit stress in hybrid bermudagrass [Cynodon dactylon (L.) Pers. ×Cynodon transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299). Plants were exposed to water-deficit stress for 15 days by withholding irrigation in a growth chamber. Leaf electrolyte leakage increased and photochemical efficiency and relative water content declined under water-deficit stress, but the extent of changes in each of the physiological parameters for 'Tifway' was less pronounced than those for 'C299'. Total proteins of leaves were extracted from well-watered and water-deficit plants and separated by two-dimensional gel electrophoresis. Of the 750 protein spots reproducibly detected, 32 proteins had increases in the abundance and 22 proteins exhibited decreases in the abundance in at least one genotype under water-deficit stress. A significantly higher number of proteins were found to accumulate in 'Tifway' than in 'C299' and 16 proteins with increasing abundance were detected only in 'Tifway' under water-deficit stress. All stress-responsive proteins were subjected to mass spectrometry analysis, which were mainly involved in metabolism, energy, cell growth/division, protein synthesis and stress defense. Functional analysis of differential drought-responsive proteins between the two genotypes suggests that the superior water-deficit tolerance in 'Tifway' bermudagrass could be mainly associated with less severe decline in the abundance level of proteins involved in photosynthesis (chlorophyll a-b, ATP synthase subunit alpha, phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and greater increase in the abundance level of antioxidant defense proteins (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase and peroxiredoxin), demonstrating that maintaining photosynthesis and active antioxidant defense mechanisms may play a critical role in C(4) grass adaptation to water-deficit stress.
Collapse
Affiliation(s)
- Yan Zhao
- College of Agricultural and Biological Science, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
28
|
Major IT, Nicole MC, Duplessis S, Séguin A. Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. PHOTOSYNTHESIS RESEARCH 2010; 104:41-8. [PMID: 20012201 DOI: 10.1007/s11120-009-9507-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/13/2009] [Indexed: 05/20/2023]
Abstract
Poplars are challenged by a wide range of pathogens during their lifespan, and have an innate immunity system that activates defence responses to restrict pathogen growth. Large-scale expression studies of poplar-rust interactions have shown concerted transcriptional changes during defence responses, as in other plant pathosystems. Detailed analysis of expression profiles of metabolic pathways in these studies indicates that photosynthesis and respiration are also important components of the poplar response to rust infection. This is consistent with our current understanding of plant pathogen interactions as defence responses impose substantive demands for resources and energy that are met by reorganization of primary metabolism. This review applies the results of poplar transcriptome analyses to current research describing how plants divert energy from plant primary metabolism for resistance mechanisms.
Collapse
Affiliation(s)
- Ian T Major
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Quebec, QC, Canada.
| | | | | | | |
Collapse
|
29
|
Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 2009; 10:415. [PMID: 19732460 PMCID: PMC2755012 DOI: 10.1186/1471-2164-10-415] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 09/05/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea. RESULTS We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a CaUnigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. CONCLUSION Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of CaEST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt.
Collapse
Affiliation(s)
- Nasheeman Ashraf
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Deepali Ghai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranjan Barman
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swaraj Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nagaraju Gangisetty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mihir K Mandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
30
|
Dinler G, Budak H. Analysis of expressed sequence tags (ESTs) from Agrostis species obtained using sequence related amplified polymorphism. Biochem Genet 2008; 46:663-76. [PMID: 18726683 DOI: 10.1007/s10528-008-9181-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 05/04/2008] [Indexed: 11/26/2022]
Abstract
Bentgrass (Agrostis spp.), a genus of the Poaceae family, consists of more than 200 species and is mainly used in athletic fields and golf courses. Creeping bentgrass (A. stolonifera L.) is the most commonly used species in maintaining golf courses, followed by colonial bentgrass (A. capillaris L.) and velvet bentgrass (A. canina L.). The presence and nature of sequence related amplified polymorphism (SRAP) at the cDNA level were investigated. We isolated 80 unique cDNA fragment bands from these species using 56 SRAP primer combinations. Sequence analysis of cDNA clones and analysis of putative translation products revealed that some encoded amino acid sequences were similar to proteins involved in DNA synthesis, transcription, and signal transduction. The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (GenBank accession no. EB812822) was also identified from velvet bentgrass, and the corresponding protein sequence is further analyzed due to its critical role in many cellular processes. The partial peptide sequence obtained was 112 amino acids long, presenting a high degree of homology to parts of the N-terminal and C-terminal regions of cytosolic phosphorylating GAPDH (GapC). The existence of common expressed sequence tags (ESTs) revealed by a minimum evolutionary dendrogram among the Agrostis ESTs indicated the usefulness of SRAP for comparative genome analysis of transcribed genes in the grass species.
Collapse
Affiliation(s)
- Gizem Dinler
- Faculty of Engineering and Natural Sciences, Biological Science and Bioengineering Program, Sabanci University, Orhanli, Tuzla-Istanbul, 34956, Turkey
| | | |
Collapse
|
31
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 2008; 7:3943-52. [PMID: 17902191 DOI: 10.1002/pmic.200700173] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trichoderma spp. is one of the most commonly used biological control agents against plant pathogens. This fungus produces changes in plant metabolism, thus increasing growth and enhancing resistance to biotic and abiotic stresses. However, its modes of action remain to be defined. In the first hours of interaction between cucumber plant roots and Trichoderma asperellum strain T34, salicylic and jasmonic acid levels and typical antipathogenic peroxidase activity increase in the cotyledons to different degrees depending on the applied concentration of the fungi. The use of 2-DE protein profiling and MS analysis allowed us to identify 28 proteins whose expression was affected in cotyledons after cucumber root colonization by Trichoderma applied at high concentrations: 17 were found to be up-regulated while 11 were down-regulated. Proteins involved in ROS scavenging, stress response, isoprenoid and ethylene biosynthesis, and in photosynthesis, photorespiration, and carbohydrate metabolism were differentially regulated by Trichoderma. The proteome changes found in this study help to give an understanding of how Trichoderma-treated plants become more resistant to pathogen attacks through the changes in expression of a set of defence-oriented proteins which can directly protect the plant or switch the metabolism to a defensive, nonassimilatory state.
Collapse
Affiliation(s)
- Guillem Segarra
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Alkharouf NW, Klink VP, Chouikha IB, Beard HS, MacDonald MH, Meyer S, Knap HT, Khan R, Matthews BF. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). PLANTA 2006; 224:838-52. [PMID: 16575592 DOI: 10.1007/s00425-006-0270-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/11/2006] [Indexed: 05/07/2023]
Abstract
Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.
Collapse
Affiliation(s)
- Nadim W Alkharouf
- USDA-ARS-PSI-SGIL, Bldg.006, Rm 118, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee J, Bricker TM, Lefevre M, Pinson SRM, Oard JH. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. MOLECULAR PLANT PATHOLOGY 2006; 7:405-16. [PMID: 20507456 DOI: 10.1111/j.1364-3703.2006.00350.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice world-wide, but little is known about the host response to infection. The objective of this study was to identify proteins and DNA markers in resistant and susceptible rice associated with response to infection by R. solani. Replicated two-dimensional polyacrylamide gel electrophoresis experiments were conducted to detect proteins differentially expressed under inoculated and non-inoculated conditions. Tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS) was carried out for protein identification with the NCBI non-redundant protein database. Seven proteins were increased after inoculation in both susceptible and resistant plants. Six of the seven proteins were identified with presumed antifungal, photosynthetic and proteolytic activities. An additional 14 proteins were detected in the response of the resistant line. Eleven of the 14 proteins were identified with presumed functions relating to antifungal activity, signal transduction, energy metabolism, photosynthesis, molecular chaperone, proteolysis and antioxidation. The induction of 3-beta-hydroxysteroid dehydrogenase/isomerase was detected for the first time in resistant rice plants after pathogen challenge, suggesting a defensive role of this enzyme in rice against attack by R. solani. The chromosomal locations of four induced proteins were found to be in close physical proximity to genetic markers for sheath blight resistance in two genetic mapping populations. The proteomic and genetic results from this study indicate a complex response of rice to challenge by R. solani that involves simultaneous induction of proteins from multiple defence pathways.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Agronomy and Environmental Management, LSU AgCenter, 104 M.B. Sturgis Hall
| | | | | | | | | |
Collapse
|
35
|
Zeng J, Wang Y, Shen G, Zheng X. A Phytophthora sojae gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induced in host infection and its anti-oxidative function in yeast. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-1316-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Blanco FA, Zanetti ME, Casalongué CA, Daleo GR. Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:315-22. [PMID: 16814558 DOI: 10.1016/j.plaphy.2006.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Indexed: 05/10/2023]
Abstract
The MAPK cascade is an evolutionary conserved signaling pathway that links external stimuli with cellular responses. Using polymerase chain reaction (PCR), a DNA fragment corresponding to a Solanum tuberosum MAPK, StMPK1, was isolated. StMPK1 amino acid sequence displayed over 90% identity with tomato MPK1 (LeMPK1) and tobacco SIPK. Southern blot analysis indicated that the gene encoding StMPK1 is present in a single copy in the potato genome. StMPK1 mRNA levels differentially accumulated in potato tuber in response to wounding and to wounding plus Fusarium solani f. sp. eumartii. Transcript accumulation after infection was transient and started earlier than what was observed in wounded tubers. StMPK1 mRNA levels also increased in potato tuber after 24 h of treatment with jasmonic acid (JA) and abscicic acid (ABA), but not in response to ethylene or salicylic acid. In addition, StMPK1 transcript levels increased after a heat-shock treatment at 42 degrees C. The results suggest that StMPK1 may participate in the cellular responses against multiple environmental stimuli in potato tubers.
Collapse
Affiliation(s)
- Flavio Antonio Blanco
- Instituto de Investigaciones Biológicas-Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, CC 1245, 7600 Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
37
|
Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR. Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 2005; 5:4894-904. [PMID: 16281185 DOI: 10.1002/pmic.200500047] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The extracellular matrix is a vital compartment in plants with a prominent role in defence against pathogen attack. Using a maize cell suspension culture system and pathogen elicitors, responses to pathogen attack that are localised to the extracellular matrix were examined by a proteomic approach. Elicitor treatment of cell cultures induced a rapid change in the phosphorylation status of extracellular peroxidases, the apparent disappearance of a putative extracellular beta-N-acetylglucosamonidase, and accumulation of a secreted putative xylanase inhibitor protein. Onset of the defence response was attended by an accumulation of glyceraldehyde-3-phosphate dehydrogenase and a fragment of a putative heat shock protein. Several distinct spots of both proteins, which preferentially accumulated in cell wall protein fractions, were identified. These three novel observations, viz. (i) secretion of a new class of putative enzyme inhibitor, (ii) the apparent recruitment of classical cytosolic proteins into the cell wall and (ii) the change in phosphorylation status of extracellular matrix proteins, suggest that the extracellular matrix plays a complex role in defence. We discuss the role of the extracellular matrix in signal modulation during pathogen-induced defence responses.
Collapse
Affiliation(s)
- Stephen Chivasa
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
38
|
Han FP, Fedak G, Ouellet T, Dan H, Somers DJ. Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar 'Frontana'. Genome 2005; 48:88-96. [PMID: 15729400 DOI: 10.1139/g04-098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation, physical, and genetic mapping of a group of wheat genes expressed in infected heads of Triticum aestivum 'Frontana' resistant to Fusarium head blight is reported. A cDNA library was built from heads of 'Frontana' through suppressive subtractive hybridization, to enrich for sequences induced by the pathogen Fusarium graminearum during infection. A group of 1794 clones was screened by dot blot hybridization for differential gene expression following infection. Twenty of these clones showed a strong difference in intensity of hybridization between infected and mock-inoculated wheat head samples, suggesting that they corresponded to genes induced during infection. The 20 clones were sequenced and used for mapping analysis. We determined a precise chromosomal location for 14 selected clones by using series of chromosome deletion stocks. It was shown that the 14 clones detected 90 fragments with the use of the restriction enzyme EcoRI; 52 bands were assigned to chromosome bins, whereas 38 fragments could not be assigned. The selected clones were also screened for polymorphisms on a 'Wuhan' x 'Maringa' wheat doubled haploid mapping population. One clone, Ta01_02b03, was related to a quantitative trait locus for type II resistance located on chromosome 2AL, as determined with simple sequence repeat markers on another mapping population, but did not map in the same location on our population. Another clone, Ta01_06f04, was identified by BLAST (basic local alignment search tool) search in public databases to code for a novel beta-1,3-glucanase, homologous to a major pathogenesis-related protein. This clone mapped to chromosomal regions on chromosome 3, including 3BL and 3DL, where B glucanase gene clusters are known to exist. Seven other clones, including 1 coding for an ethylene-response element binding protein and 3 for ribosomal proteins, and 4 clones corresponding to proteins with unknown function, were also mapped.
Collapse
Affiliation(s)
- F P Han
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
39
|
Delp G, Timonen S, Rosewarne GM, Barker SJ, Smith S. Differential expression of Glomus intraradices genes in external mycelium and mycorrhizal roots of tomato and barley. ACTA ACUST UNITED AC 2004; 107:1083-93. [PMID: 14563136 DOI: 10.1017/s0953756203008311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Relative quantitative RT-PCR and western blotting were used to investigate the expression of three genes with potentially regulatory functions from the arbuscular mycorrhizal fungus Glomus intraradices in symbiosis with tomato and barley. Standardisation of total RNA per sample and determination of different ratios of plant and fungal RNA in roots as colonisation proceeded were achieved by relative quantitative RT-PCR using universal (NS1/NS21) and organism-specific rRNA primers. In addition, generic primers were designed for amplification of plant or fungal beta-tubulin genes and for plant glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes as these have been suggested as useful controls in symbiotic systems. The fungal genes Ginmyc1 and Ginhb1 were expressed only in the external mycelium and not in colonised roots at both mRNA and protein levels, with the proteins detected almost exclusively in the insoluble fractions. In contrast, mRNA of Ginmyc2 was identified in both external and intraradical mycelium. In mycorrhizal roots, Ginmyc2 and fungal beta-tubulin mRNAs increased in proportion to fungal rRNA as colonisation proceeded, suggesting that accumulation reflected intraradical fungal growth. Fungal alpha-tubulin protein and beta-tubulin mRNA both appeared to be more abundantly accumulated in AM hyphae within heavily colonised roots than in external hyphae, relative to fungal rRNA. Tomato GAPDH mRNA accumulation was proportional to tomato rRNA, but accumulation of tomato beta-tubulin mRNA was reduced in colonised roots compared to non-mycorrhizal roots. These results provide novel evidence of differential spatial and temporal regulation of AM fungal genes, indicate that the expression of tubulin genes of both plant and fungus may be regulated during colonisation and validate the use of multiple 'control' genes in analysis of mycorrhizal gene expression.
Collapse
Affiliation(s)
- Gabriele Delp
- Soil and Land Systems, School of Environmental Sciences, The University of Adelaide, Waite Campus, Private Bag 1, Glen Osmond, South Australia 5064, Australia
| | | | | | | | | |
Collapse
|
40
|
Hui D, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. PLANT PHYSIOLOGY 2003; 131:1877-93. [PMID: 12692347 PMCID: PMC166944 DOI: 10.1104/pp.102.018176] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 12/26/2002] [Accepted: 01/14/2003] [Indexed: 05/18/2023]
Abstract
We extend our analysis of the transcriptional reorganization that occurs when the native tobacco, Nicotiana attenuata, is attacked by Manduca sexta larvae by cloning 115 transcripts by mRNA differential display reverse transcription-polymerase chain reaction and subtractive hybridization using magnetic beads (SHMB) from the M. sexta-responsive transcriptome. These transcripts were spotted as cDNA with eight others, previously confirmed to be differentially regulated by northern analysis on glass slide microarrays, and hybridized with Cy3- and Cy5-labeled probes derived from plants after 2, 6, 12, and 24 h of continuous attack. Microarray analysis proved to be a powerful means of verifying differential expression; 73 of the cloned genes (63%) were differentially regulated (in equal proportions from differential display reverse transcription-polymerase chain reaction and SHMB procedures), and of these, 24 (32%) had similarity to known genes or putative proteins (more from SHMB). The analysis provided insights into the signaling and transcriptional basis of direct and indirect defenses used against herbivores, suggesting simultaneous activation of salicylic acid-, ethylene-, cytokinin-, WRKY-, MYB-, and oxylipin-signaling pathways and implicating terpenoid-, pathogen-, and cell wall-related transcripts in defense responses. These defense responses require resources that could be made available by decreases in four photosynthetic-related transcripts, increases in transcripts associated with protein and nucleotide turnover, and increases in transcripts associated with carbohydrate metabolism. This putative up-regulation of defense-associated and down-regulation of growth-associated transcripts occur against a backdrop of altered transcripts for RNA-binding proteins, putative ATP/ADP translocators, chaperonins, histones, and water channel proteins, responses consistent with a major metabolic reconfiguration that underscores the complexity of response to herbivore attack.
Collapse
Affiliation(s)
- Dequan Hui
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Graziano M, Beligni MV, Lamattina L. Nitric oxide improves internal iron availability in plants. PLANT PHYSIOLOGY 2002; 130:1852-9. [PMID: 12481068 PMCID: PMC166696 DOI: 10.1104/pp.009076] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Revised: 07/23/2002] [Accepted: 08/19/2002] [Indexed: 05/18/2023]
Abstract
Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 microM Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 microM Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant.
Collapse
Affiliation(s)
- Magdalena Graziano
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
42
|
Farnell YZ, Ing NH. Estradiol and a selective estrogen receptor modulator affect steroid hormone receptor messenger RNA levels and turnover in explant cultures of sheep endometrium. In Vitro Cell Dev Biol Anim 2002; 38:595-600. [PMID: 12762841 DOI: 10.1290/1543-706x(2002)38<595:eaaser>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Estrogens upregulate estrogen receptor (ER) and progesterone receptor (PR) gene expression in endometrium immediately before ovulation to prepare it for nurturing embryos. Most in vitro model systems have lost the ability to upregulate expression of the ER gene in response to estradiol (E2) or the ability to express the ER gene at all. Here, we used explant cultures from control and E2-treated ewes and assessed expression of four genes (ER, PR, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], and cyclophilin [CYC] genes) that are upregulated by E2 in vivo on Northern blots. In cultures from control and E2-treated ewes, ER and PR messenger ribonucleic acid (mRNA) levels dropped significantly during 24 h of culture in the absence of E2. Glyceraldehyde 3-phosphate dehydrogenase mRNA levels increased 300% in explants from control ewes to match the higher levels in the endometrium of the E2-treated ewe (in vivo and in explant culture). The only effect of E2 in the explant cultures was to prevent the decrease in PR mRNA. The new selective ER modulator, EM-800 (EM), decreased ER and PR mRNA levels in explants from control ewes but upregulated GAPDH and CYC mRNA levels. The EM treatment in vitro mimicked that of E2 by increasing the half-life of ER mRNA in endometrial explants. These data illustrate distinct, gene-specific effects of the explant culture process, E2, and EM on the expression of endometrial genes.
Collapse
Affiliation(s)
- Yuhua Z Farnell
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, 2471 TAMU, College Station, Texas 77843-2471, USA
| | | |
Collapse
|
43
|
París R, Lamattina L. Increased ratio of mitochondrial rDNA to cytoplasmic rDNA during zoosporic and germinating cyst stages of the life cycle of Phytophthora infestans (Mont.) de Bary. Can J Microbiol 2002; 48:268-74. [PMID: 11989772 DOI: 10.1139/w01-141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A differential RNA display approach was used to study the gene expression in zoospores (Z) and germinating cysts (GC) of the late blight pathogen Phytophthora infestans. Four differentially amplified cDNAs were selected and cloned. The clone pGPiZ0.5 showed a 2.7-kb transcript highly expressed in Z. A BLAST search revealed an almost full sequence homology (98%) to the P. infestans mitochondrial large subunit rRNA. Northern blot analysis showed a twofold accumulation of the mitochondrial rRNA (mit rRNA) in Z compared with that of GC and mycelia of P. infestans. The high level of mit rRNA in Z might reflect an increased number of gene copies, an increased rDNA transcription rate, or both. Dot blot experiments indicated that the amount of mitochondrial rDNA (mit rDNA) relative to cytoplasmic rDNA is twofold higher in Z and GC than in mycelia. This relatively elevated mit rDNA could explain the high level of mit rRNA in the zoosporic phase. On the contrary, GC conserves the mit rDNA content, but the level of mit rRNA drops to 50% that of Z. The data are consistent with a very active mitochondrial protein synthesis during zoosporic phase, followed by a rapid down-regulation of mitochondrial activity during cyst formation.
Collapse
Affiliation(s)
- Ramiro París
- Instituto de Investigaciones Biólogicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina
| | | |
Collapse
|
44
|
Godoy AV, Zanetti ME, San Segundo B, Casalongué CA. Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. PHYSIOLOGIA PLANTARUM 2001; 112:217-222. [PMID: 11454227 DOI: 10.1034/j.1399-3054.2001.1120210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Coadaptors or coactivators are a new class of transcription factors capable of interconnecting a regulator DNA-binding protein with a component of the basal transcription machinery allowing transcriptional activation to proceed. We report the identification of a novel Solanum tuberosum ssp. tuberosum putative transcription coactivator, named StMBF1 (Solanum tuberosum multiprotein bridging factor 1). The StMBF1 cDNA was isolated from a Fusarium solani f. sp. eumartii-infected potato tuber cDNA library, using a differential screening approach. StMBF1 is up-regulated during fungal attack as well as on wounding. A Fusarium elicitor source and ethylene precursor and salicylic acid also regulate StMBF1 expression. The precise role of StMBF1 during the plant response against environmental stresses remains to be elucidated.
Collapse
Affiliation(s)
- Andrea V. Godoy
- Instituto de Investigaciones Biológicas-Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, CC 1245, 7600 Mar del Plata, Argentina Instituto de Biología Molecular de Barcelona, Centro de Investigación y Desarrollo (CSIC), Jordi Girona 18-24, 08034 Barcelona, España
| | | | | | | |
Collapse
|
45
|
Vaghchhipawala Z, Bassüner R, Clayton K, Lewers K, Shoemaker R, Mackenzie S. Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:42-54. [PMID: 11194870 DOI: 10.1094/mpmi.2001.14.1.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or "syncytium," facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single dominant soybean gene conferring susceptibility to an inbred nematode strain, VL1, to characterize the nematode-host interaction in susceptible line PI 89008. The restriction fragment length polymorphism marker pB053, shown to map to a major SCN resistance locus, cosegregates with resistance among F2 progeny from the PI 89008 x PI 88287 cross. Cytological examination of the infection process confirmed that syncytium development in this genetic system is similar to that reported by others who used noninbred nematode lines. Our study of infected root tissue in the susceptible line PI 89008 revealed a number of genes enhanced in expression. Among these are catalase, cyclin, elongation factor 1alpha, beta-1,3-endoglucanase, hydroxy-methylglutaryl coenzyme A reductase, heat shock protein 70, late embryonic abundant protein 14, and formylglycinamidine ribonucleotide synthase, all of which we have genetically positioned on the public linkage map of soybean. Formylglycinamidine ribonucleotide synthase was found to be tightly linked with a major quantitative trait locus for SCN resistance. Our observations are consistent with the hypothesis proposed by others that feeding site development involves the dramatic modulation of gene expression relative to surrounding root cells.
Collapse
Affiliation(s)
- Z Vaghchhipawala
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jeong MJ, Park SC, Kwon HB, Byun MO. Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 2000; 278:192-6. [PMID: 11185527 DOI: 10.1006/bbrc.2000.3732] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 1.2-kb full-length cDNA sequence of a glyceraldehyde-3-phosphate dehydrogenase (GPD) gene was isolated from the mushroom, Pleurotus sajor-caju. The full-length cDNA of the GPD gene consists of 1248 nucleotides, predicted to encode a 36-kDa polypeptide consisting of 335 amino acid residues. Sequence analysis revealed that the GPD gene has more than 72-78% amino acid sequence homology with those of other Basidiomycetes. Expression of the GPD gene increased when P. sajor-caju was treated with various abiotic stresses, such as salt, cold, heat, and drought. There was an eightfold induction by drought treatment. Salt and cold stress induced four- and twofold induction of GPD gene expression, respectively. There was also a fivefold induction by heat stress. The GPD gene exhibits different expression patterns under different stress conditions. It reached its maximum expression level within two hours under cold or heat treatment. The mRNA levels of this gene increased proportionally to increasing treatment time under salt or dry conditions. Because the expression of GPD was significantly increased, we tested whether GPD could confer abiotic stress resistance when it was introduced into yeast cells. For this, a transgenic yeast harboring P. sajor-caju GPD was generated under the control of a constitutively expressed GAL promoter. The results from biofunctional analyses with GPD yeast transformants showed that GPD yeast transformants had significantly higher resistance to cold, salt, heat, and drought stresses.
Collapse
Affiliation(s)
- M J Jeong
- Division of Molecular Genetics, National Institute of Agricultural Science and Technology, Suwon, Korea.
| | | | | | | |
Collapse
|
47
|
Cabrera OE, Bongiovanni G, Hallak M, Soto EF, Pasquini JM. The cytoskeletal components of the myelin fraction are affected by a single intracranial injection of apotransferrin in young rats. Neurochem Res 2000; 25:669-76. [PMID: 10905629 DOI: 10.1023/a:1007515221008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that in rat pups intracranially injected with a single dose of apotransferrin (aTf), there is an early oligodendroglial cell OLGc differentiation. The expression of the mRNAs of myelin basic proteins and of 2',3' cyclic nucleotide 3'-phosphodiesterase and the amount of the corresponding proteins, as well as myelin glycolipids and phospholipids, were significantly increased in these animals at 10 and 17 days of age. Microtubules and myelin basic proteins appear to be closely associated in OLGc and it has been shown that the mRNAs of myelin basic proteins are concentrated in the OLGc processes. The aim of this work was to clarify if the accelerated myelination produced by aTf could be linked to changes in certain cytoskeletal elements present in the myelin fraction such as tubulin, actin, and different microtubule-associated proteins (MAPs). A significant increase in the expression of the mRNA of tubulin and actin was observed in the brain of the aTf-treated animals. Several MAPs, particularly MAP 1B and stable tubule only peptide as well as actin and tubulin, were markedly increased in the Triton X-100 insoluble pellet obtained from the myelin fraction of these animals. The changes that we have previously described in the myelin of aTf intracranially injected rats, could be the consequence of its action on the cytoskeletal network of the OLGc. An enlargement of this structure would result in a more efficient and faster movement of the different components that are normally transported to the myelin by the cytoskeleton of this cell.
Collapse
Affiliation(s)
- O E Cabrera
- Department of Biologicál Chemistry, School of Pharmacy and Biochemistry and Institute of Biological and Physical Chemistry (IQUIFIB), University of Buenos Aires-CONICET, Argentina
| | | | | | | | | |
Collapse
|
48
|
Mezquita B, Mezquita C, Mezquita J. Marked differences between avian and mammalian testicular cells in the heat shock induction and polyadenylation of Hsp70 and ubiquitin transcripts. FEBS Lett 1998; 436:382-6. [PMID: 9801153 DOI: 10.1016/s0014-5793(98)01172-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammalian male germ cells undergo apoptosis at the body's internal temperature of 37 degrees C. Birds, however, are unique among homeothermic animals in developing spermatogenesis at the elevated avian internal body temperature of 40-41 degrees C. To shed light on the mechanisms that maintain an efficient avian spermatogenesis at elevated temperatures we compared, in mouse and chicken testicular cells, the expression of genes that are essential for stress resistance: Hsp70 and ubiquitin. While the expression of Hsp70 and ubiquitin did not change upon heat shock in mouse testicular cells, both the amount and polyadenylation of Hsp70 and ubiquitin transcripts increased when male germ cells from adult chicken testis were exposed to elevated temperatures.
Collapse
Affiliation(s)
- B Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
49
|
Mezquita J, Pau M, Mezquita C. Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis. J Cell Biochem 1998; 71:127-39. [PMID: 9736461 DOI: 10.1002/(sici)1097-4644(19981001)71:1<127::aid-jcb13>3.0.co;2-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in addition to being a classic glycolytic enzyme, is a multifunctional protein involved in relevant cell functions such as DNA replication, DNA repair, translational control of gene expression, and apoptosis. Although the multifunctional nature of GAPDH suggests versatility in the mechanisms regulating its expression, no major qualitative changes and few quantitative changes in the GAPDH transcripts have been reported. While studying the expression of GAPDH during spermatogenesis, we detected alternative initiations to TATA box and alternative splicings in the 5' region of the pre-mRNA, resulting in at least six different types of mRNAs. The amount and the polyadenylation of the GAPDH transcripts increased in mature testis in relation to immature testis and further increased when cell suspensions from mature testis were exposed to heat shock. These results suggest that alternative initiation, alternative splicing, and polyadenylation could provide the necessary versatility to the regulation of the expression of this multifunctional protein during spermatogenesis.
Collapse
Affiliation(s)
- J Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi Sunyer, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
50
|
Batz O, Logemann E, Reinold S, Hahlbrock K. Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 1998; 379:1127-35. [PMID: 9792446 DOI: 10.1515/bchm.1998.379.8-9.1127] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transcription rates of numerous plant genes have previously been shown to be strongly affected by pathogen infection or elicitor treatment. Here we estimate the extent and complexity of this response by analyzing the patterns of mRNA induction in fungal elicitor-treated parsley cells (Petroselinum crispum) for several representatives from various primary and secondary metabolic pathways, cytosolic as well as plastidic. As a reference, we use the biphasic accumulation curve for the coordinately induced mRNAs encoding the three core enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and 4-coumarate:CoA ligase. Coincidence with this curve was observed for the mRNA induction kinetics of several, but not all, phenylpropanoid branch pathway-related reactions, whereas seven selected mRNAs from the pentose phosphate, glycolytic and shikimate pathways, including various cytosolic and plastidic isoforms, were induced with great differences in timing. Likewise unique and dissimilar from the reference curve were the induction patterns for various mRNAs encoding enzymes or proteins that are either more distantly or not at all related to phenylpropanoid metabolism. None of over 40 mRNAs tested so far remained unaffected. Using one strongly elicitor-responsive mRNA from carbohydrate metabolism, encoding a cytosolic glucose 6-phosphate dehydrogenase, for in situ RNA/RNA hybridization in fungus-infected parsley leaf tissue, we observed again the previously reported, close simulation of metabolic changes in true plant/fungus interactions by elicitor treatment of cultured cells. In addition to demonstrating extensive, highly complex functional, temporal and spatial patterns of changes in gene expression in infected plant cells, these results provide valuable information for the identification of pathogen-responsive promoters suitable for gene technology-assisted resistance breeding.
Collapse
Affiliation(s)
- O Batz
- Max-Planck-Institut für Züchtungsforschung, Köln, Germany
| | | | | | | |
Collapse
|