1
|
Grandits AM, Reinoehl BA, Wagner R, Kuess P, Eckert F, Berghoff AS, Fuereder T, Wieser R. SKA1 promotes oncogenic properties in oral dysplasia and oral squamous cell carcinoma, and augments resistance to radiotherapy. Mol Oncol 2025; 19:1054-1074. [PMID: 39656562 PMCID: PMC11977640 DOI: 10.1002/1878-0261.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy associated with high morbidity and mortality, yet treatment options are limited. In addition to genetic alterations, aberrant gene expression contributes to the pathology of malignant diseases. In the present study, we identified 629 genes consistently dysregulated between OSCC and normal oral mucosa across nine public gene expression datasets. Among them, mitosis-related genes were significantly enriched, including spindle and kinetochore-associated complex subunit 1 (SKA1), whose roles in OSCC had been studied only to a very limited extent. We show that SKA1 promoted proliferation and colony formation in 2D and 3D, shortened the duration of metaphase, and increased the migration of OSCC cell lines. In addition, high SKA1 expression enhanced radioresistance, a previously unknown effect of this gene, which was accompanied by a reduction of radiation-induced senescence. SKA1 was also upregulated in a subset of advanced oral premalignancies and promoted tumor-relevant properties in a corresponding cell line. Gene expression patterns evoked by SKA1 overexpression confirmed that this gene is able to advance properties required for both early and advanced stages of tumorigenesis. In summary, our data show that SKA1 contributes to malignant progression in OSCC and may be a useful marker of radioresistance in this disease.
Collapse
Affiliation(s)
| | | | - Renate Wagner
- Division of Oncology, Department of Medicine IMedical University of ViennaAustria
| | - Peter Kuess
- Department of Radiation OncologyMedical University of ViennaAustria
| | - Franziska Eckert
- Department of Radiation OncologyMedical University of ViennaAustria
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine IMedical University of ViennaAustria
| | - Thorsten Fuereder
- Division of Oncology, Department of Medicine IMedical University of ViennaAustria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine IMedical University of ViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaAustria
| |
Collapse
|
2
|
Fu S, Zhu T, Chen L, Zhou G, Sun J. Assessment of bimodal laser photodynamic therapy at wavelenths of 410 nm and 653 nm for oral precancerous lesions: An in vitro and in vivo study. Photodiagnosis Photodyn Ther 2025; 53:104564. [PMID: 40127707 DOI: 10.1016/j.pdpdt.2025.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Oral mucosal leukoplakia, a prevalent precancerous condition, poses significant challenges in clinical management. Photodynamic therapy (PDT) is a common therapeutic strategy, its efficacy in clinical practice is often constrained. There is a pressing demand for innovations that can enhance the effectiveness of PDT and minimize its side effects in addressing oral precancerous lesions. MATERIALS AND METHODS This study employed m-THPC as a photosensitizer and developed a novel light source with dual wavelengths of 410 nm/653 nm tailored to excite the photosensitizer. We conducted photodynamic experiments using oral precancerous cell lines, OSCC cell line and animal models. In vitro cellular responses were assessed using colony formation, and cell apoptosis assays. An oral precancerous mouse model was established to appraise the therapeutic efficacy of the treatments. Histopathological evaluation of apoptosis was performed using TUNEL and immunohistochemical staining. RESULTS The development of a dual-wavelength laser device is reported. m-THPC demonstrated an affinity for precancerous cells, preferentially accumulating in precancerous tissue in vitro. Activation of m-THPC with a 410 nm laser showed a robust photochemical effect, effectively inhibiting the proliferation and promoting the apoptosis of precancerous cells in vitro. The combined application of 410 nm/653 nm wavelengths yielded superior therapeutic efficacy, compared to the individual emissions at 410 nm and 653 nm, in a precancerous lesion mouse model and was associated with fewer adverse reactions. Despite spectral mismatch with m-THPC, high-dose 532 nm irradiation achieved therapeutic efficacy comparable to dual-wavelength PDT in vivo. However, this dose-dependent enhancement was accompanied by exacerbated photothermal effects, resulting in significant adverse reactions including localized hyperthermia and nonspecific tissue damage. CONCLUSION The dual-wavelength PDT, optimized for m-THPC, exhibits superior photodynamic characteristics and excellent biosafety. It aligns well with realistic clinical applic ation scenarios and presents as an innovative and promising therapeutic modality for the treatment of oral leukoplakia.
Collapse
Affiliation(s)
- Shuiting Fu
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ting Zhu
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Hainan Boao Super Hospital, Hainan, 571442, China.
| | - Jian Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
3
|
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J Funct Biomater 2024; 15:330. [PMID: 39590534 PMCID: PMC11595533 DOI: 10.3390/jfb15110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) culture models and animal experiments have been widely used to study the pathogenesis of periodontal and peri-implant diseases and to test new treatment approaches. However, neither of them can reproduce the complexity of human periodontal tissues, making the development of a successful 3D oral mucosal model a necessity. The soft-tissue attachment formed around a tooth or an implant function like a biologic seal, protecting the deeper tissues from bacterial infection. The aim of this review is to explore the advancements made so far in the biofabrication of a junctional epithelium around a tooth-like or an implant insert in vitro. This review focuses on the origin of cells and the variety of extracellular components and biomaterials that have been used for the biofabrication of 3D oral mucosa models. The existing 3D models recapitulate soft-tissue attachment around implant abutments and hydroxyapatite discs. Hereby, the qualitative and quantitative assessments performed for evidencing the soft-tissue attachment are critically reviewed. In perspective, the design of sophisticated 3D models should work together for oral immunology and microbiology biofilms to accurately reproduce periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- Marianna Gavriiloglou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| | - Mira Hammad
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Jordan M. Iliopoulos
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Pierre Layrolle
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Danae A. Apazidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| |
Collapse
|
4
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Elnaggar M, Chaisuparat R, Ghita I, Bentzen SM, Dyalram D, Ord RA, Lubek JE, Younis RH. Immuno-oncologic signature of malignant transformation in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:612-622. [PMID: 37739913 DOI: 10.1016/j.oooo.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/25/2023] [Accepted: 07/02/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE The purpose of this study is to identify the immuno-oncologic (IO) signature at the surgical tumor margin (TM) of oral squamous cell carcinoma (OSCC) that is involved in the process of malignant transformation. STUDY DESIGN Under institutional review board approval, TM of 73 OSCC were investigated using immunohistochemistry for the immune biomarker, programmed death ligand-1 (PD-L1). NanoString 770 IO-focused gene set was analyzed in 5 pairs of TM and invasive tumor (T). PD-L1 regulation in response to interferon-gamma (IFN-γ) was investigated in an oral potentially malignant cell line (OPMC). RESULTS Programmed death ligand-1 expression in the epithelial margin directly correlated with its expression in the underlying immune cells (P = .0082). Differential gene expression showed downregulation of PD-L1 and IFN-γ 6 gene signature in the TM relative to T pair.CD8 and macrophages were higher in TM. CNTFR, LYZ, C7, RORC, and FGF13 downregulation in T relative to TM. TDO2, ADAM12, MMP1, LAMC2, MB21D1, TYMP, OASL, COL5A1, exhausted_CD8, Tregs,and NK_CD56dim were upregulated in T relative to TM. Finally, IFN-γ induced upregulation of PD-L1 in the OPMC. CONCLUSIONS Our work suggests a role for IFN-γ in PD-L1 upregulation in OPMC and presents novel IO transcriptional signatures for frankly invasive OSCC relative to TM.
Collapse
Affiliation(s)
- Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA; Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Department of Oral Pathology, Faculty of Dentistry, Arab Academy for Science and Technology, El Alamein, Egypt
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, USA; Biostatistics Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Robert A Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Joshua E Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA; Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Division of Tumor Immunology and Immunotherapy, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, UMB, Maryland, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
7
|
Hefni E, Menon D, Ma T, Asiedu EB, Sultan A, Meiller T, Schneider A, Sodhi A, Montaner S. Angiopoietin-like 4 induces head and neck squamous cell carcinoma cell migration through the NRP1/ABL1/PXN pathway. Cell Signal 2023; 108:110697. [PMID: 37169211 PMCID: PMC11129037 DOI: 10.1016/j.cellsig.2023.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES The molecular mechanisms whereby angiopoietin-like 4 (ANGPTL4), a pluripotent protein implicated in cancer development, contributes to head and neck squamous cell carcinoma (HNSCC) growth and dissemination are unclear. MATERIALS AND METHODS We investigated ANGPTL4 expression in human normal oral keratinocytes (NOKs), dysplastic oral keratinocytes (DOKs), oral leukoplakia cells (LEUK1), and HNSCC cell lines, as well as in tissue biopsies from patients with oral dysplasia, and primary and metastatic HNSCC. We further examined the contribution of ANGPTL4 cancer progression in an HNSCC orthotopic floor-of mouth tumor model and the signaling pathways linking ANGPTL4 to cancer cell migration. RESULTS ANGPTL4 expression was upregulated in premalignant DOKs and HNSCC cell lines compared to NOKs and was increased in tissue biopsies from patients with oral dysplasia, as well as in primary and metastatic HNSCC. We also observed that downregulation of ANGPTL4 expression inhibited primary and metastatic cancer growth in an HNSCC orthotopic tumor model. Interestingly, ANGPTL4 binding to the neuropilin1 (NRP1) receptor led to phosphorylation of the focal adhesion protein, paxillin (PXN), and tumor cell migration; this was dependent on the tyrosine kinase ABL1. Treatment with the ABL1 inhibitor, dasatinib and small interfering RNA silencing of NRP1 or ABL1 expression blocked PXN phosphorylation and tumor cell migration. CONCLUSION Our findings suggest an early, sustained, and angiogenesis-independent autocrine role for ANGPTL4 in HNSCC progression and expose ANGPTL4/NRP1/ABL1/PXN as an early molecular marker and vulnerable target for the prevention of HNSCC growth and metastasis.
Collapse
Affiliation(s)
- Eman Hefni
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Department of Basic and Clinical Oral Sciences, College of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Emmanuel B Asiedu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Ahmed Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Timothy Meiller
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Kang KR, Kim JS, Lim H, Seo JY, Park JH, Chun HS, Yu SK, Kim HJ, Kim CS, Kim DK. Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:447-456. [PMID: 36302620 PMCID: PMC9614403 DOI: 10.4196/kjpp.2022.26.6.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.
Collapse
Affiliation(s)
- Kyeong-Rok Kang
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jae-Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - HyangI Lim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jeong-Yeon Seo
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jong-Hyun Park
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Hong Sung Chun
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Sun-Kyoung Yu
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Heung-Joong Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Chun Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Do Kyung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea,Correspondence Do Kyung Kim, E-mail:
| |
Collapse
|
9
|
Abstract
In this study, the potential of Nigella sativa was evaluated in the management of oral cancer through assays designed to mimic conditions expected when chewing the whole seeds or use of a seed extract. For this purpose, a water-based extract of N. sativa seeds was prepared, mimicking the chewing process. This extract demonstrated significant cytotoxic effect on oral cancer and pre-cancerous leukoplakia cells in vitro at a much lower concentration than the predicted oral concentration that could be achieved upon seed chewing. When the active constituent(s) in this water-based N. sativa seed extract, was explored significant quantities of the compound α-hederin was detected but only modest quantities of thymoquinone suggesting that thymoquinone is not fully released into the aqueous medium during the chewing process. While the N. sativa seed extract induced a different effect on the cells than that of pure thymoquinone, α-hederin alone induced a very similar effect on the cells to that of the extract. These results suggest that α-hederin and not thymoquinone, is the major component of the seed that is responsible for the inhibitory effect observed in vitro. Therefore, chewing N. sativa whole seeds or applying a concentrated extract on the oral lesions may be an inexpensive, widely available, and effective option for patients at risk of developing oral cancer who are receiving no other preventive treatment.
Collapse
|
10
|
Sun J, Lu Y, Yu C, Xu T, Nie G, Miao B, Zhang X. Involvement of the TGF-β1 pathway in caveolin-1-associated regulation of head and neck tumor cell metastasis. Oncol Lett 2019; 19:1298-1304. [PMID: 31966060 PMCID: PMC6956420 DOI: 10.3892/ol.2019.11187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent malignancy with a 5-year survival rate of 54%. Therefore, disease management improvement is required. The present study aimed to assess the role of caveolin-1 (Cav-1) in the metastasis of head and neck tumor cells. Short hairpin RNA was used to silence Cav-1 expression in Tu686 cells. Proliferation, migration, invasion, morphology and the levels of effector proteins were assessed in cells. Upon Cav-1 silencing, E-cadherin levels were decreased, while vimentin levels were significantly increased. Cell migration, quantified by wound healing and Transwell assays, was significantly increased. Meanwhile, Cav-1 and transforming growth factor β1 (TGF-β1) receptor were identified to be co-localized. In addition, Cav-1-knockdown resulted in increased phosphorylation of SMAD family member 2 (P<0.05), a downstream effector of TGF-β signaling. In addition, there was a mutual regulation, with increasing TGF-β1 levels leading to a dose-dependent decrease of Cav-1 expression levels (P<0.05). These findings indicate that Cav-1 inhibits cell metastasis in HNSCC, suggesting the involvement of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jinjie Sun
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongtian Lu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Changyun Yu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Xu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Beiping Miao
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Xin Zhang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
11
|
Liu G, Cai G, He X, Huang D, Zhu G, Chen C, Zhang X. KIF18A promotes head and neck squamous cell carcinoma invasion and migration via activation of Akt signaling pathway. Transl Cancer Res 2019; 8:2252-2263. [PMID: 35116978 PMCID: PMC8798418 DOI: 10.21037/tcr.2019.09.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND KIF18A has been shown to participate in the development of various human malignancies. However, the role of KIF18A in head and neck squamous cell carcinoma (HNSCC) remains unknown. This study investigated the function of KIF18A in HNSCC as well as its possible mechanisms. METHODS In this study, we conducted in vitro experiments. First, we examined the effect of KIF18A on Tu686 and 6-10B cells via determining cell viability, colony formation ability and cell motility. And then, we examined that whether the carcinogenic effect of KIF18A is associated with Akt activation. RESULTS Our current study demonstrated that KIF18A expression was increased in HNSCC patients and its cell lines. Knockdown and overexpression of KIF18A in HNSCC cells indicated that KIF18A promoted cancer cell proliferation, invasion and migration. Moreover, these bioactivity changes in HNSCC cells were accompanied by enhanced Vimentin expression and suppressed E-cadherin expression induced by KIF18A. Further mechanistic analysis revealed that the carcinogenic effect of KIF18A is associated with Akt activation, and blocking the activity of Akt reversed the malignant progression caused by KIF18A overexpression in HNSCC cells. CONCLUSIONS Together, our study reveals that KIF18A accelerates the progression of HNSCC and that targeting KIF18A may be a potential therapeutic strategy for the HNSCC.
Collapse
Affiliation(s)
- Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Gengming Cai
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, China
| | - Xiaosong He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Guttenplan JB, Chen KM, Sun YW, Shalaby NAE, Kosinska W, Desai D, Gowda K, Amin S, El-Bayoumy K. Effects of the Tobacco Carcinogens N'-Nitrosonornicotine and Dibenzo[ a, l]pyrene Individually and in Combination on DNA Damage in Human Oral Leukoplakia and on Mutagenicity and Mutation Profiles in lacI Mouse Tongue. Chem Res Toxicol 2019; 32:1893-1899. [PMID: 31433626 DOI: 10.1021/acs.chemrestox.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In previous studies, we showed that the topical application of dibenzo[a,l]pyrene (DB[a,l]P), also known as dibenzo[def,p]chrysene, to the oral cavity of mice induced oral squamous cell carcinoma. We also showed that dA and dG adducts likely account for most of the mutagenic activity of DB[a,l]P in the oral tissues in vivo. Here we report for the first time that the oral treatment of lacI mice with a combination of tobacco smoke carcinogens, DB[a,l]P and N'-nitrosonornicotine (NNN), induces a higher fraction of mutations than expected from a simple sum of their induced individual mutation fractions, and a change in the mutational profile compared with that expected from the sum of the individual agents. The mutational profile of the combination of agents resembled that of the P53 gene in human head and neck cancers more than that of either of the individual agents, in that the percentage of the major class of mutations (GC > AT transitions) is similar to that seen in the P53 gene. A preliminary study was performed to understand the origin of the unexpected mutagenesis observations by measuring specific DNA adducts produced by both NNN and DB[a,l]P in human oral leukoplakia cells. No significant differences in the expected and observed major adduct levels from either agent were observed between individual or combined treatments, suggesting that additional adducts are important in mutagenesis induced by the mixture. Taken together, the above observations support the use of this animal model not only to investigate tobacco smoke-induced oral cancer but also to study chemoprevention.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States.,Department of Environmental Medicine, School of Medicine , New York University , New York , New York 10019 , United States
| | | | | | - Nora A E Shalaby
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | - Wieslawa Kosinska
- Department of Basic Science, College of Dentistry , New York University , New York , New York 10010 , United States
| | | | | | | | | |
Collapse
|
13
|
Wisniewski DJ, Ma T, Schneider A. Nicotine induces oral dysplastic keratinocyte migration via fatty acid synthase-dependent epidermal growth factor receptor activation. Exp Cell Res 2018; 370:343-352. [PMID: 29966661 DOI: 10.1016/j.yexcr.2018.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Despite advances in diagnostic and therapeutic management, oral squamous cell carcinoma (OSCC) patient survival rates have remained relatively unchanged. Thus, identifying early triggers of malignant progression is critical to prevent OSCC development. Traditionally, OSCC initiation is elicited by the frequent and direct exposure to multiple tobacco-derived carcinogens, and not by the nicotine contained in tobacco products. However, other nicotine-containing products, especially the increasingly popular electronic cigarettes (e-cigs), have unknown effects on the progression of undiagnosed tobacco-induced oral premalignant lesions, specifically in regard to the effects of nicotine. Overexpression of fatty acid synthase (FASN), a key hepatic de novo lipogenic enzyme, is linked to poor OSCC patient survival. Nicotine upregulates hepatic FASN, but whether this response occurs in oral dysplastic keratinocytes is unknown. We hypothesized that in oral dysplastic keratinocytes, nicotine triggers a migratory phenotype through FASN-dependent epidermal growth factor receptor (EGFR) activation, a common pro-oncogenic event supporting oral carcinogenesis. We report that in oral dysplastic cells, nicotine markedly upregulates FASN leading to FASN-dependent EGFR activation and increased cell migration. These results raise potential concerns about e-cig safety, especially when used by former tobacco smokers with occult oral premalignant lesions where nicotine could trigger oncogenic signals commonly associated with malignant progression.
Collapse
Affiliation(s)
- David J Wisniewski
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
14
|
Sineh Sepehr K, Razavi A, Saeidi M, Mossahebi-Mohammadi M, Abdollahpour-Alitappeh M, Hashemi SM. Development of a novel explant culture method for the isolation of mesenchymal stem cells from human breast tumor. J Immunoassay Immunochem 2018; 39:207-217. [PMID: 29741994 DOI: 10.1080/15321819.2018.1447487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) were isolated from various sources, including various types of tumors. However choosing an appropriate isolation method is an important step in obtaining cells with optimal quality and yield in companion with economical considerations. The purpose of this study was to isolate more pure MSCs from human breast tumor tissue by a modified explant culture method. METHODS AND MATERIALS The tumor tissues (n = 8) were cut into 1 to 3-mm cube-like pieces (explant). Each explant was placed in a well of 24-well format plates, cultured in Dulbecco's Modified Eagle's medium (DMEM), and maintained at 37°C with 5% humidified incubator. Morphological phenotypes of the cells were surveyed by an inverted microscope and wells with rather homogenous fibroblast-like morphology cell were considered as positive and selected for more expansion and characterization. RESULTS A total of 185 wells, 63.7% of wells were positive that were chosen for expansion. Flowcytometry analysis demonstrated that isolated cells were positive for CD73, CD44, CD29, CD105, and CD90 but negative for CD11b, CD45, CD34, and HLA‑DR. In addition, cells possessed the capability of multipotential differentiation into osteoblasts and adipocytes.
Collapse
Affiliation(s)
- Koushan Sineh Sepehr
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Razavi
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohsen Saeidi
- b Stem Cell Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| | | | - Meghdad Abdollahpour-Alitappeh
- d Gastroenterology and Liver Diseases Research Center , Reasearch Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Seyed Mahmoud Hashemi
- e Department of Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,f Department of Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
15
|
Guttenplan JB, Chen KM, Sun YW, Lajara B, Shalaby NAE, Kosinska W, Benitez G, Gowda K, Amin S, Stoner G, El-Bayoumy K. Effects of Black Raspberry Extract and Berry Compounds on Repair of DNA Damage and Mutagenesis Induced by Chemical and Physical Agents in Human Oral Leukoplakia and Rat Oral Fibroblasts. Chem Res Toxicol 2017; 30:2159-2164. [PMID: 29068672 DOI: 10.1021/acs.chemrestox.7b00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Black raspberries (BRB) have been shown to inhibit carcinogenesis in a number of systems, with most studies focusing on progression. Previously we reported that an anthocyanin-enriched black raspberry extract (BE) enhanced repair of dibenzo-[a,l]-pyrene dihydrodiol (DBP-diol)-induced DNA adducts and inhibited DBP-diol and DBP-diolepoxide (DBPDE)-induced mutagenesis in a lacI rat oral fibroblast cell line, suggesting a role for BRB in the inhibition of initiation of carcinogenesis. Here we extend this work to protection by BE against DNA adduct formation induced by dibenzo-[a,l]-pyrene (DBP) in a human oral leukoplakia cell line (MSK) and to a second carcinogen, UV light. Treatment of MSK cells with DBP and DBPDE led to a dose-dependent increase in DBP-DNA adducts. Treatment of MSK cells with BE after addition of DBP reduced levels of adducts relative to cells treated with DBP alone, and treatment of rat oral fibroblasts with BE after addition of DBPDE inhibited mutagenesis. These observations showed that BE affected repair of DNA adducts and not metabolism of DBP. As a proof of principle we also tested aglycones of two anthocyanins commonly found in berries, delphinidin chloride and pelargonidin chloride. Delphinidin chloride reduced DBP-DNA adduct levels in MSK cells, while PGA did not. These results suggested that certain anthocyanins can enhance repair of bulky DNA adducts. As DBP and its metabolites induced formation of bulky DNA adducts, we investigated the effects of BE on genotoxic effects of a second carcinogen that induces bulky DNA damage, UV light. UV irradiation produced a dose-dependent increase in cyclobutanepyrimidine dimer levels in MSK cells, and post-UV treatment with BE resulted in lower cyclobutanepyrimidine dimer levels. Post-UV treatment of the rat lacI cells with BE reduced UV-induced mutagenesis. Taken together, the results demonstrate that BE extract reduces bulky DNA damage and mutagenesis and support a role for BRB in the inhibition of initiation of carcinogenesis.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States.,Department of Environmental Medicine, New York University School of Medicine , New York, New York 10019, United States
| | | | | | - Braulio Lajara
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | - Nora A E Shalaby
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | - Wieslawa Kosinska
- Department of Basic Science, New York University College of Dentistry , New York, New York 10010, United States
| | | | | | | | - Gary Stoner
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | | |
Collapse
|
16
|
Anisuzzaman ASM, Haque A, Wang D, Rahman MA, Zhang C, Chen Z, Chen ZG, Shin DM, Amin ARMR. In Vitro and In Vivo Synergistic Antitumor Activity of the Combination of BKM120 and Erlotinib in Head and Neck Cancer: Mechanism of Apoptosis and Resistance. Mol Cancer Ther 2017; 16:729-738. [PMID: 28119490 DOI: 10.1158/1535-7163.mct-16-0683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
We previously reported that the EGFR-targeted inhibitor erlotinib induces G1 arrest of squamous cell carcinoma of the head and neck (SCCHN) cell lines without inducing significant apoptosis. Large-scale genomic studies suggest that >50% of SCCHN cases have activation of PI3K pathways. This study investigated whether cotargeting of EGFR and PI3K has synergistic antitumor effects and apoptosis induction. We examined growth suppression, apoptosis, and signaling pathway modulation resulting from single and combined targeting of EGFR and PI3K with erlotinib and BKM120, respectively, in a panel of SCCHN cell lines and a xenograft model of SCCHN. In a panel of 12 cell lines, single targeting of EGFR with erlotinib or PI3K with BKM120 suppressed cellular growth without inducing significant apoptosis. Cotargeting of EGFR and PI3K synergistically inhibited SCCHN cell line and xenograft tumor growth, but induced variable apoptosis; some lines were highly sensitive, others were resistant. Mechanistic studies revealed that the combination inhibited both axes of the mTORC1 (S6 and 4EBP1) pathway in apoptosis-sensitive cell lines along with translational inhibition of Bcl-2, Bcl-xL, and Mcl-1, but failed to inhibit p-4EBP1, Bcl-2, Bcl-xL, and Mcl-1 in an apoptosis-resistant cell line. siRNA-mediated knockdown of eIF4E inhibited Bcl-2 and Mcl-1 and sensitized this cell line to apoptosis. Our results strongly suggest that cotargeting of EGFR and PI3K is synergistic and induces apoptosis of SCCHN cell lines by inhibiting both axes of the AKT-mTOR pathway and translational regulation of antiapoptotic Bcl-2 proteins. These findings may guide the development of clinical trials using this combination of agents. Mol Cancer Ther; 16(4); 729-38. ©2017 AACR.
Collapse
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Abedul Haque
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
17
|
Abstract
Head and neck cancer patients suffer from toxicities, morbidities, and mortalities, and these ailments could be minimized through improved therapies. Drug discovery is a long, expensive, and complex process, so optimized assays can improve the success rate of drug candidates. This study applies optical imaging of cell metabolism to three-dimensional in vitro cultures of head and neck cancer grown from primary tumor tissue (organoids). This technique is advantageous because it measures cell metabolism using intrinsic fluorescence from NAD(P)H and FAD on a single cell level for a three-dimensional in vitro model. Head and neck cancer organoids are characterized alone and after treatment with standard therapies, including an antibody therapy, a chemotherapy, and combination therapy. Additionally, organoid cellular heterogeneity is analyzed quantitatively and qualitatively. Gold standard measures of treatment response, including cell proliferation, cell death, and in vivo tumor volume, validate therapeutic efficacy for each treatment group in a parallel study. Results indicate that optical metabolic imaging is sensitive to therapeutic response in organoids after 1 day of treatment (p<0.05) and resolves cell subpopulations with distinct metabolic phenotypes. Ultimately, this platform could provide a sensitive high-throughput assay to streamline the drug discovery process for head and neck cancer.
Collapse
|
18
|
Guttenplan JB, Chen KM, Sun YW, Kosinska W, Zhou Y, Kim SA, Sung Y, Gowda K, Amin S, Stoner GD, El-Bayoumy K. Effects of Black Raspberry Extract and Protocatechuic Acid on Carcinogen-DNA Adducts and Mutagenesis, and Oxidative Stress in Rat and Human Oral Cells. Cancer Prev Res (Phila) 2016; 9:704-12. [PMID: 27267891 DOI: 10.1158/1940-6207.capr-16-0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a,l]pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (±)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a,l]pyrene (DBP-diol) and 11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. Cancer Prev Res; 9(8); 704-12. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph B Guttenplan
- Department of Basic Science, New York University College of Dentistry, New York, New York. Department of Environmental Medicine, New York University School of Medicine, New York, New York.
| | - Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wieslawa Kosinska
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Ying Zhou
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Seungjin Agatha Kim
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Youngjae Sung
- Department of Basic Science, New York University College of Dentistry, New York, New York
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gary D Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
19
|
Anisuzzaman ASM, Haque A, Rahman MA, Wang D, Fuchs JR, Hurwitz S, Liu Y, Sica G, Khuri FR, Chen ZG, Shin DM, Amin ARMR. Preclinical In Vitro, In Vivo, and Pharmacokinetic Evaluations of FLLL12 for the Prevention and Treatment of Head and Neck Cancers. Cancer Prev Res (Phila) 2015; 9:63-73. [PMID: 26511491 DOI: 10.1158/1940-6207.capr-15-0240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022]
Abstract
Despite its high promise for cancer prevention and therapy, the potential utility of curcumin in cancer is compromised by its low bioavailability and weak potency. The purpose of the current study was to assess the in vitro and in vivo efficacy and pharmacokinetic parameters of the potent curcumin analogue FLLL12 in SCCHN and identify the mechanisms of its antitumor effect. IC50 values against a panel of one premalignant and eight malignant head and neck cancer cell lines as well as apoptosis assay results suggested that FLLL12 is 10- to 24-fold more potent than natural curcumin depending on the cell line and induces mitochondria-mediated apoptosis. In vivo efficacy (xenograft) and pharmacokinetic studies also suggested that FLLL12 is significantly more potent and has more favorable pharmacokinetic properties than curcumin. FLLL12 strongly inhibited the expression of p-EGFR, EGFR, p-AKT, AKT, Bcl-2, and Bid and increased the expression of Bim. Overexpression of constitutively active AKT or Bcl-2 or ablation of Bim or Bid significantly inhibited FLLL12-induced apoptosis. Further mechanistic studies revealed that FLLL12 regulated EGFR and AKT at transcriptional levels, whereas Bcl-2 was regulated at the translational level. Finally, FLLL12 strongly inhibited the AKT downstream targets mTOR and FOXO1a and 3a. Taken together, our results strongly suggest that FLLL12 is a potent curcumin analogue with more favorable pharmacokinetic properties that induces apoptosis of head and neck cancer cell lines by inhibition of survival proteins including EGFR, AKT, and Bcl-2 and increasing of the proapoptotic protein Bim.
Collapse
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Abedul Haque
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - James R Fuchs
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Selwyn Hurwitz
- Department of Pediatrics and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Yuan Liu
- Biostatistics & Bioinformatics Shared Resource at Winship Cancer Institute, Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Atlanta, Georgia
| | - Gabriel Sica
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology and Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
20
|
Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review. Cancers (Basel) 2015; 7:1716-42. [PMID: 26343729 PMCID: PMC4586791 DOI: 10.3390/cancers7030858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/06/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well.
Collapse
|
21
|
Wang X, Qian YJ, Zhou Q, Ye P, Duan N, Huang XF, Zhu YN, Li JJ, Hu LP, Zhang WY, Han XD, Wang WM. Caspase-12 silencing attenuates inhibitory effects of cigarette smoke extract on NOD1 signaling and hBDs expression in human oral mucosal epithelial cells. PLoS One 2014; 9:e115053. [PMID: 25503380 PMCID: PMC4263745 DOI: 10.1371/journal.pone.0115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoke exposure is associated with increased risk of various diseases. Epithelial cells-mediated innate immune responses to infectious pathogens are compromised by cigarette smoke. Although many studies have established that cigarette smoke exposure affects the expression of Toll-liked receptor (TLR), it remains unknown whether the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) expression is affected by cigarette smoke exposure. In the study, we investigated effects of cigarette smoke extract (CSE) on NOD1 signaling in an immortalized human oral mucosal epithelial (Leuk-1) cell line. We first found that CSE inhibited NOD1 expression in a dose-dependent manner. Moreover, CSE modulated the expression of other crucial molecules in NOD1 signaling and human β defensin (hBD) 1, 2 and 3. We found that RNA interference-induced Caspase-12 silencing increased NOD1 and phospho-NF-κB (p-NF-κB) expression and down-regulated RIP2 expression. The inhibitory effects of CSE on NOD1 signaling can be attenuated partially through Caspase-12 silencing. Intriguingly, Caspase-12 silencing abrogated inhibitory effects of CSE on hBD1, 3 expression and augmented induced effect of CSE on hBD2 expression. Caspase-12 could play a vital role in the inhibitory effects of cigarette smoke on NOD1 signaling and hBDs expression in oral mucosal epithelial cells.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Ya-jie Qian
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Qian Zhou
- Department of Endodontics, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Pei Ye
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Ning Duan
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Xiao-feng Huang
- Department of Oral Pathology, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Ya-nan Zhu
- Department of Endodontics, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Jing-jing Li
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Li-ping Hu
- Department of Oral and Maxillofacial Surgery, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Wei-yun Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Xiao-dong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- * E-mail: (WW); (XDH)
| | - Wen-mei Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
- * E-mail: (WW); (XDH)
| |
Collapse
|
22
|
Bao K, Akguel B, Bostanci N. Establishment and characterization of immortalized gingival epithelial and fibroblastic cell lines for the development of organotypic cultures. Cells Tissues Organs 2014; 199:228-37. [PMID: 25471635 DOI: 10.1159/000363694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 11/19/2022] Open
Abstract
In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro.
Collapse
Affiliation(s)
- Kai Bao
- Oral Translational Research Unit, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Lee SH, Samuels T, Bock JM, Blumin JH, Johnston N. Establishment of an immortalized laryngeal posterior commissure cell line as a tool for reflux research. Laryngoscope 2014; 125:E73-7. [PMID: 25272366 DOI: 10.1002/lary.24952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/07/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Laryngopharyngeal reflux (LPR) has been implicated as a promoter of laryngeal cancer. Within the larynx, the posterior commissure (PC) is the region that usually comes into direct contact with refluxed materials. Specific laryngeal cell lines useful for in vitro studies are not widely available, and noncancer-derived PC laryngeal cell line has not yet been described. STUDY DESIGN Experimental study. METHODS Specimens of squamous epithelium from the PC of the larynx were collected from patients without a history or evidence of laryngeal inflammatory or neoplastic diseases. Harvested tissue was cultured and then immortalized by transduction with human papillomavirus E6/E7-encoding lentivirus. PC primary and transformed cells were characterized by light microscopy and immunohistochemistry. RESULTS Primary cultures established from PC contained < 5% fibroblasts and displayed normal epithelial cell morphology and cytokeratin expression. These cells survived nine passages in culture. Following lentiviral-mediated immortalization, cells retained normal squamous epithelial morphology and survived > 20 passages in culture. Methods were optimized for culture of PC laryngeal epithelial cells, resulting in 90% success rate of culture. CONCLUSION A novel immortalized PC laryngeal epithelial cell line has been established. This cell line provides a unique tool for investigating the mechanism of LPR in the development and progression of laryngeal cancer. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Sang-Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
González FE, Ortiz C, Reyes M, Dutzan N, Patel V, Pereda C, Gleisner MA, López MN, Gutkind JS, Salazar-Onfray F. Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells. Immunology 2014; 142:396-405. [PMID: 24673602 DOI: 10.1111/imm.12264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/04/2023] Open
Abstract
We have previously reported a novel method for the production of tumour-antigen-presenting cells (referred to as TAPCells) that are currently being used in cancer therapy, using an allogeneic melanoma-derived cell lysate (referred to as TRIMEL) as an antigen provider and activation factor. It was recently demonstrated that TAPCell-based immunotherapy induces T-cell-mediated immune responses resulting in improved long-term survival of stage IV melanoma patients. Clinically, dendritic cell (DC) migration from injected sites to lymph nodes is an important requirement for an effective anti-tumour immunization. This mobilization of DCs is mainly driven by the C-C chemokine receptor type 7 (CCR7), which is up-regulated on mature DCs. Using flow cytometry and immunohistochemistry, we investigated if TRIMEL was capable of inducing the expression of the CCR7 on TAPCells and enhancing their migration in vitro, as well as their in vivo relocation to lymph nodes in an ectopic xenograft animal model. Our results confirmed that TRIMEL induces a phenotypic maturation and increases the expression of surface CCR7 on melanoma patient-derived DCs, and also on the monocytic/macrophage cell line THP-1. Moreover, in vitro assays showed that TRIMEL-stimulated DCs and THP-1 cells were capable of migrating specifically in the presence of the CCR7 ligand CCL19. Finally, we demonstrated that TAPCells could migrate in vivo from the injection site into the draining lymph nodes. This work contributes to an increased understanding of the biology of DCs produced ex vivo allowing the design of new strategies for effective DC-based vaccines for treating aggressive melanomas.
Collapse
Affiliation(s)
- Fermín E González
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile; Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kochhar A, Kopelovich L, Sue E, Guttenplan JB, Herbert BS, Dannenberg AJ, Subbaramaiah K. p53 modulates Hsp90 ATPase activity and regulates aryl hydrocarbon receptor signaling. Cancer Prev Res (Phila) 2014; 7:596-606. [PMID: 24736433 PMCID: PMC4074578 DOI: 10.1158/1940-6207.capr-14-0051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (Hsp90), is a ligand-activated transcription factor that plays a role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke activates AhR signaling leading to increased transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to mutagens. Recently, p53 was found to regulate Hsp90 ATPase activity via effects on activator of Hsp90 ATPase (Aha1). It is possible, therefore, that AhR-dependent expression of CYP1A1 and CYP1B1 might be affected by p53 status. The main objective of this study was to determine whether p53 modulated AhR-dependent gene expression and PAH metabolism. Here, we show that silencing p53 led to elevated Aha1 levels, increased Hsp90 ATPase activity, and enhanced CYP1A1 and CYP1B1 expression. Overexpression of wild-type p53 suppressed levels of CYP1A1 and CYP1B1. The significance of Aha1 in mediating these p53-dependent effects was determined. Silencing of Aha1 led to reduced Hsp90 ATPase activity and downregulation of CYP1A1 and CYP1B1. In contrast, overexpressing Aha1 was associated with increased Hsp90 ATPase activity and elevated levels of CYP1A1 and CYP1B1. Using p53 heterozygous mutant epithelial cells from patients with Li-Fraumeni syndrome, we show that monoallelic mutation of p53 was associated with elevated levels of CYP1A1 and CYP1B1 under both basal conditions and following treatment with benzo[a]pyrene. Treatment with CP-31398, a p53 rescue compound, suppressed benzo[a]pyrene-mediated induction of CYP1A1 and CYP1B1 and the formation of DNA adducts. Collectively, our results suggest that p53 affects AhR-dependent gene expression, PAH metabolism, and possibly carcinogenesis.
Collapse
Affiliation(s)
- Amit Kochhar
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Levy Kopelovich
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erika Sue
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph B Guttenplan
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IndianaAuthors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brittney-Shea Herbert
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Dannenberg
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kotha Subbaramaiah
- Authors' Affiliations: Department of Medicine, Weill Cornell Medical College; Department of Basic Sciences, College of Dentistry; and Department of Environmental Medicine, School of Medicine, New York University, New York; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and Department of Medical and Molecular Genetics, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Yang Y, Rhodus NL, Ondrey FG, Wuertz BRK, Chen X, Zhu Y, Griffin TJ. Quantitative proteomic analysis of oral brush biopsies identifies secretory leukocyte protease inhibitor as a promising, mechanism-based oral cancer biomarker. PLoS One 2014; 9:e95389. [PMID: 24748380 PMCID: PMC3991667 DOI: 10.1371/journal.pone.0095389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
A decrease in the almost fifty percent mortality rate from oral cancer is needed urgently. Improvements in early diagnosis and more effective preventive treatments could affect such a decrease. Towards this end, we undertook for the first time an in-depth mass spectrometry-based quantitative shotgun proteomics study of non-invasively collected oral brush biopsies. Proteins isolated from brush biopsies from healthy normal tissue, oral premalignant lesion tissue (OPMLs), oral squamous cell carcinoma (OSCC) and matched control tissue were compared. In replicated proteomic datasets, the secretory leukocyte protease inhibitor (SLPI) protein stood out based on its decrease in abundance in both OPML and OSCC lesion tissues compared to healthy normal tissue. Western blotting in additional brushed biopsy samples confirmed a trend of gradual decreasing SLPI abundance between healthy normal and OPML tissue, with a larger decrease in OSCC lesion tissue. A similar SLPI decrease was observed in-vitro comparing model OPML and OSCC cell lines. In addition, exfoliated oral cells in patients’ whole saliva showed a loss of SLPI correlated with oral cancer progression. These results, combined with proteomics data indicating a decrease in SLPI in matched healthy control tissue from OSCC patients compared to tissue from healthy normal tissue, suggested a systemic decrease of SLPI in oral cells correlated with oral cancer development. Finally, in-vitro experiments showed that treatment with SLPI significantly decreased NF-kB activity in an OPML cell line. The findings indicate anti-inflammatory activity in OPML, supporting a mechanistic role of SLPI in OSCC progression and suggesting its potential for preventative treatment of at-risk oral lesions. Collectively, our results show for the first time the potential for SLPI as a mechanism-based, non-invasive biomarker of oral cancer progression with potential in preventive treatment.
Collapse
Affiliation(s)
- Ya Yang
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nelson L. Rhodus
- Oral Medicine, Diagnosis and Radiology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank G. Ondrey
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beverly R. K. Wuertz
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Zhu
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (YZ); (TJG)
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (TJG)
| |
Collapse
|
27
|
Dionne KR, Warnakulasuriya S, Zain RB, Cheong SC. Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory. Int J Cancer 2014; 136:503-15. [PMID: 24482244 DOI: 10.1002/ijc.28754] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 12/28/2022]
Abstract
Despite commendable progress in the prevention, detection, and treatment of a wide variety of solid tumor types, oral squamous cell carcinoma (OSCC) remains a significant health burden across the globe. OSCC carcinogenesis involves accumulation of genetic alterations that coincide with the multistep malignant transformation of normal oral epithelium. OSCC is often first diagnosed at late stages of the disease (advanced regional disease and/or metastasis). Delayed diagnosis precludes successful treatment and favorable outcomes. In clinical practice, opportunities exist to identify patients with oral potentially malignant disorders (OPMDs), which precede the development of cancer. This review addresses the current status of laboratory and clinical research on OPMDs, with emphasis on leukoplakia and erythroplakia. OSF is also presented, though there is a paucity of published studies on this disorder. We focus on findings that could translate into earlier diagnosis and more efficacious treatment of those lesions with significant malignant potential. We explore how markers of OPMD malignant transformation might be implemented into current diagnostic practice to help clinicians objectively stratify patients into treatment/follow-up groups according to relative risk. We provide an overview of recently concluded and ongoing OPMD chemoprevention trials. We describe laboratory OPMD models that can be used to not only to reveal the genetic and molecular intricacies of oral cancer but also to develop novel screening methods and therapeutic approaches. Finally, we call for targeted screening programs of at-risk populations in order to facilitate diagnosis and treatment of OPMD and early OSCC.
Collapse
Affiliation(s)
- Kalen R Dionne
- Faculty of Dentistry, Oral Cancer Research and Co-ordinating Centre (OCRCC), University of Malaya, Kuala Lumpur, Malaysia; Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Scientist Training Program, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO
| | | | | | | |
Collapse
|
28
|
Mak MP, William WN. Targeting the epidermal growth factor receptor for head and neck cancer chemoprevention. Oral Oncol 2014; 50:918-23. [PMID: 24412287 DOI: 10.1016/j.oraloncology.2013.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been implicated in head and neck squamous cell carcinoma (HNSCC) carcinogenesis. It is currently the only molecular target in head and neck cancers for which there are pharmacologic therapeutic interventions approved by regulatory agencies worldwide to treat advanced disease. Oral pre-malignant lesions have increased EGFR protein expression and increased egfr gene copy number compared to normal mucosa. Oral pre-malignant lesions with overexpression of EGFR or egfr gene copy number gain are at higher risk for malignant transformation. Inhibition of EGFR in pre-clinical models of oral pre-malignancies validates this approach as an effective way to reduce the incidence of oral cancer, and supports investigation of this strategy in the clinic. Clinical trials with EGFR targeted agents, including cetuximab, erlotinib, and vandetanib, are currently under way, some with promising preliminary results. If ultimately shown to reduce the risk of oral cancer, chemoprevention with EGFR inhibitors may significantly reduce morbidity and possibly mortality from HNSCC.
Collapse
Affiliation(s)
- Milena P Mak
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Yu C, Liu Y, Tan H, Li G, Su Z, Ren S, Zhu G, Tian Y, Qiu Y, Zhang X. Metadherin regulates metastasis of squamous cell carcinoma of the head and neck via AKT signalling pathway-mediated epithelial-mesenchymal transition. Cancer Lett 2013; 343:258-67. [PMID: 24099913 DOI: 10.1016/j.canlet.2013.09.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Our recent study suggested that metadherin (MTDH) is overexpressed in laryngeal squamous cell carcinoma. Here, we further investigated its role in promoting metastasis of squamous cell carcinoma of the head and neck (SCCHN). An immunohistochemistry analysis demonstrated that MTDH is elevated and positively correlated with metastasis in 189 primary SCCHN tissues. In vitro experiments demonstrated that MTDH overexpression enhanced the migratory and invasive ability of SCCHN cells. Moreover, MTDH induced epithelial-mesenchymal transition (EMT) by both regulating morphological changes and mediating the expression of the biomolecular makers E-cadherin and vimentin. In addition, MTDH mediated AKT activation, and all of the above effects were nearly completely blocked by the inhibition of AKT. Our results suggested that MTDH might promote the metastasis of SCCHN through AKT signalling pathway mediated-EMT.
Collapse
Affiliation(s)
- Changyun Yu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Haolei Tan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Zhongwu Su
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Shuling Ren
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China.
| |
Collapse
|
30
|
Mack B, Eggert C, Eder K, Imrich S, Baumeister P, Harréus U, Gires O. Rapid and non-enzymatic in vitro retrieval of tumour cells from surgical specimens. PLoS One 2013; 8:e55540. [PMID: 23383219 PMCID: PMC3561176 DOI: 10.1371/journal.pone.0055540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/28/2012] [Indexed: 11/19/2022] Open
Abstract
The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm(3) cubes termed explants, which are cultured 1-3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.
Collapse
Affiliation(s)
- Brigitte Mack
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
| | - Carola Eggert
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Eder
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
| | - Sannia Imrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Harréus
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
- * E-mail: (UH); (OG)
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Clinic, Ludwig-Maximilians-University, Munich, Germany
- * E-mail: (UH); (OG)
| |
Collapse
|
31
|
Shatalova EG, Klein-Szanto AJP, Devarajan K, Cukierman E, Clapper ML. Estrogen and cytochrome P450 1B1 contribute to both early- and late-stage head and neck carcinogenesis. Cancer Prev Res (Phila) 2012; 4:107-15. [PMID: 21205741 DOI: 10.1158/1940-6207.capr-10-0133] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the United States. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP) 1B1, examine the effect of estrogen on gene expression, and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation, and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER) β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3- to 3.6-fold relative to vehicle-treated controls (P = 0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, whereas supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%), and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P = 0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification of new targets for chemopreventive intervention.
Collapse
|
32
|
Stabile LP, He G, Lui VWY, Thomas S, Henry C, Gubish CT, Joyce S, Quesnelle KM, Siegfried JM, Grandis JR. c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res 2012; 19:380-92. [PMID: 23213056 DOI: 10.1158/1078-0432.ccr-12-1555] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Strategies to inhibit the EGF receptor (EGFR) using the tyrosine kinase inhibitor erlotinib have been associated with limited clinical efficacy in head and neck squamous cell carcinoma (HNSCC). Co-activation of alternative kinases may contribute to erlotinib resistance. EXPERIMENTAL DESIGN We generated HNSCC cells expressing dominant-active c-Src (DA-Src) to determine the contribution of c-Src activation to erlotinib response. RESULTS Expression of DA-Src conferred resistance to erlotinib in vitro and in vivo compared with vector-transfected control cells. Phospho-Met was strongly upregulated by DA-Src, and DA-Src cells did not produce hepatocyte growth factor (HGF). Knockdown of c-Met enhanced sensitivity to erlotinib in DA-Src cells in vitro, as did combining a c-Met or c-Src inhibitor with erlotinib. Inhibiting EGFR resulted in minimal reduction of phospho-Met in DA-Src cells, whereas complete phospho-Met inhibition was achieved by inhibiting c-Src. A c-Met inhibitor significantly sensitized DA-Src tumors to erlotinib in vivo, resulting in reduced Ki67 labeling and increased apoptosis. In parental cells, knockdown of endogenous c-Src enhanced sensitivity to erlotinib, whereas treatment with HGF to directly induce phospho-Met resulted in erlotinib resistance. The level of endogenous phospho-c-Src in HNSCC cell lines was also significantly correlated with erlotinib resistance. CONCLUSIONS Ligand-independent activation of c-Met contributes specifically to erlotinib resistance, not cetuximab resistance, in HNSCC with activated c-Src, where c-Met activation is more dependent on c-Src than on EGFR, providing an alternate survival pathway. Addition of a c-Met or c-Src inhibitor to erlotinib may increase efficacy of EGFR inhibition in patients with activated c-Src.
Collapse
Affiliation(s)
- Laura P Stabile
- Departments of Pharmacology & Chemical Biology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Korraah A, Odenthal M, Kopp M, Vigneswaran N, Sacks PG, Dienes HP, Stützer H, Niedermeier W. Induction of apoptosis and up-regulation of cellular proliferation in oral leukoplakia cell lines inside electric field. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:644-54. [PMID: 22668623 DOI: 10.1016/j.oooo.2011.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In dentistry, metallic alloys are used for dentures, restorative materials, and orthodontic devices. Electric voltages up to 950 mV may occur between different dental alloys in the oral cavity. This study aimed to investigate physiologic reactions of oral leukoplakia cells in vitro to electric fields. STUDY DESIGN A human leukoplakia cell line (MSK-LEUK1), cultivated in keratinocyte growth medium (KGM-2) supplemented with growth factors in 5% CO(2) humidified air at 37°C, was exposed to electric field strength of 1-20 V/m for 24 hours in a custom-made pulse chamber. The cells were then analyzed for proliferation with the use of BrdU assay and for apoptosis with the use of TUNEL assay. Findings were assessed with the use of fluorescent microscopy. Ultrastructural changes were studied by transmission electron microscopy. RESULTS Electric field strength of 1-10 V/m led to up-regulation of cell proliferation rate from 10.64% to 44.06% (P = .0001). The apoptotic index increased significantly (P = .0001) from 20.03% at 1 V/m to 46.56% at 10 V/m. Individual cell keratinization was seen in leukoplakia cells treated with 16 V/m. CONCLUSIONS Oral galvanism induces subcellular changes in oral precancer cells in vitro that closely simulate some of the morphologic features of oral squamous cell carcinoma cells in vivo.
Collapse
Affiliation(s)
- Ahmed Korraah
- Department of Prosthetic Dentistry, Dental School, University of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tuttle S, Hertan L, Daurio N, Porter S, Kaushick C, Li D, Myamoto S, Lin A, O'Malley BW, Koumenis C. The chemopreventive and clinically used agent curcumin sensitizes HPV (-) but not HPV (+) HNSCC to ionizing radiation, in vitro and in a mouse orthotopic model. Cancer Biol Ther 2012; 13:575-84. [PMID: 22441776 DOI: 10.4161/cbt.19772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy (RT) plays a critical role in the local-regional control of head and neck squamous cell carcinoma (HNSCC). However, the efficacy of RT in treating HNSCC is limited by severe normal tissue toxicity, predominantly mucositis. One pharmacological approach for increasing the clinical response to RT is the use of radiation response modifiers that preferentially sensitize tumor cells. Previously we demonstrated that curcumin, a natural plant polyphenol, increased the radiation sensitivity of HNSCC cells and that the observed sensitization was dependent on curcumin-mediated inhibition of thioredoxin reductase 1 (TxnRd1) a key cytosolic regulator of redox-dependent signaling. Here, we examined curcumin-induced radiation sensitization in HNSCC cell lines with differing HPV status and expressing different levels of TxnRd1, in vitro. The intrinsic radiation resistance of the HPV (-) cell lines was significantly higher than the HPV (+) cell lines used in our study. Notably, all of the HPV (-) cell lines expressed high levels of TxnRd1 and exhibited higher intrinsic resistance to RT. While curcumin was effective at increasing the radiation response of the resistant HPV (-) cell lines it had no effect on the HPV (+) cells. Based on these findings we employed an orthotopic, HPV (-) HNSCC tumor model in athymic nude mice to examine the effect of combining curcumin with fractionated RT, in vivo. The combination of curcumin feeding and fractionated RT had a significant effect on tumor doubling time and overall animal survival. We therefore propose that curcumin and RT should be considered as a first line treatment of HPV (-) HNSCC.
Collapse
Affiliation(s)
- Stephen Tuttle
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mohebati A, Guttenplan JB, Kochhar A, Zhao ZL, Kosinska W, Subbaramaiah K, Dannenberg AJ. Carnosol, a constituent of Zyflamend, inhibits aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and mutagenesis. Cancer Prev Res (Phila) 2012; 5:593-602. [PMID: 22374940 PMCID: PMC3324618 DOI: 10.1158/1940-6207.capr-12-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic helix-loop-helix family of transcription factors, plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. In the upper aerodigestive tract of humans, tobacco smoke, a source of PAHs, activates the AhR leading to increased expression of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. Inhibitors of Hsp90 ATPase cause a rapid decrease in levels of AhR, an Hsp90 client protein, and thereby block PAH-mediated induction of CYP1A1 and CYP1B1. The main objective of this study was to determine whether Zyflamend, a polyherbal preparation, suppressed PAH-mediated induction of CYP1A1 and CYP1B1 and inhibited DNA adduct formation and mutagenesis. We also investigated whether carnosol, one of multiple phenolic antioxidants in Zyflamend, had similar inhibitory effects. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) and skin (HaCaT) with benzo[a]pyrene (B[a]P), a prototypic PAH, induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Both Zyflamend and carnosol suppressed these effects of B[a]P. Notably, both Zyflamend and carnosol inhibited Hsp90 ATPase activity and caused a rapid reduction in AhR levels. The formation of B[a]P-induced DNA adducts and mutagenesis was also inhibited by Zyflamend and carnosol. Collectively, these results show that Zyflamend and carnosol inhibit Hsp90 ATPase leading to reduced levels of AhR, suppression of B[a]P-mediated induction of CYP1A1 and CYP1B1, and inhibition of mutagenesis. Carnosol-mediated inhibition of Hsp90 ATPase activity can help explain the chemopreventive activity of herbs such as Rosemary, which contain this phenolic antioxidant.
Collapse
Affiliation(s)
- Arash Mohebati
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Joseph B. Guttenplan
- Department of Basic Sciences, College of Dentistry; Department of Environmental Medicine, School of Medicine, New York University, New York, New York
| | - Amit Kochhar
- Department of Medicine, Weill Medical College of Cornell University, New York, New York
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Zhong-Lin Zhao
- Department of Basic Sciences, College of Dentistry; Department of Environmental Medicine, School of Medicine, New York University, New York, New York
| | - Wieslawa Kosinska
- Department of Basic Sciences, College of Dentistry; Department of Environmental Medicine, School of Medicine, New York University, New York, New York
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
36
|
Cao W, Younis RH, Li J, Chen H, Xia R, Mao L, Chen W, Ren H. EZH2 promotes malignant phenotypes and is a predictor of oral cancer development in patients with oral leukoplakia. Cancer Prev Res (Phila) 2011; 4:1816-1824. [PMID: 21697275 PMCID: PMC3677701 DOI: 10.1158/1940-6207.capr-11-0130] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral leukoplakia (OL) is the most common premalignancy in the oral cavity. A small proportion of OLs progresses to oral squamous cell carcinoma (OSCC). To assess OSCC risk of OLs, we investigated the role of the transcriptional repressor enhancer of zeste homolog 2 (EZH2) in oral tumorigenesis and its clinical implication as an OSCC risk predictor. Immunohistochemistry was used to measure EZH2 expression in OLs from 76 patients, including 37 who later developed OSCC and 39 who did not. EZH2 expression was associated with clinicopathologic parameters and clinical outcomes. To determine the biological role of EZH2 in OL, EZH2 level was reduced using EZH2 siRNAs in Leuk-1 cells, its impact on cell cycle, anchorage-dependent/independent growth, and invasion was assessed. We observed strong EZH2 expression in 34 (45%), moderate expression in 26 (34%), and weak/no expression in 16 (21%) of the OLs. The higher EZH2 levels were strongly associated with dysplasia (P < 0.001) and OSCC development (P < 0.0001). Multivariate analysis indicated that EZH2 expression was the only independent factor for OSCC development (P < 0.0001). At 5 years after diagnosis, 80% of patients whose OLs expressed strong EZH2 developed OSCC whereas only 24% patients with moderate and none with weak/no EZH2 expression did so (P < 0.0001). In Leuk-1 cells, EZH2 downregulation resulted in G(1) arrest; decreased invasion capability, decreased anchorage-independent growth; downregulation of cyclin D1 and upregulation of p15(INK4B). Our data suggest that EZH2 plays an important role in OL malignant transformation and may be a biomarker in predicting OSCC development in patients with OLs.
Collapse
MESH Headings
- Adult
- Aged
- Blotting, Western
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion
- Cell Cycle
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cohort Studies
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer of Zeste Homolog 2 Protein
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Leukoplakia, Oral/complications
- Leukoplakia, Oral/metabolism
- Leukoplakia, Oral/pathology
- Male
- Middle Aged
- Mouth Neoplasms/etiology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Invasiveness
- Phenotype
- Polycomb Repressive Complex 2
- Prognosis
- RNA, Small Interfering/genetics
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Jiang Li
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Haiyan Chen
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Ronghui Xia
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St, Baltimore, MD, 21201, USA
| |
Collapse
|
37
|
Wen J, Nikitakis NG, Chaisuparat R, Greenwell-Wild T, Gliozzi M, Jin W, Adli A, Moutsopoulos N, Wu T, Warburton G, Wahl SM. Secretory leukocyte protease inhibitor (SLPI) expression and tumor invasion in oral squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2866-78. [PMID: 21641406 DOI: 10.1016/j.ajpath.2011.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/04/2011] [Accepted: 02/24/2011] [Indexed: 01/16/2023]
Abstract
Differential expression of secretory leukocyte protease inhibitor (SLPI) impacts on tumor progression. SLPI directly inhibits elastase and other serine proteases, and regulates matrix metalloproteinases, plasminogen activation, and plasmin downstream targets to influence invasion. We examined tissues from human oral squamous cell carcinoma (OSCC) for SLPI expression in parallel with proteases associated with tumor progression and evaluated their relationships using tumor cell lines. Significantly decreased SLPI was detected in OSCC compared to normal oral epithelium. Furthermore, an inverse correlation between SLPI and histological parameters associated with tumor progression, including stage of invasion, pattern of invasion, invasive cell grade, and composite histological tumor score was evident. Conversely, elevated plasmin and elastase were positively correlated with histological parameters of tumor invasion. In addition to its known inhibition of elastase, we identify SLPI as a novel inhibitor of plasminogen activation through its interaction with annexin A2 with concomitant reduced plasmin generation by macrophages and OSCC cell lines. In an in vitro assay measuring invasive activity, SLPI blocked protease-dependent tumor cell migration. Our data suggest that SLPI may possess antitumorigenic activity by virtue of its ability to interfere with multiple requisite proteolytic steps underlying tumor cell invasion and may provide insight into potential stratification of oral cancer according to risk of occult metastasis, guiding treatment strategies.
Collapse
Affiliation(s)
- Jie Wen
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Interactions between host and oral commensal microorganisms are key events in health and disease status. Can J Infect Dis 2011; 13:47-51. [PMID: 18159373 DOI: 10.1155/2002/580476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Accepted: 10/25/2001] [Indexed: 11/17/2022] Open
Abstract
The oral cavity has sometimes been described as a mirror that reflects a person's health. Systemic disease such as diabetes or vitamin deficiency may be seen as alterations in the oral mucosa. A variety of external factors cause changes in the oral mucosa, thus altering mucosal structure and function, and promoting oral pathologies (most frequently bacterial, fungal and viral infections). Little is known, however, about immune surveillance mechanisms that involve the oral mucosa.There is no direct contact between specific immune cells in the basal epithelium and microorganisms in the upper layers of the oral mucosa. The author's hypothesis is that the protective immunity is conveyed through epithelial cells. The present brief review assesses the oral mucosa's role as the main defense in the interactions between the host and the oral microbial community. A unique model was used to investigate these interactions as the cause of oral disease and to develop new treatments that exploit our knowledge of the host-microorganism relationship.
Collapse
|
39
|
Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC). Genes (Basel) 2010; 1:388-412. [PMID: 24710094 PMCID: PMC3966227 DOI: 10.3390/genes1030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 09/30/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023] Open
Abstract
Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC) established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogenetically characterized using array CGH, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH). As a starting point for the investigation of genetic markers predicting radiosensitivity in tumor cells, irradiation experiments were carried out and radiation responses of CAL 33 have been determined. Radiosensitivity of CAL 33 cells was intermediate when compared to published data on tumor cell lines.
Collapse
|
40
|
Boyle JO, Gümüs ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila) 2010; 3:266-78. [PMID: 20179299 DOI: 10.1158/1940-6207.capr-09-0192] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon-induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents.
Collapse
Affiliation(s)
- Jay O Boyle
- Department of Surgery (Head and Neck Service),Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chakravarti N, Kadara H, Yoon DJ, Shay JW, Myers JN, Lotan D, Sonenberg N, Lotan R. Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res (Phila) 2010; 3:331-8. [PMID: 20145189 DOI: 10.1158/1940-6207.capr-09-0076] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Curcumin has shown some promise in the prevention of oral carcinogenesis by mechanism(s) that are still not completely resolved. Messenger RNA translation is mediated in eukaryotes by the eIF4F complex composed of eukaryotic translation initiation factors eIF4E, eIF4G, and eIF4A. Overexpression of some of these components or the inactivation of initiation repressor proteins (4E-BP1) has been implicated in cancer development including oral carcinogenesis by affecting cell survival, angiogenesis, and tumor growth and invasion. In this study, we examined the possibility that curcumin affects the translational machinery differently in normal, immortalized normal, leukoplakia, and malignant cells. Curcumin treatment in vitro inhibited the growth of immortalized oral mucosa epithelial cells (NOM9-CT) and the leukoplakia cells (MSK-Leuk1s) as well as in the UMSCC22B and SCC4 cells derived from head and neck squamous cell carcinoma. Curcumin only exerted minor effects on the growth of normal oral epithelial cells (NOM9). In the immortalized, leukoplakia, and cancer cells, curcumin inhibited cap-dependent translation by suppressing the phosphorylation of 4E-BP1, eIF4G, eIF4B, and Mnk1, and also reduced the total levels of eIF4E and Mnk1. Our findings show that immortalized normal, leukoplakia, and malignant oral cells are more sensitive to curcumin and show greater modulation of protein translation machinery than the normal oral cells, indicating that targeting this process may be an important approach to chemoprevention in general and for curcumin in particular.
Collapse
Affiliation(s)
- Nitin Chakravarti
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Venza I, Visalli M, Tripodo B, De Grazia G, Loddo S, Teti D, Venza M. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br J Dermatol 2009; 162:1093-7. [PMID: 19845668 DOI: 10.1111/j.1365-2133.2009.09560.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several cancer-related genes are silenced by promoter hypermethylation in skin cancers. However, to date the somatic epigenetic events that occur in cutaneous squamous cell carcinoma (SCC) tumorigenesis have not been well defined. OBJECTIVES To examine epigenetic abnormalities of FOXE1, a gene located on chromosome 9q22, a region frequently lost in SCC. METHODS We investigated the methylation status of FOXE1 in 60 cases of cutaneous SCC by methylation-specific polymerase chain reaction, and comparatively examined mRNA and protein expression by real-time polymerase chain reaction and Western blot, respectively. RESULTS We found a higher frequency of FOXE1 promoter hypermethylation in SCCs (55%), as compared with the adjacent uninvolved skin (12%) and blood control samples (9.5%). FOXE1 methylation was frequently seen in association with a complete absence of or downregulated gene expression. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine resulted in profound reactivation of FOXE1 expression. CONCLUSIONS These results indicate that FOXE1 is a crucial player in development of cutaneous SCC.
Collapse
Affiliation(s)
- I Venza
- Department of Surgical Specialities, Azienda Ospedaliera Universitaria G. Martino, Via Consolare Valeria, 1 (Gazzi) 98125, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Nair S, Kekatpure VD, Judson BL, Rifkind AB, Granstein RD, Boyle JO, Subbaramaiah K, Guttenplan JB, Dannenberg AJ. UVR exposure sensitizes keratinocytes to DNA adduct formation. Cancer Prev Res (Phila) 2009; 2:895-902. [PMID: 19789301 DOI: 10.1158/1940-6207.capr-09-0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UV radiation (UVR) and exposure to tobacco smoke, a source of polycyclic aromatic hydrocarbons (PAH), have been linked to skin carcinogenesis. UVR-mediated activation of the aryl hydrocarbon receptor (AhR) stimulates the transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAH to genotoxic metabolites. We determined whether UVR exposure sensitized human keratinocytes to PAH-induced DNA adduct formation. UVR exposure induced CYP1A1 and CYP1B1 in HaCaT cells, an effect that was mimicked by photooxidized tryptophan (aTRP) and FICZ, a component of aTRP. UVR exposure or pretreatment with aTRP or FICZ also sensitized cells to benzo(a)pyrene (B[a]P)-induced DNA adduct formation. alphaNF, an AhR antagonist, suppressed UVR-, aTRP-, and FICZ-mediated induction of CYP1A1 and CYP1B1 and inhibited B[a]P-induced DNA adduct formation. Treatment with 17-AAG, an Hsp90 inhibitor, caused a marked decrease in levels of AhR; inhibited UVR-, aTRP-, and FICZ-mediated induction of CYP1A1 and CYP1B1; and blocked the sensitization of HaCaT cells to B[a]P-induced DNA adduct formation. FICZ has been suggested to be a physiologic ligand of the AhR that may have systemic effects. Hence, studies of FICZ were also carried out in MSK-Leuk1 cells, a model of oral leukoplakia. Pretreatment with alpha-naphthoflavone or 17-AAG blocked FICZ-mediated induction of CYP1A1 and CYP1B1, and suppressed the increased B[a]P-induced DNA adduct formation. Collectively, these results suggest that sunlight may activate AhR signaling and thereby sensitize cells to PAH-mediated DNA adduct formation. Antagonists of AhR signaling may have a role in the chemoprevention of photocarcinogenesis.
Collapse
Affiliation(s)
- Sudhir Nair
- Department of Medicine and Weill Cornell Cancer Center, 525 East 68th Street, Room F-206, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen KM, Sacks PG, Spratt TE, Lin JM, Boyiri T, Schwartz J, Richie JP, Calcagnotto A, Das A, Bortner J, Zhao Z, Amin S, Guttenplan J, El-Bayoumy K. Modulations of benzo[a]pyrene-induced DNA adduct, cyclin D1 and PCNA in oral tissue by 1,4-phenylenebis(methylene)selenocyanate. Biochem Biophys Res Commun 2009; 383:151-5. [PMID: 19344691 DOI: 10.1016/j.bbrc.2009.03.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/26/2022]
Abstract
Tobacco smoking is an important cause of human oral squamous cell carcinoma (SCC). Tobacco smoke contains multiple carcinogens include polycyclic aromatic hydrocarbons typified by benzo[a]pyrene (B[a]P). Surgery is the conventional treatment approach for SCC, but it remains imperfect. However, chemoprevention is a plausible strategy and we had previously demonstrated that 1,4-phenylenebis(methylene)selenocyanate (p-XSC) significantly inhibited tongue tumors-induced by the synthetic 4-nitroquinoline-N-oxide (not present in tobacco smoke). In this study, we demonstrated that p-XSC is capable of inhibiting B[a]P-DNA adduct formation, cell proliferation, cyclin D1 expression in human oral cells in vitro. In addition, we showed that dietary p-XSC inhibits B[a]P-DNA adduct formation, cell proliferation and cyclin D1 protein expression in the mouse tongue in vivo. The results of this study are encouraging to further evaluate the chemopreventive efficacy of p-XSC initially against B[a]P-induced tongue tumors in mice and ultimately in the clinic.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kekatpure VD, Dannenberg AJ, Subbaramaiah K. HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem 2009; 284:7436-45. [PMID: 19158084 PMCID: PMC2658039 DOI: 10.1074/jbc.m808999200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/21/2009] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic helix-loop-helix family of transcription factors, binds with high affinity to polycyclic aromatic hydrocarbons (PAH) and the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin). Most of the biochemical, biological, and toxicological responses caused by exposure to PAHs and polychlorinated dioxins are mediated, at least in part, by the AhR. The AhR is a client protein of Hsp90, a molecular chaperone that can be reversibly acetylated with functional consequences. The main objective of this study was to determine whether modulating Hsp90 acetylation would affect ligand-mediated activation of AhR signaling. Trichostatin A and suberoylanilide hydroxamic acid, two broad spectrum HDAC inhibitors, blocked PAH and dioxin-mediated induction of CYP1A1 and CYP1B1 in cell lines derived from the human aerodigestive tract. Silencing HDAC6 or treatment with tubacin, a pharmacological inhibitor of HDAC6, also suppressed the induction of CYP1A1 and CYP1B1. Inhibiting HDAC6 led to hyperacetylation of Hsp90 and loss of complex formation with AhR, cochaperone p23, and XAP-2. Inactivation or silencing of HDAC6 also led to reduced binding of ligand to the AhR and decreased translocation of the AhR from cytosol to nucleus in response to ligand. Ligand-induced recruitment of the AhR to the CYP1A1 and CYP1B1 promoters was inhibited when HDAC6 was inactivated. Mutation analysis of Hsp90 Lys(294) shows that its acetylation status is a strong determinant of interactions with AhR and p23 in addition to ligand-mediated activation of AhR signaling. Collectively, these results show that HDAC6 activity regulates the acetylation of Hsp90, the ability of Hsp90 to chaperone the AhR, and the expression of AhR-dependent genes. Given the established link between activation of AhR signaling and xenobiotic metabolism, inhibitors of HDAC6 may alter drug or carcinogen metabolism.
Collapse
Affiliation(s)
- Vikram D Kekatpure
- Department of Medicine and the Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
46
|
William WN, Lee JJ, Lippman SM, Martin JW, Chakravarti N, Tran HT, Sabichi AL, Kim ES, Feng L, Lotan R, Papadimitrakopoulou VA. High-dose fenretinide in oral leukoplakia. Cancer Prev Res (Phila) 2009; 2:22-6. [PMID: 19139014 DOI: 10.1158/1940-6207.capr-08-0100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that low-dose fenretinide (200 mg/d) had limited activity in retinoid-resistant oral leukoplakia (34% response rate) possibly because serum drug levels were insufficient to induce retinoid receptor-independent apoptosis. Therefore, we designed the single-arm phase II trial reported here to investigate whether higher-dose fenretinide would improve leukoplakia response over that of our previous study. Leukoplakia patients received fenretinide (900 mg/m(2) twice daily) in four 3-week cycles (1 week on drug followed by 2 weeks off). At week 12, clinical responses were determined and blood samples were collected for serum drug level assessments. A planned interim futility analysis led to early trial closure after the initial 15 (of 25 planned) patients because only 3 (20%) had a partial response (stopping rule: <or=4 responses in first 16 patients). Fenretinide was well tolerated--only one grade 3 adverse event (diarrhea) occurred. Serum fenretinide levels changed from 0 (baseline) to 0.122 +/- 0.093 micromol/L (week 12). In correlative in vitro studies, high-dose fenretinide inhibited the growth of head and neck cancer cells more and oral leukoplakia cells less than did lower doses of fenretinide. This result is consistent with our clinical finding that high-dose fenretinide did not improve on the historical response rate of lower-dose fenretinide in our previous oral leukoplakia trial.
Collapse
Affiliation(s)
- William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hughes D, Guttenplan JB, Marcus CB, Subbaramaiah K, Dannenberg AJ. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila) 2008; 1:485-93. [PMID: 19138996 PMCID: PMC2680610 DOI: 10.1158/1940-6207.capr-08-0149] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (HSP90), plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke, a source of PAHs, activates the AhR, leading to enhanced transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. The main objectives of this study were to determine whether HSP90 inhibitors suppress PAH-mediated induction of CYP1A1 and CYP1B1 or block benzo(a)pyrene [B(a)P]-induced formation of DNA adducts. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) or esophageal squamous cell carcinoma (KYSE450) with a saline extract of tobacco smoke, B(a)P, or dioxin induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Inhibitors of HSP90 [17-allylamino-17-demethoxygeldanamycin (17-AAG); celastrol] suppressed these inductive effects of PAHs. Treatment with 17-AAG and celastrol also caused a rapid and marked decrease in amounts of AhR protein without modulating levels of HSP90. The formation of B(a)P-induced DNA adducts in MSK-Leuk1 cells was inhibited by 17-AAG, celastrol, and alpha-naphthoflavone, a known AhR antagonist. The reduction in B(a)P-induced DNA adducts was due, at least in part, to reduced metabolic activation of B(a)P. Collectively, these results suggest that 17-AAG and celastrol, inhibitors of HSP90, suppress the activation of AhR-dependent gene expression, leading, in turn, to reduced formation of B(a)P-induced DNA adducts. Inhibitors of HSP90 may have a role in chemoprevention in addition to cancer therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Benzoquinones/pharmacology
- Benzoquinones/therapeutic use
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/prevention & control
- Cells, Cultured
- Chemoprevention/methods
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1B1
- DNA Adducts/drug effects
- DNA Adducts/metabolism
- Drug Evaluation, Preclinical
- Enzyme Activation/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/prevention & control
- Humans
- Lactams, Macrocyclic/pharmacology
- Lactams, Macrocyclic/therapeutic use
- Models, Biological
- Pentacyclic Triterpenes
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/prevention & control
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/physiology
- Transcription, Genetic/drug effects
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Duncan Hughes
- Department of General Surgery, Weill Cornell Medical College, New York, NY
| | - Joseph B. Guttenplan
- Department of Basic Sciences, College of Dentistry, New York University, New York, NY
- Department of Environmental Medicine, School of Medicine, New York University, New York, NY
| | - Craig B. Marcus
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | | | | |
Collapse
|
48
|
Zhang H, Su L, Müller S, Tighiouart M, Xu Z, Zhang X, Shin HJC, Hunt J, Sun SY, Shin DM, Chen ZG. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma. Br J Cancer 2008; 99:1684-94. [PMID: 19002186 PMCID: PMC2584955 DOI: 10.1038/sj.bjc.6604735] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin beta1 and Src. Further application of integrin beta1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin beta1- and Src-mediated cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- H Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Roberg K, Ceder R, Farnebo L, Norberg-Spaak L, Grafström RC. Multiple genotypic aberrances associate to terminal differentiation-deficiency of an oral squamous cell carcinoma in serum-free culture. Differentiation 2008; 76:868-80. [DOI: 10.1111/j.1432-0436.2008.00267.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Muller S, Su L, Tighiouart M, Saba N, Zhang H, Shin DM, Chen Z(G. Distinctive E‐cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma. Cancer 2008; 113:97-107. [DOI: 10.1002/cncr.23557] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|