1
|
Yaschenko AE, Alonso JM, Stepanova AN. Arabidopsis as a model for translational research. THE PLANT CELL 2025; 37:koae065. [PMID: 38411602 PMCID: PMC12082644 DOI: 10.1093/plcell/koae065] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage laboratory and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, and molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability.
Collapse
Affiliation(s)
- Anna E Yaschenko
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Bodensohn US, Dünschede B, Kuhlmann C, Kumari K, Ladig R, Grefen C, Schleiff E, Fernandez D, Schünemann D. GET3B is involved in chloroplast biogenesis and interacts with the thylakoidal ALB3 and ALB4 insertases. PLANT CELL REPORTS 2025; 44:108. [PMID: 40299103 PMCID: PMC12040988 DOI: 10.1007/s00299-025-03500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Proteomic, functional physiological analyses of get3b mutant plants highlight GET3B's role in chloroplast function. Genetic and interaction analyses indicate get3b and srp54 as mutual potentiators that might share terminal insertases. Protein targeting and insertion into membranes are essential for cellular organization and organelle function. The Guided Entry of Tail-anchored (GET) pathway facilitates the post-translational targeting and insertion of tail-anchored (TA) membrane proteins. Arabidopsis thaliana has four GET3 homologues, including AtGET3B and AtGET3D localized to chloroplasts. These photosynthetic organelles possess complex membrane systems, and the mechanisms underlying their protein targeting and membrane biogenesis are not fully understood. This study conducted a comprehensive proteomic analysis of get3b mutant plastids, which displayed significant alterations. Fluorometric based complex assembly as well as CO2 assimilation analyses confirmed that disruption of GET3B function displayed a significant impact on photosystem II assembly as well as carbon fixation, respectively, indicating a functional role in chloroplast biogenesis. Additionally, genetic interactions were found between GET3B and the two component STIC system, which cooperates with the cpSRP pathway which is involved in the co-translational sorting of thylakoid proteins. Further, physical interactions were observed between GET3B and the C-terminus of ALB3 and ALB4 in vitro and the full length proteins in vivo, indicating a role of GET3B in protein targeting and membrane integration within chloroplasts. These findings enhance our understanding of GET3B's involvement in stromal protein targeting and thylakoidal biogenesis.
Collapse
Affiliation(s)
- Uwe Sakamuzi Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany.
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Chiara Kuhlmann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Khushbu Kumari
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Roman Ladig
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christopher Grefen
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany
| | - Donna Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706-1381, USA
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
3
|
Zhang Y, Xian Y, Yang H, Yang X, Yu T, Liu S, Liang M, Jiang X, Deng S. A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1053-1066. [PMID: 39723813 PMCID: PMC11933866 DOI: 10.1111/pbi.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator. The SBG51 sequence increased transient GFP gene expression in Nicotiana benthamiana leaves by up to ~6 times and ~10 times compared to the gene expression controlled by the UBQ10 promoter and 35S promoter alone, respectively. The increased GFP gene expression level contributed to the continuous accumulation of GFP protein and GFP fluorescence until 8 days post-inoculation (dpi). The SBG51 sequence also enhanced the gene expression in the transgenic Arabidopsis plants and maintained the spatio-temporal pattern of the FLOWERING LOCUS T (FT) and TOO MANY MOUTHS (TMM) promoters. We identified a 123 bp of AT-rich sequence containing seven "ATAAA" or "TTAAA" elements from the SBG51 DNA, which had the gene expression enhancement effect. Furthermore, the artificial synthetic sequences containing tandem repeated "ATAAA" or "TTAAA" elements were sufficient to increase the gene expression but did not alter the polyadenylation of mRNA, similar to the function of matrix attachment regions (MAR). Additionally, the compact artificial synthetic sequence also had an effect on yeast when the expression cassette was integrated into the genome. We conclude that the geminivirus deltasatellite-derived sequence and the "ATAAA"/"TTAAA" elements are powerful tools for enhancing gene expression.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Yibo Xian
- Moon (Guangzhou) Biotech Co., LtdGuangzhouGuangdongChina
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuangang Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianli Yu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sai Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Minting Liang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Xianzhi Jiang
- Moon (Guangzhou) Biotech Co., LtdGuangzhouGuangdongChina
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
- National Engineering Research Center of Navel OrangeGannan Normal UniversityGanzhouJiangxiChina
| |
Collapse
|
4
|
Rahmati Ishka M, Sussman H, Hu Y, Alqahtani MD, Craft E, Sicat R, Wang M, Yu L, Ait-Haddou R, Li B, Drakakaki G, Nelson ADL, Pineros M, Korte A, Jaremko Ł, Testerink C, Tester M, Julkowska MM. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025; 13:RP98896. [PMID: 40153306 PMCID: PMC11952752 DOI: 10.7554/elife.98896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study's innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.
Collapse
Affiliation(s)
| | | | - Yunfei Hu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | - Ronell Sicat
- Visualization Core Lab, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Minmin Wang
- University of California, DavisDavisUnited States
| | - Li'ang Yu
- Boyce Thompson InstituteIthacaUnited States
| | - Rachid Ait-Haddou
- Department of Mathematics, King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Bo Li
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | | | - Arthur Korte
- Julius-von-Sachs-Institute and Center for Computational and Theoretical Biology, Julius Maximilian UniversityWuerzburgGermany
| | - Łukasz Jaremko
- King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdalena M Julkowska
- Boyce Thompson InstituteIthacaUnited States
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
5
|
Liu J, Dong C, Liu X, Guo J, Chai L, Guo W, Ni Z, Sun Q, Liu J. Decoupling the pleiotropic effects of VRT-A2 during reproductive development enhances wheat grain length and weight. THE PLANT CELL 2025; 37:koaf024. [PMID: 39951393 PMCID: PMC11827615 DOI: 10.1093/plcell/koaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2) is a subspecies-forming gene that confers the long-glume and large-grain traits of tetraploid Polish wheat (Triticum polonicum; AABB) and hexaploid Xinjiang rice wheat (T. petropavlovskyi; AABBDD). Transcriptional activation of VRT-A2 due to a natural sequence variation in its Intron-1 region significantly enhances grain weight but also causes some basal spikelets to fail to completely develop, thus decreasing grain number per spike and yield. This yield penalty has presented a challenge for the use of VRT-A2 in breeding high-yield wheat. Here, we report the characterization of 2 regulatory modules that fine-tune VRT-A2 expression in bread wheat (T. aestivum): (i) the APETALA2/Ethylene Responsive Factor (AP2/ERF)-type transcription factor MULTI-FLORET SPIKELET1 (TaMFS1) represses VRT-A2 expression by recruiting a transcriptional corepressor and a histone deacetylase and (ii) the STRUCTURE-SPECIFIC RECOGNITION PROTEIN 1 (TaSSRP1) facilitates VRT-A2 activation by assembling Mediator and further RNA polymerase II. Deleting TaMFS1 triggered moderate upregulation of VRT-A2 results in significantly increased grain weight without the yield penalty. Our study thus provides a feasible strategy for overcoming the tradeoffs of pleotropic genes by editing their upstream transcriptional regulators.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jinquan Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Voichek Y, Hristova G, Mollá-Morales A, Weigel D, Nordborg M. Widespread position-dependent transcriptional regulatory sequences in plants. Nat Genet 2024; 56:2238-2246. [PMID: 39266765 PMCID: PMC11525189 DOI: 10.1038/s41588-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Much of what we know about eukaryotic transcription stems from animals and yeast; however, plants evolved separately for over a billion years, leaving ample time for divergence in transcriptional regulation. Here we set out to elucidate fundamental properties of cis-regulatory sequences in plants. Using massively parallel reporter assays across four plant species, we demonstrate the central role of sequences downstream of the transcription start site (TSS) in transcriptional regulation. Unlike animal enhancers that are position independent, plant regulatory elements depend on their position, as altering their location relative to the TSS significantly affects transcription. We highlight the importance of the region downstream of the TSS in regulating transcription by identifying a DNA motif that is conserved across vascular plants and is sufficient to enhance gene expression in a dose-dependent manner. The identification of a large number of position-dependent enhancers points to fundamental differences in gene regulation between plants and animals.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Gabriela Hristova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Almudena Mollá-Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
7
|
Lin Z, Liu D, Xu Y, Wang M, Yu Y, Diener AC, Liu KH. Pupylation-Based Proximity-Tagging of FERONIA-Interacting Proteins in Arabidopsis. Mol Cell Proteomics 2024; 23:100828. [PMID: 39147029 PMCID: PMC11532908 DOI: 10.1016/j.mcpro.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed 14 previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.
Collapse
Affiliation(s)
- Zhuoran Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Di Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yifan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Mengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - YongQi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Andrew C Diener
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Imamichi T, Kusumoto N, Aoyama H, Takamatsu S, Honda Y, Muraoka S, Hagiwara-Komoda Y, Chiba Y, Onouchi H, Yamashita Y, Naito S. Phylogeny-linked occurrence of ribosome stalling on the mRNAs of Arabidopsis unfolded protein response factor bZIP60 orthologs in divergent plant species. Nucleic Acids Res 2024; 52:4276-4294. [PMID: 38366760 PMCID: PMC11077094 DOI: 10.1093/nar/gkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.
Collapse
Affiliation(s)
- Tomoya Imamichi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nao Kusumoto
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haruka Aoyama
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seidai Takamatsu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yugo Honda
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shiori Muraoka
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Yukako Chiba
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Yamashita
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
10
|
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, Brunoud G, Mutterer J, Vallet E, Sakvarelidze-Achard L, Davière JM, Navarro-Galiano A, Walia A, Lazary S, Legrand J, Weinstain R, Jones AM, Prat S, Achard P, Vernoux T. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nat Commun 2024; 15:3895. [PMID: 38719832 PMCID: PMC11079023 DOI: 10.1038/s41467-024-48116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Amelia Felipo-Benavent
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Lucas Jilli
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Geraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Jérome Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Elody Vallet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Lali Sakvarelidze-Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Jean-Michel Davière
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | | | - Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Shani Lazary
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Salomé Prat
- Centre for Research in Agricultural Genomics, 08193 Cerdanyola, Barcelona, Spain
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France.
| |
Collapse
|
11
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562303. [PMID: 37873352 PMCID: PMC10592828 DOI: 10.1101/2023.10.13.562303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Michelle L. Johnson
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Tobin Ivy
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Igor Antoshechkin
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| | - Bruce A. Hay
- California Institute of Technology. Division of Biology and Biological Engineering. 1200 East California Boulevard, MC156-29, Pasadena, CA 91125
| |
Collapse
|
12
|
Gissot L, Fontaine F, Kelemen Z, Dao O, Bouchez I, Deruyffelaere C, Winkler M, Costa AD, Pierre F, Meziadi C, Faure JD, Froissard M. E and M SARS-CoV-2 membrane protein expression and enrichment with plant lipid droplets. Biotechnol J 2024; 19:e2300512. [PMID: 37986207 DOI: 10.1002/biot.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Plants are gaining traction as a cost-effective and scalable platform for producing recombinant proteins. However, expressing integral membrane proteins in plants is challenging due to their hydrophobic nature. In our study, we used transient and stable expression systems in Nicotiana benthamiana and Camelina sativa respectively to express SARS-CoV-2 E and M integral proteins, and target them to lipid droplets (LDs). LDs offer an ideal environment for folding hydrophobic proteins and aid in their purification through flotation. We tested various protein fusions with different linkers and tags and used three dimensional structure predictions to assess their effects. E and M mostly localized in the ER in N. benthamiana leaves but E could be targeted to LDs in oil accumulating tobacco when fused with oleosin, a LD integral protein. In Camelina sativa seeds, E and M were however found associated with purified LDs. By enhancing the accumulation of E and M within LDs through oleosin, we enriched these proteins in the purified floating fraction. This strategy provides an alternative approach for efficiently producing and purifying hydrophobic pharmaceuticals and vaccines using plant systems.
Collapse
Affiliation(s)
- Lionel Gissot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Florent Fontaine
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Ousmane Dao
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Isabelle Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Carine Deruyffelaere
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Michèle Winkler
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anais Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Fabienne Pierre
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Chouaib Meziadi
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
13
|
Shankar N, Sunkara P, Nath U. A double-negative feedback loop between miR319c and JAW-TCPs establishes growth pattern in incipient leaf primordia in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010978. [PMID: 37769020 PMCID: PMC10564139 DOI: 10.1371/journal.pgen.1010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
The microRNA miR319 and its target JAW-TCP transcription factors regulate the proliferation-to-differentiation transition of leaf pavement cells in diverse plant species. In young Arabidopsis leaf primordia, JAW-TCPs are detected towards the distal region whereas the major mRNA319-encoding gene MIR319C, is expressed at the base. Little is known about how this complementary expression pattern of MIR319C and JAW-TCPs is generated. Here, we show that MIR319C is initially expressed uniformly throughout the incipient primordia and is later abruptly down-regulated at the distal region, with concomitant distal appearance of JAW-TCPs, when leaves grow to ~100 μm long. Loss of JAW-TCPs causes distal extension of the MIR319C expression domain, whereas ectopic TCP activity restricts MIR319C more proximally. JAW-TCPs are recruited to and are capable of depositing histone H3K27me3 repressive marks on the MIR319C chromatin. JAW-TCPs fail to repress MIR319C in transgenic seedlings where the TCP-binding cis-elements on MIR319C are mutated, causing miR319 gain-of-function-like phenotype in the embryonic leaves. Based on these results, we propose a model for growth patterning in leaf primordia wherein MIR319C and JAW-TCPs repress each other and divide the uniformly growing primordia into distal differentiation zone and proximal proliferation domain.
Collapse
Affiliation(s)
- Naveen Shankar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
14
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
15
|
Rowe J, Grangé-Guermente M, Exposito-Rodriguez M, Wimalasekera R, Lenz MO, Shetty KN, Cutler SR, Jones AM. Next-generation ABACUS biosensors reveal cellular ABA dynamics driving root growth at low aerial humidity. NATURE PLANTS 2023:10.1038/s41477-023-01447-4. [PMID: 37365314 PMCID: PMC10356609 DOI: 10.1038/s41477-023-01447-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
The plant hormone abscisic acid (ABA) accumulates under abiotic stress to recast water relations and development. To overcome a lack of high-resolution sensitive reporters, we developed ABACUS2s-next-generation Förster resonance energy transfer (FRET) biosensors for ABA with high affinity, signal-to-noise ratio and orthogonality-that reveal endogenous ABA patterns in Arabidopsis thaliana. We mapped stress-induced ABA dynamics in high resolution to reveal the cellular basis for local and systemic ABA functions. At reduced foliar humidity, root cells accumulated ABA in the elongation zone, the site of phloem-transported ABA unloading. Phloem ABA and root ABA signalling were both essential to maintain root growth at low humidity. ABA coordinates a root response to foliar stresses, enabling plants to maintain foraging of deeper soil for water uptake.
Collapse
Affiliation(s)
- James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Rinukshi Wimalasekera
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Botany, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Martin O Lenz
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Cambridge, UK
| | | | - Sean R Cutler
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | |
Collapse
|
16
|
Jay F, Brioudes F, Voinnet O. A contemporary reassessment of the enhanced transient expression system based on the tombusviral silencing suppressor protein P19. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:186-204. [PMID: 36403224 PMCID: PMC10107623 DOI: 10.1111/tpj.16032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Transient transgenic expression accelerates pharming and facilitates protein studies in plants. One embodiment of the approach involves leaf infiltration of Agrobacterium strains whose T-DNA is engineered with the gene(s) of interest. However, gene expression during 'agro-infiltration' is intrinsically and universally impeded by the onset of post-transcriptional gene silencing (PTGS). Nearly 20 years ago, a simple method was developed, whereby co-expression of the tombusvirus-encoded P19 protein suppresses PTGS and thus enhances transient gene expression. Yet, how PTGS is activated and suppressed by P19 during the process has remained unclear to date. Here, we address these intertwined questions in a manner also rationalizing how vastly increased protein yields are achieved using a minimal viral replicon as a transient gene expression vector. We also explore, in side-by-side analyses, why some proteins do not accumulate to the expected high levels in the assay, despite vastly increased mRNA levels. We validate that enhanced co-expression of multiple constructs is achieved within the same transformed cells, and illustrate how the P19 system allows rapid protein purification for optimized downstream in vitro applications. Finally, we assess the suitability of the P19 system for subcellular localization studies - an originally unanticipated, yet increasingly popular application - and uncover shortcomings of this specific implement. In revisiting the P19 system using contemporary knowledge, this study sheds light onto its hitherto poorly understood mechanisms while further illustrating its versatility but also some of its limits.
Collapse
Affiliation(s)
- Florence Jay
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| | - Florian Brioudes
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| | - Olivier Voinnet
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| |
Collapse
|
17
|
Lu L, Wu X, Tang Y, Zhu L, Hao Z, Zhang J, Li X, Shi J, Chen J, Cheng T. Halophyte Nitraria billardieri CIPK25 promotes photosynthesis in Arabidopsis under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1052463. [PMID: 36589077 PMCID: PMC9800929 DOI: 10.3389/fpls.2022.1052463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The calcineurin B-like (CBL)-interacting protein kinases (CIPKs), a type of plant-specific genes in the calcium signaling pathway, function in response to adverse environments. However, few halophyte derived CIPKs have been studied for their role in plant physiological and developmental adaptation during abiotic stresses, which inhibits the potential application of these genes to improve environmental adaptability of glycophytes. In this study, we constructed Nitraria billardieri CIPK25 overexpressing Arabidopsis and analyzed the seedling development under salt treatment. Our results show that Arabidopsis with NbCIPK25 expression exhibits more vigorous growth than wild type plants under salt condition. To gain insight into the molecular mechanisms underlying salt tolerance, we profiled the transcriptome of WT and transgenic plants via RNA-seq. GO and KEGG analyses revealed that upregulated genes in NbCIPK25 overexpressing seedlings under salt stress are enriched in photosynthesis related terms; Calvin-cycle genes including glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) are significantly upregulated in transgenic plants, which is consistent with a decreased level of NADPH (GAPDH substrate) and increased level of NADP+. Accordingly, NbCIPK25 overexpressing plants exhibited more efficient photosynthesis; soluble sugar and proteins, as photosynthesis products, showed a higher accumulation in transgenic plants. These results provide molecular insight into how NbCIPK25 promotes the expression of genes involved in photosynthesis, thereby maintaining plant growth under salt stress. Our finding supports the potential application of halophyte-derived NbCIPK25 in genetic modification for better salt adaptation.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yao Tang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
18
|
Kumar M, Tripathi PK, Ayzenshtat D, Marko A, Forotan Z, Bocobza SE. Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. PLANT CELL REPORTS 2022; 41:1987-2003. [PMID: 35849200 DOI: 10.1007/s00299-022-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
An optimal RNAi configuration that could restrict gene expression most efficiently was determined. This approach was also used to target PTGS and yielded higher rates of gene-editing events. Although it was characterized long ago, transgene silencing still strongly impairs transgene overexpression, and thus is a major barrier to plant crop gene-editing. The development of strategies that could prevent transgene silencing is therefore essential to the success of gene editing assays. Transgene silencing occurs via the RNA silencing process, which regulates the expression of essential genes and protects the plant from viral infections. The RNA silencing machinery thereby controls central biological processes such as growth, development, genome integrity, and stress resistance. RNA silencing is typically induced by aberrant RNA, that may lack 5' or 3' processing, or may consist in double-stranded or hairpin RNA, and involves DICER and ARGONAUTE family proteins. In this study, RNAi inducing constructs were designed in eleven different configurations and were evaluated for their capacity to induce silencing in Nicotiana spp. using transient and stable transformation assays. Using reporter genes, it was found that the overexpression of a hairpin consisting of a forward tandem inverted repeat that started with an ATG and that was not followed downstream by a transcription terminator, could downregulate gene expression most potently. Furthermore, using this method, the downregulation of the NtSGS3 gene caused a significant increase in transgene expression both in transient and stable transformation assays. This SGS3 silencing approach was also employed in gene-editing assays and caused higher rates of gene-editing events. Taken together, these findings suggested the optimal genetic configuration to cause RNA silencing and showed that this strategy may be used to restrict PTGS during gene-editing experiments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Pankaj Kumar Tripathi
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Samuel E Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel.
| |
Collapse
|
19
|
Lu L, Wu X, Wang P, Zhu L, Liu Y, Tang Y, Hao Z, Lu Y, Zhang J, Shi J, Cheng T, Chen J. Halophyte Nitraria billardieri CIPK25 mitigates salinity-induced cell damage by alleviating H 2O 2 accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:961651. [PMID: 36003812 PMCID: PMC9393555 DOI: 10.3389/fpls.2022.961651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific module of calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) play a crucial role in plant adaptation to different biotic and abiotic stresses in various plant species. Despite the importance of the CBL-CIPK module in regulating plant salt tolerance, few halophyte CIPK orthologs have been studied. We identified NbCIPK25 in the halophyte Nitraria billardieri as a salt-responsive gene that may improve salt tolerance in glycophytes. Sequence analyses indicated that NbCIPK25 is a typical CIPK family member with a conserved NAF motif, which contains the amino acids: asparagine, alanine, and phenylalanine. NbCIPK25 overexpression in salt-stressed transgenic Arabidopsis seedlings resulted in enhanced tolerance to salinity, a higher survival rate, longer newly grown roots, more root meristem cells, and less damaged root cells in comparison to wild-type (WT) plants. H2O2 accumulation and malondialdehyde (MDA) content were both deceased in NbCIPK25-transgenic plants under salt treatment. Furthermore, their proline content, an important factor for scavenging reactive oxygen species, accumulated at a significantly higher level. In concordance, the transcription of genes related to proline accumulation was positively regulated in transgenic plants under salt condition. Finally, we observed a stronger auxin response in salt-treated transgenic roots. These results provide evidence for NbCIPK25 improving salt tolerance by mediating scavenging of reactive oxygen species, thereby protecting cells from oxidation and maintaining plant development under salt stress. These findings suggest the potential application of salt-responsive NbCIPK25 for cultivating glycophytes with a higher salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinru Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuxin Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yao Tang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Pfotenhauer AC, Occhialini A, Nguyen MA, Scott H, Dice LT, Harbison SA, Li L, Reuter DN, Schimel TM, Stewart CN, Beal J, Lenaghan SC. Building the Plant SynBio Toolbox through Combinatorial Analysis of DNA Regulatory Elements. ACS Synth Biol 2022; 11:2741-2755. [PMID: 35901078 PMCID: PMC9396662 DOI: 10.1021/acssynbio.2c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
While the installation of complex genetic circuits in
microorganisms
is relatively routine, the synthetic biology toolbox is severely limited
in plants. Of particular concern is the absence of combinatorial analysis
of regulatory elements, the long design-build-test cycles associated
with transgenic plant analysis, and a lack of naming standardization
for cloning parts. Here, we use previously described plant regulatory
elements to design, build, and test 91 transgene cassettes for relative
expression strength. Constructs were transiently transfected into Nicotiana benthamiana leaves and expression of a
fluorescent reporter was measured from plant canopies, leaves, and
protoplasts isolated from transfected plants. As anticipated, a dynamic
level of expression was achieved from the library, ranging from near
undetectable for the weakest cassette to a ∼200-fold increase
for the strongest. Analysis of expression levels in plant canopies,
individual leaves, and protoplasts were correlated, indicating that
any of the methods could be used to evaluate regulatory elements in
plants. Through this effort, a well-curated 37-member part library
of plant regulatory elements was characterized, providing the necessary
data to standardize construct design for precision metabolic engineering
in plants.
Collapse
Affiliation(s)
- Alexander C Pfotenhauer
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Alessandro Occhialini
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Mary-Anne Nguyen
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Helen Scott
- Intelligent Software and Systems, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Lezlee T Dice
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Stacee A Harbison
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Li Li
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - D Nikki Reuter
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Tayler M Schimel
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States.,Department of Plant Sciences, University of Tennessee Knoxville, 2431 Joe Johnson Dr., Knoxville, Tennessee 37996, United States
| | - Jacob Beal
- Intelligent Software and Systems, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Zhang Z, Guo Y, Marasigan KM, Conner JA, Ozias-Akins P. Gene activation via Cre/lox-mediated excision in cowpea (Vigna unguiculata). PLANT CELL REPORTS 2022; 41:119-138. [PMID: 34591155 PMCID: PMC8803690 DOI: 10.1007/s00299-021-02789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Expression of Cre recombinase by AtRps5apro or AtDD45pro enabled Cre/lox-mediated recombination at an early embryonic developmental stage upon crossing, activating transgenes in the hybrid cowpea and tobacco. Genetic engineering ideally results in precise spatiotemporal control of transgene expression. To activate transgenes exclusively in a hybrid upon fertilization, we evaluated a Cre/lox-mediated gene activation system with the Cre recombinase expressed by either AtRps5a or AtDD45 promoters that showed activity in egg cells and young embryos. In crosses between Cre recombinase lines and transgenic lines harboring a lox-excision reporter cassette with ZsGreen driven by the AtUbq3 promoter after Cre/lox-mediated recombination, we observed complete excision of the lox-flanked intervening DNA sequence between the AtUbq3pro and the ZsGreen coding sequence in F1 progeny upon genotyping but no ZsGreen expression in F1 seeds or seedlings. The incapability to observe ZsGreen fluorescence was attributed to the activity of the AtUbq3pro. Strong ZsGreen expression in F1 seeds was observed after recombination when ZsGreen was driven by the AtUbq10 promoter. Using the AtDD45pro to express Cre resulted in more variation in recombination frequencies between transgenic lines and crosses. Regardless of the promoter used to regulate Cre, mosaic F1 progeny were rare, suggesting gene activation at an early embryo-developmental stage. Observation of ZsGreen-expressing tobacco embryos at the globular stage from crosses with the AtRps5aproCre lines pollinated by the AtUbq3prolox line supported the early activation mode.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Kathleen Monfero Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Joann A Conner
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA.
| |
Collapse
|
22
|
Kumar M, Ayzenshtat D, Marko A, Bocobza S. Optimization of T-DNA configuration with UBIQUITIN10 promoters and tRNA-sgRNA complexes promotes highly efficient genome editing in allotetraploid tobacco. PLANT CELL REPORTS 2022; 41:175-194. [PMID: 34623476 DOI: 10.1007/s00299-021-02796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Combination of UBIQUITIN10 promoter-directed CAS9 and tRNA-gRNA complexes in gene-editing assay induces 80% mutant phenotype with a knockout of the four allelic copies in the T0 generation of allotetraploid tobaccos. While gene-editing methodologies, such as CRISPR-Cas9, have been developed and successfully used in many plant species, their use remains challenging, because they most often rely on stable or transient transgene expression. Regrettably, in all plant species, transformation causes epigenetic effects such as gene silencing and variable transgene expression. Here, UBIQUITIN10 promoters from several plant species were characterized and showed their capacity to direct high levels of transgene expression in transient and stable transformation assays, which in turn was used to improve the selection process of regenerated transformants. Furthermore, we compared various sgRNAs delivery systems and showed that the combination of UBIQUITIN10 promoters and tRNA-sgRNA complexes produced 80% mutant phenotype with a complete knockout of the four allelic copies, while the remaining 20% exhibited weaker phenotype, which suggested partial allelic knockout, in the T0 generation of the allotetraploid Nicotiana tabacum. These data provide valuable information to optimize future designs of gene editing constructs for plant research and crop improvement and open the way for valuable gene editing projects in non-model Solanaceae species.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Editing/methods
- Genome, Plant
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Tetraploidy
- Nicotiana/genetics
- Ubiquitins/genetics
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
23
|
Breiden M, Olsson V, Blümke P, Schlegel J, Gustavo-Pinto K, Dietrich P, Butenko MA, Simon R. The Cell Fate Controlling CLE40 Peptide Requires CNGCs to Trigger Highly Localized Ca2+ Transients in Arabidopsis thaliana Root Meristems. PLANT & CELL PHYSIOLOGY 2021; 62:1290-1301. [PMID: 34059877 DOI: 10.1093/pcp/pcab079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Communication between plant cells and their biotic environment largely depends on the function of plasma membrane localized receptor-like kinases (RLKs). Major players in this communication within root meristems are secreted peptides, including CLAVATA3/EMBRYO SURROUNDING REGION40 (CLE40). In the distal root meristem, CLE40 acts through the RLK ARABIDOPSIS CRINKLY4 (ACR4) and the leucine-rich repeat (LRR) RLK CLAVATA1 (CLV1) to promote cell differentiation. In the proximal meristem, CLE40 signaling requires the LRR receptor-like protein CLAVATA2 (CLV2) and the membrane localized pseudokinase CORYNE (CRN) and serves to inhibit cell differentiation. The molecular components that act immediately downstream of the CLE40-activated receptors are not yet known. Here, we show that active CLE40 signaling triggers the release of intracellular Ca2+ leading to increased cytosolic Ca2+ concentration ([Ca2+]cyt) in a small subset of proximal root meristem cells. This rise in [Ca2+]cyt depends on the CYCLIC NUCLEOTIDE GATED CHANNELS (CNGCs) 6 and 9 and on CLV1. The precise function of changes in [Ca2+]cyt is not yet known but might form a central part of a fine-tuned response to CLE40 peptide that serves to integrate root meristem growth with stem cell fate decisions and initiation of lateral root primordia.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Patrick Blümke
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Karine Gustavo-Pinto
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Petra Dietrich
- Cell Biology of Plants, Friedrich Alexander University, Staudtstr. 5, Erlangen 91058, Germany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Osl, Blindernveien 31, Oslo 0316, Norway
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
24
|
Coexpression of Fungal Cell Wall-Modifying Enzymes Reveals Their Additive Impact on Arabidopsis Resistance to the Fungal Pathogen, Botrytis cinerea. BIOLOGY 2021; 10:biology10101070. [PMID: 34681168 PMCID: PMC8533531 DOI: 10.3390/biology10101070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary In the present study, we created transgenic Arabidopsis plants overexpressing two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides and studied their possible complementary additive effects on host defense reactions against the fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison with single protein expression. Conversely, coexpression of either of the acetyl esterases together with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying enzymes might exert an additive effect on plant immune response by constitutively priming plant defense pathways even before pathogen invasion. These findings have potential uses in protecting valuable crops against pathogens. Abstract The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.
Collapse
|
25
|
Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. THE PLANT CELL 2021; 33:2812-2833. [PMID: 34021351 PMCID: PMC8408437 DOI: 10.1093/plcell/koab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/12/2023]
Abstract
The chloroplasts and mitochondria of photosynthetic eukaryotes contain proteins that are closely related to cytosolic Guided Entry of Tail-anchored proteins3 (Get3). Get3 is a targeting factor that efficiently escorts tail-anchored (TA) proteins to the ER. Because other components of the cytosolic-targeting pathway appear to be absent in organelles, previous investigators have asserted that organellar Get3 homologs are unlikely to act as targeting factors. However, we show here both that the Arabidopsis thaliana chloroplast homolog designated as GET3B is structurally similar to cytosolic Get3 proteins and that it selectively binds a thylakoid-localized TA protein. Based on genetic interactions between a get3b mutation and mutations affecting the chloroplast signal recognition particle-targeting pathway, as well as changes in the abundance of photosynthesis-related proteins in mutant plants, we propose that GET3B acts primarily to direct proteins to the thylakoids. Furthermore, through molecular complementation experiments, we show that function of GET3B depends on its ability to hydrolyze ATP, and this is consistent with action as a targeting factor. We propose that GET3B and related organellar Get3 homologs play a role that is analogous to that of cytosolic Get3 proteins, and that GET3B acts as a targeting factor in the chloroplast stroma to deliver TA proteins in a membrane-specific manner.
Collapse
Affiliation(s)
- Stacy A. Anderson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manasa B. Satyanarayan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Blomme J, Liu X, Jacobs TB, De Clerck O. A molecular toolkit for the green seaweed Ulva mutabilis. PLANT PHYSIOLOGY 2021; 186:1442-1454. [PMID: 33905515 PMCID: PMC8260120 DOI: 10.1093/plphys/kiab185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/02/2023]
Abstract
The green seaweed Ulva mutabilis is an ecologically important marine primary producer as well as a promising cash crop cultivated for multiple uses. Despite its importance, several molecular tools are still needed to better understand seaweed biology. Here, we report the development of a flexible and modular molecular cloning toolkit for the green seaweed U. mutabilis based on a Golden Gate cloning system. The toolkit presently contains 125 entry vectors, 26 destination vectors, and 107 functionally validated expression vectors. We demonstrate the importance of endogenous regulatory sequences for transgene expression and characterize three endogenous promoters suitable to drive transgene expression. We describe two vector architectures to express transgenes via two expression cassettes or a bicistronic approach. The majority of selected transformants (50%-80%) consistently give clear visual transgene expression. Furthermore, we made different marker lines for intracellular compartments after evaluating 13 transit peptides and 11 tagged endogenous Ulva genes. Our molecular toolkit enables the study of Ulva gain-of-function lines and paves the way for gene characterization and large-scale functional genomics studies in a green seaweed.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Xiaojie Liu
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| | - Thomas B Jacobs
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
27
|
Rahmati Ishka M, Brown E, Rosenberg A, Romanowsky S, Davis JA, Choi WG, Harper JF. Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. PLANT PHYSIOLOGY 2021; 185:1966-1985. [PMID: 33575795 PMCID: PMC8133587 DOI: 10.1093/plphys/kiab021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Alexa Rosenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Shawn Romanowsky
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
28
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
29
|
Lu L, Chen X, Wang P, Lu Y, Zhang J, Yang X, Cheng T, Shi J, Chen J. CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:123. [PMID: 33648456 PMCID: PMC7919098 DOI: 10.1186/s12870-021-02878-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses. RESULTS In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application. CONCLUSIONS We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinying Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ye Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Xiuyan Yang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, China Academy of Forestry, Beijing, 100091, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
30
|
Herrera-Vásquez A, Fonseca A, Ugalde JM, Lamig L, Seguel A, Moyano TC, Gutiérrez RA, Salinas P, Vidal EA, Holuigue L. TGA class II transcription factors are essential to restrict oxidative stress in response to UV-B stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1891-1905. [PMID: 33188435 PMCID: PMC7921300 DOI: 10.1093/jxb/eraa534] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/10/2020] [Indexed: 05/08/2023]
Abstract
Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.
Collapse
Affiliation(s)
- Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alejandro Fonseca
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Manuel Ugalde
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Lamig
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aldo Seguel
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Paula Salinas
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Weigand C, Kim SH, Brown E, Medina E, Mares M, Miller G, Harper JF, Choi WG. A Ratiometric Calcium Reporter CGf Reveals Calcium Dynamics Both in the Single Cell and Whole Plant Levels Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:777975. [PMID: 34975960 PMCID: PMC8718611 DOI: 10.3389/fpls.2021.777975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Land plants evolved to quickly sense and adapt to temperature changes, such as hot days and cold nights. Given that calcium (Ca2+) signaling networks are implicated in most abiotic stress responses, heat-triggered changes in cytosolic Ca2+ were investigated in Arabidopsis leaves and pollen. Plants were engineered with a reporter called CGf, a ratiometric, genetically encoded Ca2+ reporter with an mCherry reference domain fused to an intensiometric Ca2+ reporter GCaMP6f. Relative changes in [Ca2+]cyt were estimated based on CGf's apparent K D around 220 nM. The ratiometric output provided an opportunity to compare Ca2+ dynamics between different tissues, cell types, or subcellular locations. In leaves, CGf detected heat-triggered cytosolic Ca2+ signals, comprised of three different signatures showing similarly rapid rates of Ca2+ influx followed by differing rates of efflux (50% durations ranging from 5 to 19 min). These heat-triggered Ca2+ signals were approximately 1.5-fold greater in magnitude than blue light-triggered signals in the same leaves. In contrast, growing pollen tubes showed two different heat-triggered responses. Exposure to heat caused tip-focused steady growth [Ca2+]cyt oscillations to shift to a pattern characteristic of a growth arrest (22%), or an almost undetectable [Ca2+]cyt (78%). Together, these contrasting examples of heat-triggered Ca2+ responses in leaves and pollen highlight the diversity of Ca2+ signals in plants, inviting speculations about their differing kinetic features and biological functions.
Collapse
Affiliation(s)
- Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Emily Medina
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Moises Mares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- *Correspondence: Jeffrey F. Harper,
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
- Won-Gyu Choi,
| |
Collapse
|
32
|
Mani V, Reddy CS, Lee SK, Park S, Ko HR, Kim DG, Hahn BS. Chitin Biosynthesis Inhibition of Meloidogyne incognita by RNAi-Mediated Gene Silencing Increases Resistance to Transgenic Tobacco Plants. Int J Mol Sci 2020; 21:E6626. [PMID: 32927773 PMCID: PMC7555284 DOI: 10.3390/ijms21186626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Meloidogyne incognita is a devastating plant parasitic nematode that causes root knot disease in a wide range of plants. In the present study, we investigated host-induced RNA interference (RNAi) gene silencing of chitin biosynthesis pathway genes (chitin synthase, glucose-6-phosphate isomerase, and trehalase) in transgenic tobacco plants. To develop an RNAi vector, ubiquitin (UBQ1) promoter was directly cloned, and to generate an RNAi construct, expression of three genes was suppressed using the GATEWAY system. Further, transgenic Nicotiana benthamiana lines expressing dsRNA for chitin synthase (CS), glucose-6-phosphate isomerase (GPI), and trehalase 1 (TH1) were generated. Quantitative PCR analysis confirmed endogenous mRNA expression of root knot nematode (RKN) and revealed that all three genes were more highly expressed in the female stage than in eggs and in the parasitic stage. In vivo, transformed roots were challenged with M. incognita. The number of eggs and root knots were significantly decreased by 60-90% in RNAi transgenic lines. As evident, root galls obtained from transgenic RNAi lines exhibited 0.01- to 0.70-fold downregulation of transcript levels of targeted genes compared with galls isolated from control plants. Furthermore, phenotypic characteristics such as female size and width were also marginally altered, while effect of egg mass per egg number in RNAi transgenic lines was reduced. These results indicate the relevance and significance of targeting chitin biosynthesis genes during the nematode lifespan. Overall, our results suggest that further developments in RNAi efficiency in commercially valued crops can be applied to employ RNAi against other plant parasitic nematodes.
Collapse
Affiliation(s)
- Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Chinreddy Subramanyam Reddy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (C.S.R.); (S.-K.L.); (S.P.)
| | - Hyoung-Rai Ko
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Dong-Gwan Kim
- Department of Bio-Industry and Bio-Resource Engineering, Sejong University, Seoul 05006, Korea;
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
33
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
34
|
First Come, First Served: Sui Generis Features of the First Intron. PLANTS 2020; 9:plants9070911. [PMID: 32707681 PMCID: PMC7411622 DOI: 10.3390/plants9070911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5′-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.
Collapse
|
35
|
Wolabu TW, Park JJ, Chen M, Cong L, Ge Y, Jiang Q, Debnath S, Li G, Wen J, Wang Z. Improving the genome editing efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. PLANTA 2020; 252:15. [PMID: 32642859 PMCID: PMC7343739 DOI: 10.1007/s00425-020-03415-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION An improved CRISPR/Cas9 system with the Arabidopsis UBQ10 promoter-driven Cas9 exhibits consistently high mutation efficiency in Arabidopsis and M. truncatula. CRISPR/Cas9 is a powerful genome editing technology that has been applied in several crop species for trait improvement due to its simplicity, versatility, and specificity. However, the mutation efficiency of CRISPR/Cas9 in Arabidopsis and M. truncatula (Mt) is still challenging and inconsistent. To analyze the functionality of the CRISPR/Cas9 system in two model dicot species, four different promoter-driven Cas9 systems to target phytoene desaturase (PDS) genes were designed. Agrobacterium-mediated transformation was used for the delivery of constructed vectors to host plants. Phenotypic and genotypic analyses revealed that the Arabidopsis UBQ10 promoter-driven Cas9 significantly improves the mutation efficiency to 95% in Arabidopsis and 70% in M. truncatula. Moreover, the UBQ10-Cas9 system yielded 11% homozygous mutants in the T1 generation in Arabidopsis. Sequencing analyses of mutation events indicated that single-nucleotide insertions are the most frequent events in Arabidopsis, whereas multi-nucleotide deletions are dominant in bi-allelic and mono-allelic homozygous mutants in M. truncatula. Taken together, the UBQ10 promoter facilitates the best improvement in the CRISPR/Cas9 efficiency in PDS gene editing, followed by the EC1.2 promoter. Consistently, the improved UBQ10-Cas9 vector highly enhanced the mutation efficiency by four-fold over the commonly used 35S promoter in both dicot species.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jong-Jin Park
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Genome Editing Naturegenic Inc, 1281 Win Hentschel Boulevard, Kurz Purdue Technology Center Suite E-1251, West Lafayette, IN, 47906, USA
| | - Miao Chen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Guang Dong Ocean University, Faculty of Agricultural Science, #1 Haida Road, Mazhang, Zhanjiang, 524088, Guangdong, China
| | - Lili Cong
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- College of Grassland Science, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong Province, China
| | - Yaxin Ge
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Qingzhen Jiang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Smriti Debnath
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| | - Zengyu Wang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
- College of Grassland Science, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong Province, China.
| |
Collapse
|
36
|
Mooney BC, Graciet E. A simple and efficient Agrobacterium-mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. PLANT DIRECT 2020; 4:e00237. [PMID: 32775949 PMCID: PMC7403836 DOI: 10.1002/pld3.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The family Brassicaceae is a source of important crop species, including Brassica napus (oilseed rape), Brassica oleracea, and B. rapa, that is used globally for oil production or as a food source (e.g., pak choi or turnip). However, despite advances in recent years, including genome sequencing, a lack of established tools tailored to the study of Brassica crop species has impeded efforts to understand their molecular processes in greater detail. Here, we describe the use of a simple Agrobacterium-mediated transient expression system adapted to B. rapa and B. napus that could facilitate study of molecular and biochemical events in these species. We also demonstrate the use of this method to characterize the N-degron pathway of protein degradation in B. rapa. The N-degron pathway is a subset of the ubiquitin-proteasome system and represents a mechanism through which proteins may be targeted for degradation based on the identity of their N-terminal amino acid residue. Interestingly, N-degron-mediated processes in plants have been implicated in the regulation of traits with potential agronomic importance, including the responses to pathogens and to abiotic stresses such as flooding tolerance. The stability of transiently expressed N-degron reporter proteins in B. rapa indicates that its N-degron pathway is highly conserved with that of Arabidopsis thaliana. These findings highlight the utility of Agrobacterium-mediated transient expression in B. rapa and B. napus and establish a framework to investigate the N-degron pathway and its roles in regulating agronomical traits in these species. SIGNIFICANCE STATEMENT We describe an Agrobacterium-mediated transient expression system applicable to Brassica crops and demonstrate its utility by identifying the destabilizing residues of the N-degron pathway in B. rapa. As the N-degron pathway functions as an integrator of environmental signals, this study could facilitate efforts to improve the robustness of Brassica crops.
Collapse
Affiliation(s)
| | - Emmanuelle Graciet
- Department of BiologyMaynooth UniversityMaynoothIreland
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynoothIreland
| |
Collapse
|
37
|
Shi X, Wu J, Mensah RA, Tian N, Liu J, Liu F, Chen J, Che J, Guo Y, Wu B, Zhong G, Cheng C. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. Int J Mol Sci 2020; 21:E3088. [PMID: 32349372 PMCID: PMC7247714 DOI: 10.3390/ijms21093088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Introns exist not only in coding sequences (CDSs) but also in untranslated regions (UTRs) of a gene. Recent studies in animals and model plants such as Arabidopsis have revealed that the UTR-introns (UIs) are widely presented in most genomes and involved in regulation of gene expression or RNA stability. In the present study, we identified introns at both 5'UTRs (5UIs) and 3'UTRs (3UIs) of sweet orange genes, investigated their size and nucleotide distribution characteristics, and explored the distribution of cis-elements in the UI sequences. Functional category of genes with predicted UIs were further analyzed using GO, KEGG, and PageMan enrichment. In addition, the organ-dependent splicing and abundance of selected UI-containing genes in root, leaf, and stem were experimentally determined. Totally, we identified 825 UI- and 570 3UI-containing transcripts, corresponding to 617 and 469 genes, respectively. Among them, 74 genes contain both 5UI and 3UI. Nucleotide distribution analysis showed that 5UI distribution is biased at both ends of 5'UTR whiles 3UI distribution is biased close to the start site of 3'UTR. Cis- elements analysis revealed that 5UI and 3UI sequences were rich of promoter-enhancing related elements, indicating that they might function in regulating the expression through them. Function enrichment analysis revealed that genes containing 5UI are significantly enriched in the RNA transport pathway. While, genes containing 3UI are significantly enriched in splicesome. Notably, many pentatricopeptide repeat-containing protein genes and the disease resistance genes were identified to be 3UI-containing. RT-PCR result confirmed the existence of UIs in the eight selected gene transcripts whereas alternative splicing events were found in some of them. Meanwhile, qRT-PCR result showed that UIs were differentially expressed among organs, and significant correlation was found between some genes and their UIs, for example: The expression of VPS28 and its 3UI was significantly negative correlated. This is the first report about the UIs in sweet orange from genome-wide level, which could provide evidence for further understanding of the role of UIs in gene expression regulation.
Collapse
Affiliation(s)
- Xiaobao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raphael Anue Mensah
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingru Che
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Liao CY, Weijers D. Analyzing Subcellular Reorganization During Early Arabidopsis Embryogenesis Using Fluorescent Markers. Methods Mol Biol 2020; 2122:49-61. [PMID: 31975295 DOI: 10.1007/978-1-0716-0342-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Virtually all growth, developmental, physiological, and defense responses in plants are accompanied by reorganization of subcellular structures to enable altered cellular growth, differentiation or function. Visualizing cellular reorganization is therefore critical to understand plant biology at the cellular scale. Fluorescently labeled markers for organelles, or for cellular components are widely used in combination with confocal microscopy to visualize cellular reorganization. Early during plant embryogenesis, the precursors for all major tissues of the seedling are established, and in Arabidopsis, this entails a set of nearly invariant switches in cell division orientation and directional cell expansion. Given that these cellular reorganization events are genetically regulated and coupled to formative events in plant development, they offer a good model to understand the genetic control of cellular reorganization in plant development. Until recently, it has been challenging to visualize subcellular structures in the early Arabidopsis embryo for two reasons: embryos are deeply embedded in seed coat and fruit, and in addition, no dedicated fluorescent markers, expressed in the embryo, were available. We recently established both an imaging approach and a set of markers for the early Arabidopsis embryo. Here, we describe a detailed protocol to use these new tools in imaging cellular reorganization.
Collapse
Affiliation(s)
- Che-Yang Liao
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
39
|
Kishi-Kaboshi M, Aida R, Sasaki K. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium. BREEDING SCIENCE 2019; 69:536-544. [PMID: 31598089 PMCID: PMC6776152 DOI: 10.1270/jsbbs.19036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 05/30/2023]
Abstract
The chrysanthemum (Chrysanthemum morifolium) is one of the most popular ornamental plants in the world. Genetic transformation is a promising tool for improving traits, editing genomes, and studying plant physiology. Promoters are vital components for efficient transformation, determining the level, location, and timing of transgene expression. The cauliflower mosaic virus (CaMV) 35S promoter is most frequently used in dicotyledonous plants but is less efficient in chrysanthemums than in tobacco or torenia plants. Previously, we used the parsley ubiquitin (PcUbi) promoter in chrysanthemums for the first time and analyzed its activity in transgenic calli. To expand the variety of constitutive promoters in chrysanthemums, we cloned the upstream region of the actin 2 (CmACT2) gene and compared its promoter activity with the 35S and PcUbi promoters in several organs, as well as its durability for long-term cultivation. The CmACT2 promoter has higher activity than the 35S promoter in calli but is less durable. The PcUbi promoter has the highest activity not only in calli but also in leaves, ray florets, and disk florets, and retains its activity after long-term cultivation. In conclusion, we have provided useful information and an additional type of promoter available for transgene expression in chrysanthemums.
Collapse
|
40
|
Schiermeyer A, Schneider K, Kirchhoff J, Schmelter T, Koch N, Jiang K, Herwartz D, Blue R, Marri P, Samuel P, Corbin DR, Webb SR, Gonzalez DO, Folkerts O, Fischer R, Schinkel H, Ainley WM, Schillberg S. Targeted insertion of large DNA sequences by homology-directed repair or non-homologous end joining in engineered tobacco BY-2 cells using designed zinc finger nucleases. PLANT DIRECT 2019; 3:e00153. [PMID: 31360827 PMCID: PMC6639735 DOI: 10.1002/pld3.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 05/13/2023]
Abstract
Targeted integration of recombinant DNA fragments into plant genomes by DNA double-strand break (DSB) repair mechanisms has become a powerful tool for precision engineering of crops. However, many targeting platforms require the screening of many transgenic events to identify a low number of targeted events among many more random insertion events. We developed an engineered transgene integration platform (ETIP) that uses incomplete marker genes at the insertion site to enable rapid phenotypic screening and recovery of targeted events upon functional reconstitution of the marker genes. The two marker genes, encoding neomycin phosphotransferase II (nptII) and Discosoma sp. red fluorescent protein (DsRed) enable event selection on kanamycin-containing selective medium and subsequent screening for red fluorescent clones. The ETIP design allows targeted integration of donor DNA molecules either by homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated mechanisms. Targeted donor DNA integration is facilitated by zinc finger nucleases (ZFN). The ETIP cassette was introduced into Nicotiana tabacum BY-2 suspension cells to generate target cell lines containing a single copy locus of the transgene construct. The utility of the ETIP platform has been demonstrated by targeting DNA constructs containing up to 25-kb payload. The success rate for clean targeted DNA integration was up to 21% for HDR and up to 41% for NHEJ based on the total number of calli analyzed by next-generation sequencing (NGS). The rapid generation of targeted events with large DNA constructs expands the utility of the nuclease-mediated gene addition platform both for academia and the commercial sector.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Katja Schneider
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Janina Kirchhoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Thomas Schmelter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Natalie Koch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ke Jiang
- Corteva AgriscienceIndianapolisINUSA
| | - Denise Herwartz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ryan Blue
- Corteva AgriscienceIndianapolisINUSA
| | | | | | | | | | | | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Indiana Biosciences Research InstituteIndianapolisINUSA
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | | | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
41
|
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 2019; 9:3360. [PMID: 30833646 PMCID: PMC6399340 DOI: 10.1038/s41598-019-40214-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules.
Collapse
Affiliation(s)
- Rico M Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Sieke Schaepe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Daniel Nübel
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Arne C Petersen
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Martina Bertolini
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.,Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Jana Vasilev
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
42
|
Rose AB. Introns as Gene Regulators: A Brick on the Accelerator. Front Genet 2019; 9:672. [PMID: 30792737 PMCID: PMC6374622 DOI: 10.3389/fgene.2018.00672] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023] Open
Abstract
A picture is beginning to emerge from a variety of organisms that for a subset of genes, the most important sequences that regulate expression are situated not in the promoter but rather are located within introns in the first kilobase of transcribed sequences. The actual sequences involved are difficult to identify either by sequence comparisons or by deletion analysis because they are dispersed, additive, and poorly conserved. However, expression-controlling introns can be identified computationally in species with relatively small introns, based on genome-wide differences in oligomer composition between promoter-proximal and distal introns. The genes regulated by introns are often expressed in most tissues and are among the most highly expressed in the genome. The ability of some introns to strongly stimulate mRNA accumulation from several hundred nucleotides downstream of the transcription start site, even when the promoter has been deleted, reveals that our understanding of gene expression remains incomplete. It is unlikely that any diseases are caused by point mutations or small deletions that reduce the expression of an intron-regulated gene unless splicing is also affected. However, introns may be particularly useful in practical applications such as gene therapy because they strongly activate expression but only affect the transcription unit in which they are located.
Collapse
Affiliation(s)
- Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
43
|
Wu AJ, Chapman K, Sathischandra S, Massengill J, Araujo R, Soria M, Bugas M, Bishop Z, Haas C, Holliday B, Cisneros K, Lor J, Canez C, New S, Mackie S, Ghoshal D, Privalle L, Hunst P, Pallett K. GHB614 × T304-40 × GHB119 × COT102 Cotton: Protein Expression Analyses of Field-Grown Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:275-281. [PMID: 30521338 DOI: 10.1021/acs.jafc.8b05395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Food and feed safety assessment is not enhanced by performing protein expression analysis on stacked trait products. The expression levels of six proteins in cotton matrices from four single cotton events and three conventionally stacked trait cotton products are reported. Three proteins were for insect control; two proteins confer herbicide tolerance; and one protein was a transformation-selectable marker. The cotton matrices were produced at three U.S., five Brazil, and two Argentina field trials. Similar protein expression was observed for all six proteins in the stacked trait products and the single events. However, when two copies of the bar gene were present in the stacked trait products, the expression level of phosphinothricin acetyl transferase herbicide tolerance was additive. Conventional breeding of genetically engineered traits does not alter the level or pattern of expression of the newly introduced proteins, except when multiple copies of the same transgene are present.
Collapse
Affiliation(s)
- A-J Wu
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - K Chapman
- American Agricultural Services, Incorporated , 404 East Chatham Street , Cary , North Carolina 27511 , United States
| | - S Sathischandra
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - J Massengill
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - R Araujo
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - M Soria
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - M Bugas
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - Z Bishop
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - C Haas
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - B Holliday
- iAdvantage Software, Incorporated , 404 East Chatham Street , Cary , North Carolina 27511 , United States
| | - K Cisneros
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - J Lor
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - C Canez
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - S New
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - S Mackie
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - D Ghoshal
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - L Privalle
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - P Hunst
- BASF Agricultural Solutions Seed U.S. LLC , 2 T.W. Alexander Drive , Research Triangle Park , North Carolina 27709 United States
| | - K Pallett
- Innovation Center , Bayer CropScience NV , Tech Lane Ghent Science Park 38 , B-9052 Gent , Belgium
| |
Collapse
|
44
|
Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Dev Cell 2018; 47:306-318.e5. [PMID: 30415657 DOI: 10.1016/j.devcel.2018.09.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
Auxin is a major phytohormone that controls numerous aspects of plant development and coordinates plant responses to the environment. Morphogenic gradients of auxin govern cell fate decisions and underlie plant phenotypic plasticity. Polar auxin transport plays a central role in auxin maxima generation. The discovery of the exquisite spatiotemporal expression patterns of auxin biosynthesis genes of the WEI8/TAR and YUC families suggested that local auxin production may contribute to the formation of auxin maxima. Herein, we systematically addressed the role of local auxin biosynthesis in plant development and responses to the stress phytohormone ethylene by manipulating spatiotemporal patterns of WEI8. Our study revealed that local auxin biosynthesis and transport act synergistically and are individually dispensable for root meristem maintenance. In contrast, flower fertility and root responses to ethylene require local auxin production that cannot be fully compensated for by transport in the generation of morphogenic auxin maxima.
Collapse
|
45
|
Quareshy M, Prusinska J, Kieffer M, Fukui K, Pardal AJ, Lehmann S, Schafer P, del Genio CI, Kepinski S, Hayashi K, Marsh A, Napier RM. The Tetrazole Analogue of the Auxin Indole-3-acetic Acid Binds Preferentially to TIR1 and Not AFB5. ACS Chem Biol 2018; 13:2585-2594. [PMID: 30138566 DOI: 10.1021/acschembio.8b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indole-3-acetic acid (auxin) is considered one of the cardinal hormones in plant growth and development. It regulates a wide range of processes throughout the plant. Synthetic auxins exploit the auxin-signaling pathway and are valuable as herbicidal agrochemicals. Currently, despite a diversity of chemical scaffolds all synthetic auxins have a carboxylic acid as the active core group. By applying bio-isosteric replacement we discovered that indole-3-tetrazole was active by surface plasmon resonance spectrometry, showing that the tetrazole could initiate assembly of the Transport Inhibitor Resistant 1 (TIR1) auxin coreceptor complex. We then tested the tetrazole's efficacy in a range of whole plant physiological assays and in protoplast reporter assays, which all confirmed auxin activity, albeit rather weak. We then tested indole-3-tetrazole against the AFB5 homologue of TIR1, finding that binding was selective against TIR1, absent with AFB5. The kinetics of binding to TIR1 are contrasted to those for the herbicide picloram, which shows the opposite receptor preference, as it binds to AFB5 with far greater affinity than to TIR1. The basis of the preference of indole-3-tetrazole for TIR1 was revealed to be a single residue substitution using molecular docking, and assays using tir1 and afb5 mutant lines confirmed selectivity in vivo. Given the potential that a TIR1-selective auxin might have for unmasking receptor-specific actions, we followed a rational design, lead optimization campaign, and a set of chlorinated indole-3-tetrazoles was synthesized. Improved affinity for TIR1 and the preference for binding to TIR1 was maintained for 4- and 6-chloroindole-3-tetrazoles, coupled with improved efficacy in vivo. This work expands the range of auxin chemistry for the design of receptor-selective synthetic auxins.
Collapse
Affiliation(s)
| | | | - Martin Kieffer
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi Okayama 700-0005, Japan
| | | | - Silke Lehmann
- Warwick Integrative Synthetic Biology Centre, Coventry CV4 7AL, U.K
| | - Patrick Schafer
- Warwick Integrative Synthetic Biology Centre, Coventry CV4 7AL, U.K
| | | | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Kenichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi Okayama 700-0005, Japan
| | | | | |
Collapse
|
46
|
Wozny D, Kramer K, Finkemeier I, Acosta IF, Koornneef M. Genes for seed longevity in barley identified by genomic analysis on near isogenic lines. PLANT, CELL & ENVIRONMENT 2018; 41:1895-1911. [PMID: 29744896 DOI: 10.1111/pce.13330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 05/15/2023]
Abstract
Genes controlling differences in seed longevity between 2 barley (Hordeum vulgare) accessions were identified by combining quantitative genetics "omics" technologies in near isogenic lines (NILs). The NILs were derived from crosses between the spring barley landraces L94 from Ethiopia and Cebada Capa from Argentina. A combined transcriptome and proteome analysis on mature, nonaged seeds of the 2 parental lines and the L94 NILs by RNA-sequencing and total seed proteomic profiling identified the UDP-glycosyltransferase MLOC_11661.1 as candidate gene for the quantitative trait loci on 2H, and the NADP-dependent malic enzyme (NADP-ME) MLOC_35785.1 as possible downstream target gene. To validate these candidates, they were expressed in Arabidopsis under the control of constitutive promoters to attempt complementing the T-DNA knockout line nadp-me1. Both the NADP-ME MLOC_35785.1 and the UDP-glycosyltransferase MLOC_11661.1 were able to rescue the nadp-me1 seed longevity phenotype. In the case of the UDP-glycosyltransferase, with high accumulation in NILs, only the coding sequence of Cebada Capa had a rescue effect.
Collapse
Affiliation(s)
- Dorothee Wozny
- Institute Jean-Pierre Bourgin INRA Centre de Versailles-Grignon, Route de Saint-Cyr 10, Versailles Cedex, 78026, France
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl von-Linné-Weg 10, Köln, 50829, Germany
| | - Katharina Kramer
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl von-Linné-Weg 10, Köln, 50829, Germany
| | - Iris Finkemeier
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl von-Linné-Weg 10, Köln, 50829, Germany
- Institute for Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Ivan F Acosta
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl von-Linné-Weg 10, Köln, 50829, Germany
| | - Maarten Koornneef
- Department Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl von-Linné-Weg 10, Köln, 50829, Germany
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
47
|
Hua Z, Doroodian P, Vu W. Contrasting duplication patterns reflect functional diversities of ubiquitin and ubiquitin-like protein modifiers in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:296-311. [PMID: 29738099 DOI: 10.1111/tpj.13951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitin (Ub) and Ub-like proteins, collectively forming the ubiquiton family, regulate nearly all aspects of cellular processes via post-translational modifications. Studies devoted to specific members suggested a large expansion of this family in plants; however, a lack of systematic analysis hinders the comparison of individual members at both evolutionary history and functional divergence levels, which may provide new insight into biological functions. In this work, we first retrieved a total of 5856 members of 17 known ubiquiton subfamilies in 50 plant genomes by searching both prior annotations and missing loci in each genome. We then applied this list to analyze the duplication history of major ubiquiton subfamilies in plants. We show that autophagy-related protein 8 (ATG8), membrane-anchored Ub-fold (MUB), small Ub-like modifier (SUMO) and Ub loci encode 88% of the plant ubiquiton family. Although whole genome duplications (WGDs) significantly expanded the family, we discovered contrasting duplication patterns both in species and in subfamilies. Within the family, the ATG8 and MUB members were primarily duplicated through WGDs, whereas a significant number of Ub and SUMO loci were generated through retroposition and tandem duplications, respectively. Although Ub coding regions are highly conserved in plants, promoter activity analysis demonstrated lineage-specific expression patterns of polyUb genes in Oryza sativa (rice) and Arabidopsis, confirming their retroposition origin. Based on the theory of dosage balance constraints, our study suggests that ubiquiton members duplicated through WGDs play crucial roles in plants, and that the regulatory pathways involving ATG8 and MUB are more conserved than those controlled by Ub and SUMO.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - William Vu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
48
|
Evaluation of synthetic promoters in Physcomitrella patens. Biochem Biophys Res Commun 2018; 500:418-422. [PMID: 29660341 DOI: 10.1016/j.bbrc.2018.04.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023]
Abstract
Securing a molecular toolbox including diverse promoters is essential for genome engineering. However, native promoters have limitations such as the available number or the length of the promoter. In this work, three short synthetic promoters were characterized by using the yellow fluorescent protein Venus. All of the tested promoters were active and showed higher mRNA expression than housekeeping gene PpAct7, and similar protein expression level to the AtUBQ10 promoter. This study shows that few cis-regulatory elements are enough to establish a strong promoter for continuous expression of genes in plants. Along with this, the study enhance the number of available promotors to be used in P. patens. It also demonstrates the potential to construct multiple non-native promoters on demand, which would aid to resolve one bottleneck in multiple pathway expression in P. patens and other plants.
Collapse
|
49
|
Ding D, Chen K, Chen Y, Li H, Xie K. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. MOLECULAR PLANT 2018; 11:542-552. [PMID: 29462720 DOI: 10.1016/j.molp.2018.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system has emerged as the revolutionary platform for DNA targeting. This system uses a site-specific RNA guide to direct a CRISPR effector (e.g., Cas9 and Cpf1) to a DNA target. Here, we elaborate a general strategy to simultaneously express multiple guide RNAs (gRNA) and CRISPR RNAs (crRNA) from introns of Cas9 and Cpf1. This method utilizes the endogenous tRNA processing system or crRNA processing activity of Cpf1 to cleave the spliced intron that contains tRNA-gRNA polycistron or crRNA-crRNA array. We demonstrated that the tRNA-gRNA intron is able to fuse with Cas9 as one gene. Such a hybrid gene could be expressed using one polymerase II promoter, and exhibited high efficiency and robustness in simultaneously targeting multiple sites. We also implemented this strategy in Cpf1-mediated genome editing using intronic tRNA-crRNA and crRNA-crRNA arrays. Interestingly, hybrid genes containing Cpf1 and intronic crRNA array exhibited remarkably increased efficiency compared with the conventional Cpf1 vectors. Taken together, this study presents a method to express CRISPR reagents from one hybrid gene to increase genome-editing efficiency and capacity. Owing to its simplicity and versatility, this method could be broadly used to develop sophisticated CRISPR tools in eukaryotes.
Collapse
Affiliation(s)
- Dan Ding
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaiyuan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuedan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Domashevskiy AV, Williams S, Kluge C, Cheng SY. Plant Translation Initiation Complex eIFiso4F Directs Pokeweed Antiviral Protein to Selectively Depurinate Uncapped Tobacco Etch Virus RNA. Biochemistry 2017; 56:5980-5990. [PMID: 29064680 DOI: 10.1021/acs.biochem.7b00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pokeweed antiviral protein (PAP) is a ribosome inactivating protein (RIP) that depurinates the sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. PAP depurinates viral RNA, and in doing so, lowers the infectivity of many plant viruses. The mechanism by which PAP accesses uncapped viral RNA is not known, impeding scientists from developing effective antiviral agents for the prevention of the diseases caused by uncapped RNA viruses. Kinetic rates of PAP interacting with tobacco etch virus (TEV) RNA, in the presence and absence of eIFiso4F, were examined, addressing how the eIF affects selective PAP targeting and depurination of the uncapped viral RNA. PAP-eIFs copurification assay and fluorescence resonance energy transfer demonstrate that PAP forms a ternary complex with the eIFiso4G and eIFiso4E, directing the depurination of uncapped viral RNA. eIFiso4F selectively targets PAP to depurinate TEV RNA by increasing PAP's specificity constant for uncapped viral RNA 12-fold, when compared to the depurination of an oligonucleotide RNA that mimics the SRL of large rRNA, and cellular capped luciferase mRNA. This explains how PAP is able to lower infectivity of pokeweed viruses, while preserving its own ribosomes and cellular RNA from depurination: PAP utilizes cellular eIFiso4F in a novel strategy to target uncapped viral RNA. It may be possible to modulate and utilize these PAP-eIFs interactions for their public health benefit; by repurposing them to selectively target PAP to depurinate uncapped viral RNA, many plant and animal diseases caused by these viruses could be alleviated.
Collapse
Affiliation(s)
- Artem V Domashevskiy
- Department of Sciences, John Jay College of Criminal Justice, the City University of New York , New York, New York 10019, United States
| | - Shawn Williams
- Department of Sciences, John Jay College of Criminal Justice, the City University of New York , New York, New York 10019, United States
| | - Christopher Kluge
- Department of Sciences, John Jay College of Criminal Justice, the City University of New York , New York, New York 10019, United States
| | - Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, the City University of New York , New York, New York 10019, United States
| |
Collapse
|