1
|
Gao X, Gaitan-Espitia JD, Lee SY. Nitrogen enrichment changed the biogeochemical role of sesarmid crabs by shifting their diets in tropical mangrove ecosystems. MARINE POLLUTION BULLETIN 2024; 201:116183. [PMID: 38412799 DOI: 10.1016/j.marpolbul.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Sesarmid crabs modulate nutrient dynamics of tropical mangroves through their leaf-eating habit. How N enrichment may alter this regulatory role, and the implications for mangrove nutrient dynamics, remain unclear. Using a mesocosm experiment, we tested how N enrichment could change the microphytobenthos (MPB) communities, thus modifying the crabs' diet and their role in nutrient dynamics. The factorial experiment combined with field investigation revealed a significant increase in the relative abundance of cyanobacteria. Stable isotope analysis suggested that the main carbon source of crabs shifted from leaf litter to cyanobacteria in mesocosms under both high (20×) and low (2×) N enrichment treatments. The significantly lower total cellulase activity of crabs in the mesocosms might explain the decreased carbon assimilation from leaf litter. The changes in the MPB and the microbiome with N enrichment in the presence of crabs may drive significantly higher carbon processing rate in tropical mangroves.
Collapse
Affiliation(s)
- Xueqin Gao
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Shing Yip Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; Australian Rivers Institute, Griffith University Gold Coast campus, Southport, Qld 4222, Australia.
| |
Collapse
|
2
|
Manthey JD, Girón JC, Hruska JP. Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus Camponotus) and their Blochmannia endosymbionts. Ecol Evol 2022; 12:e9026. [PMID: 35795355 PMCID: PMC9251289 DOI: 10.1002/ece3.9026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole-genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole-genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome-wide estimates of genetic drift and number of genes with relaxed selection pressures.
Collapse
Affiliation(s)
- Joseph D. Manthey
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| | - Jennifer C. Girón
- Department of EntomologyPurdue UniversityWest LafayetteIndianaUSA
- Natural Science Research LaboratoryMuseum of Texas Tech UniversityLubbockTexasUSA
| | - Jack P. Hruska
- Department of Biological SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
3
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
4
|
Ip JCH, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, Tao J, Cai Z, Qian PY, Qiu JW. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Mol Biol Evol 2021; 38:502-518. [PMID: 32956455 PMCID: PMC7826175 DOI: 10.1093/molbev/msaa241] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host’s high dependence on the symbiont for nutrition. Overall, the host–symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuang Han
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Haibin Zhang
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Jiangong Wei
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Hongbin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1015-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Johnson SB, Krylova EM, Audzijonyte A, Sahling H, Vrijenhoek RC. Phylogeny and origins of chemosynthetic vesicomyid clams. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1252438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shannon B. Johnson
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Elena M. Krylova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prospect 36, 117997 Moscow, Russia
| | - Asta Audzijonyte
- Fisheries and Environmental Management Group, Department of Environmental Sciences, University of Helsinki, Viikinaari 2, P.O. Box 65, FIN-00014, Finland
| | - Heiko Sahling
- MARUM – Center for Marine Environment Sciences and Faculty of Geosciences, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
| | - Robert C. Vrijenhoek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
7
|
Salerno JL, Bowen BW, Rappé MS. Biogeography of planktonic and coral-associated microorganisms across the Hawaiian Archipelago. FEMS Microbiol Ecol 2016; 92:fiw109. [DOI: 10.1093/femsec/fiw109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
|
8
|
Wentrup C, Wendeberg A, Huang JY, Borowski C, Dubilier N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME JOURNAL 2013; 7:1244-7. [PMID: 23389105 PMCID: PMC3660682 DOI: 10.1038/ismej.2013.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4–21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles⩾9 mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.
Collapse
Affiliation(s)
- Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Symbiosis Group, Bremen, Germany.
| | | | | | | | | |
Collapse
|
9
|
Mori K, Suzuki KI, Urabe T, Sugihara M, Tanaka K, Hamada M, Hanada S. Thioprofundum hispidum sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of Thioalkalispiraceae fam. nov. in the order Chromatiales. Int J Syst Evol Microbiol 2011; 61:2412-2418. [DOI: 10.1099/ijs.0.026963-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A novel mesophilic, facultatively anaerobic, sulfur-oxidizing bacterial strain, designated gps61T, was isolated from a surface rock sample collected from the hydrothermal field of Suiyo Seamount on the Izu-Bonin Arc in the Western Pacific Ocean. Cells of the isolate were rod-shaped with a single sheathed polar flagellum. Neither extensive internal membranes nor storage materials were present in the cells. In a 20 % CO2 atmosphere, strain gps61T grew using thiosulfate, sulfur or tetrathionate as electron donors and oxygen or nitrate as electron acceptors. Other substrates, including organic acids and sugars, did not support growth, indicating that strain gps61T was an obligate chemolithoautotroph. 16S rRNA gene sequence analysis revealed that strain gps61T was closely related to Thioprofundum lithotrophicum 106T (98.5 % sequence similarity) in the order Chromatiales. Phylogenetic trees grouped strain gps61T and Thioprofundum lithotrophicum in the same cluster along with Thioalkalispira microaerophila and Thiohalophilus thiocyanoxidans, but it was apparent from the analysis that the novel strain had definitely departed from the family lineage. On the basis of its phylogenetic position along with its morphological and physiological characteristics, strain gps61T ( = NBRC 101261T = DSM 18546T) represents a novel species of the genus Thioprofundum, for which the name Thioprofundum hispidum sp. nov. is proposed. In addition, we propose a novel family name, Thioalkalispiraceae, in the order Chromatiales, to accommodate the genera Thioalkalispira, Thiohalophilus and Thioprofundum.
Collapse
Affiliation(s)
- Koji Mori
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken-ichiro Suzuki
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Maki Sugihara
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kenji Tanaka
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Moriyuki Hamada
- Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Hanada
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
10
|
TAYLOR JOHND, GLOVER EMILYA, SMITH LISA, DYAL PATRICIA, WILLIAMS SUZANNET. Molecular phylogeny and classification of the chemosymbiotic bivalve family Lucinidae (Mollusca: Bivalvia). Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2011.00700.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Brissac T, Merçot H, Gros O. Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol 2010; 75:63-76. [DOI: 10.1111/j.1574-6941.2010.00989.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Genetics and Evolution of Deep-Sea Chemosynthetic Bacteria and Their Invertebrate Hosts. TOPICS IN GEOBIOLOGY 2010. [DOI: 10.1007/978-90-481-9572-5_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Brissac T, Gros O, Merçot H. Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol 2009; 67:261-7. [DOI: 10.1111/j.1574-6941.2008.00626.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Saito H. Identification of novel n-4 series polyunsaturated fatty acids in a deep-sea clam, Calyptogena phaseoliformis. J Chromatogr A 2007; 1163:247-59. [PMID: 17604037 DOI: 10.1016/j.chroma.2007.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 05/09/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Novel fatty acids originated from the cold-seep clam Calyptogena phaseoliformis, collected from hydrothermal vents in the Japan Trench at a depth of 6354-6367 m, were determined by using gas chromatography-mass spectrometry analysis of the 4,4-dimethyloxazoline derivatives. The major fatty acids present in the C. phaseoliformis lipids belong to the n-4 family non-methylene interrupted polyunsaturated fatty acids (NMI-PUFA): 20:3n-4,7,15, 20:4n-1,4,7,15, and 21:3n-4,7,16, with significant levels of 20:2n-7,15 and 21:2n-7,16 as non-methylene interrupted n-7 dienes. Compared with the lipids of shallow-water clam Mactra chinensis, which contains photosynthetic n-3 PUFA, such as docosahexaenoic acid and icosapentaenoic acid, C. phaseoliformis might have an intrinsic mechanism in vivo so as to maintain the fluidity of the high-melting fatty acids in the membrane lipids by exogenous n-4 family PUFA adaptation as substitutes. Such special kinds of fatty acids are assimilated by the symbiotic chemosynthetic bacteria, which use geothermal energy and minerals from the cold-seep vents. Its unique fatty acid composition corresponding to the novel n-4 family NMI-PUFA markedly differs from those of the reported lipid compositions of other marine animals, which depend on the marine grazing food chain originating from phytoplankton. Thus, the present findings confirm a perfect and closed novel food chain in the cold-seep bivalve and in its symbionts, which is independent from the photosynthetic food chain.
Collapse
Affiliation(s)
- Hiroaki Saito
- National Research Institute of Fisheries Science, 2-12-4 Fuku-ura, Kanazawa-ku, Yokohama 236-8648, Japan.
| |
Collapse
|
15
|
Structural and ultrastructural analysis of the gills in the bacterial-bearing species Thyasira falklandica (Bivalvia, Mollusca). ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0034-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Duperron S, Sibuet M, MacGregor BJ, Kuypers MMM, Fisher CR, Dubilier N. Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environ Microbiol 2007; 9:1423-38. [PMID: 17504480 DOI: 10.1111/j.1462-2920.2007.01259.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cold seeps in the Gulf of Mexico are often dominated by mussels of the genus Bathymodiolus that harbour symbiotic bacteria in their gills. In this study, we analysed symbiont diversity, abundance and metabolic potential in three mussel species from the northern Gulf of Mexico: Bathymodiolus heckerae from the West Florida Escarpment, Bathymodiolus brooksi from Atwater Valley and Alaminos Canyon, and 'Bathymodiolus' childressi, which co-occurs with B. brooksi in Alaminos Canyon. Comparative 16S rRNA sequence analysis confirmed a single methanotroph-related symbiont in 'B.' childressi and a dual symbiosis with a methanotroph- and thiotroph-related symbiont in B. brooksi. A previously unknown diversity of four co-occurring symbionts was discovered in B. heckerae: a methanotroph, two phylogenetically distinct thiotrophs and a methylotroph-related phylotype not previously described from any marine invertebrate symbiosis. A gene characteristic of methane-oxidzing bacteria, pmoA, was identified in all three mussel species confirming the methanotrophic potential of their symbionts. Stable isotope analyses of lipids and whole tissue also confirmed the importance of methanotrophy in the carbon nutrition of all of the mussels. Analyses of absolute and relative symbiont abundance in B. heckerae and B. brooksi using fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization indicated a clear dominance of methanotrophic over thiotrophic symbionts in their gill tissues. A site-dependent variability in total symbiont abundance was observed in B. brooksi, with specimens from Alaminos Canyon harbouring much lower densities than those from Atwater Valley. This shows that symbiont abundance is not species-specific but can vary considerably between populations.
Collapse
|
17
|
Caro A, Gros O, Got P, De Wit R, Troussellier M. Characterization of the population of the sulfur-oxidizing symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by single-cell analyses. Appl Environ Microbiol 2007; 73:2101-9. [PMID: 17259363 PMCID: PMC1855656 DOI: 10.1128/aem.01683-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 mum in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host.
Collapse
Affiliation(s)
- Audrey Caro
- UMR-CNRS 5119, Laboratoire Ecosystèmes Lagunaires, CC 93, Université Montpellier II, 34095 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
18
|
Duperron S, Fiala-Médioni A, Caprais JC, Olu K, Sibuet M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol Ecol 2007; 59:64-70. [PMID: 17233745 DOI: 10.1111/j.1574-6941.2006.00194.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Symbioses between lucinid clams (Bivalvia: Lucinidae) and autotrophic sulphide-oxidizing bacteria have mainly been studied in shallow coastal species, and information regarding deep-sea species is scarce. Here we study the symbiosis of a clam, resembling Lucinoma kazani, which was recently collected in sediment cores from new cold-seep sites in the vicinity of the Nile deep-sea fan, eastern Mediterranean, at depths ranging from 507 to 1691 m. A dominant bacterial phylotype, related to the sulphide-oxidizing symbiont of Lucinoma aequizonata, was identified in gill tissue by comparative 16S rRNA gene sequence analysis. A second phylotype, related to spirochete sequences, was identified twice in a library of 94 clones. Comparative analyses of gene sequences encoding the APS reductase alpha subunit and ribulose-1,5-bisphosphate carboxylase oxygenase support the hypothesis that the dominant symbiont can perform sulphide oxidation and autotrophy. Transmission electron micrographs of gills confirmed the dominance of sulphide-oxidizing bacteria, which display typical vacuoles, and delta(13)C values measured in gill and foot tissue further support the hypothesis for a chemoautotrophic-sourced host carbon nutrition.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7138, Adaptation aux milieux extrêmes, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Stewart FJ, Cavanaugh CM. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)--model systems for studies of symbiont-host adaptation. Antonie van Leeuwenhoek 2006; 90:343-60. [PMID: 17028934 DOI: 10.1007/s10482-006-9086-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Endosymbioses between chemosynthetic bacteria and marine invertebrates are remarkable biological adaptations to life in sulfide-rich environments. In these mutualistic associations, sulfur-oxidizing chemoautotrophic bacteria living directly within host cells both aid in the detoxification of toxic sulfide and fix carbon to support the metabolic needs of the host. Though best described for deep-sea vents and cold seeps, these symbioses are ubiquitous in shallow-water reducing environments. Indeed, considerable insight into sulfur-oxidizing endosymbioses in general comes from detailed studies of shallow-water protobranch clams in the genus Solemya. This review highlights the impressive body of work characterizing bacterial symbiosis in Solemya species, all of which are presumed to harbor endosymbionts. In particular, studies of the coastal Atlantic species Solemya velum and its larger Pacific congener Solemya reidi are the foundation for our understanding of the metabolism and physiology of marine bivalve symbioses, which are now known to occur in five families. Solemya velum, in particular, is an excellent model organism for symbiosis research. This clam can be collected easily from coastal eelgrass beds and maintained in laboratory aquaria for extended periods. In addition, the genome of the S. velum symbiont is currently being sequenced. The integration of genomic data with additional experimental analyses will help reveal the molecular basis of the symbiont-host interaction in Solemya, thereby complementing the wide array of research programs aimed at better understanding the diverse relationships between bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
20
|
Arakawa S, Sato T, Yoshida Y, Usami R, Kato C. Comparison of the microbial diversity in cold-seep sediments from different depths in the Nankai Trough. J GEN APPL MICROBIOL 2006; 52:47-54. [PMID: 16598158 DOI: 10.2323/jgam.52.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have investigated the molecular phylogeny of cold-seep sediments obtained from the Nankai Trough, at depths of about 600, 2,000, and 3,300 m, and compared the microbial diversity profiles of those sediments samples. The gamma-Proteobacteria that might function as sulfide oxidizers and the symbiotically related delta-Proteobacteria which might function as sulfate reducers were identified amongst the bacteria from all depths of the sediments. However, anoxic methane oxidizing archaea (ANME) and methanogens were only found in the 600 m deep sediments. These results indicated that the cold-seep microbial sulfur circulation system could be functioning in the shallow seep sediment at a depth of 600 m and the microbial activities at these sites might be more dynamic than at other deeper cold-seep sites.
Collapse
MESH Headings
- Archaea/classification
- Archaea/isolation & purification
- Biodiversity
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Deltaproteobacteria/classification
- Deltaproteobacteria/isolation & purification
- Gammaproteobacteria/classification
- Gammaproteobacteria/isolation & purification
- Geologic Sediments/microbiology
- Japan
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Shizuka Arakawa
- Department of Applied Chemistry, Faculty of Engineering, Toyo University, Kujirai, Kawagoe, Japan
| | | | | | | | | |
Collapse
|
21
|
Arakawa S, Sato T, Sato R, Zhang J, Gamo T, Tsunogai U, Hirota A, Yoshida Y, Usami R, Inagaki F, Kato C. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles 2006; 10:311-9. [PMID: 16642262 DOI: 10.1007/s00792-005-0501-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/23/2005] [Indexed: 10/24/2022]
Abstract
Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier ((13)C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.
Collapse
Affiliation(s)
- Shizuka Arakawa
- Department of Applied Chemistry, Faculty of Engineering, Toyo University, Kawagoe, 350-0815, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M. "Candidatus Thiobios zoothamnicoli," an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 2006; 72:2014-21. [PMID: 16517650 PMCID: PMC1393213 DOI: 10.1128/aem.72.3.2014-2021.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 11/29/2005] [Indexed: 11/20/2022] Open
Abstract
Zoothamnium niveum is a giant, colonial marine ciliate from sulfide-rich habitats obligatorily covered with chemoautotrophic, sulfide-oxidizing bacteria which appear as coccoid rods and rods with a series of intermediate shapes. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the ectosymbiont of Z. niveum belongs to only one pleomorphic phylotype. The Z. niveum ectosymbiont is only moderately related to previously identified groups of thiotrophic symbionts within the Gammaproteobacteria, and shows highest 16S rRNA sequence similarity with the free-living sulfur-oxidizing bacterial strain ODIII6 from shallow-water hydrothermal vents of the Mediterranean Sea (94.5%) and an endosymbiont from a deep-sea hydrothermal vent gastropod of the Indian Ocean Ridge (93.1%). A replacement of this specific ectosymbiont by a variety of other bacteria was observed only for senescent basal parts of the host colonies. The taxonomic status "Candidatus Thiobios zoothamnicoli" is proposed for the ectosymbiont of Z. niveum based on its ultrastructure, its 16S rRNA gene, the intergenic spacer region, and its partial 23S rRNA gene sequence.
Collapse
MESH Headings
- Animals
- Ciliophora/microbiology
- DNA, Bacterial/analysis
- DNA, Ribosomal Spacer/analysis
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Gammaproteobacteria/ultrastructure
- Genes, rRNA
- In Situ Hybridization, Fluorescence
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Seawater/parasitology
- Sequence Analysis, DNA
- Sulfides/metabolism
- Symbiosis
Collapse
Affiliation(s)
- Christian Rinke
- Department of Marine Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luyten YA, Thompson JR, Morrill W, Polz MF, Distel DL. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2006; 72:412-7. [PMID: 16391072 PMCID: PMC1352252 DOI: 10.1128/aem.72.1.412-417.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the gamma subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.
Collapse
Affiliation(s)
- Yvette A Luyten
- Ocean Genome Legacy Foundation, Center for Marine Genomic Research and Conservation, 240 County Rd., Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|
24
|
Arakawa S, Mori M, Li L, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Cold-seep microbial communities are more abundant at deeper depths in the Japan Trench land slope. ACTA ACUST UNITED AC 2005. [DOI: 10.3118/jjse.4.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Duplessis MR, Ziebis W, Gros O, Caro A, Robidart J, Felbeck H. Respiration strategies utilized by the gill endosymbiont from the host lucinid Codakia orbicularis (Bivalvia: Lucinidae). Appl Environ Microbiol 2004; 70:4144-50. [PMID: 15240294 PMCID: PMC444781 DOI: 10.1128/aem.70.7.4144-4150.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large tropical lucinid clam Codakia orbicularis has a symbiotic relationship with intracellular, sulfide-oxidizing chemoautotrophic bacteria. The respiration strategies utilized by the symbiont were explored using integrative techniques on mechanically purified symbionts and intact clam-symbiont associations along with habitat analysis. Previous work on a related symbiont species found in the host lucinid Lucinoma aequizonata showed that the symbionts obligately used nitrate as an electron acceptor, even under oxygenated conditions. In contrast, the symbionts of C. orbicularis use oxygen as the primary electron acceptor while evidence for nitrate respiration was lacking. Direct measurements obtained by using microelectrodes in purified symbiont suspensions showed that the symbionts consumed oxygen; this intracellular respiration was confirmed by using the redox dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride). In the few intact chemosymbioses tested in previous studies, hydrogen sulfide production was shown to occur when the animal-symbiont association was exposed to anoxia and elemental sulfur stored in the thioautotrophic symbionts was proposed to serve as an electron sink in the absence of oxygen and nitrate. However, this is the first study to show by direct measurements using sulfide microelectrodes in enriched symbiont suspensions that the symbionts are the actual source of sulfide under anoxic conditions.
Collapse
Affiliation(s)
- Melinda R Duplessis
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Won YJ, Hallam SJ, O'Mullan GD, Pan IL, Buck KR, Vrijenhoek RC. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus bathymodiolus. Appl Environ Microbiol 2004; 69:6785-92. [PMID: 14602641 PMCID: PMC262266 DOI: 10.1128/aem.69.11.6785-6792.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deep-sea Bathymodiolus mussels, depending on species and location, have the capacity to host sulfur-oxidizing (thiotrophic) and methanotrophic eubacteria in gill bacteriocytes, although little is known about the mussels' mode of symbiont acquisition. Previous studies of Bathymodiolus host and symbiont relationships have been based on collections of nonoverlapping species across wide-ranging geographic settings, creating an apparent model for vertical transmission. We present genetic and cytological evidence for the environmental acquisition of thiotrophic endosymbionts by vent mussels from the Mid-Atlantic Ridge. Open pit structures in cell membranes of the gill surface revealed likely sites for endocytosis of free-living bacteria. A population genetic analysis of the thiotrophic symbionts exploited a hybrid zone where two Bathymodiolus species intergrade. Northern Bathymodiolus azoricus and southern Bathymodiolus puteoserpentis possess species-specific DNA sequences that identify both their symbiont strains (internal transcribed spacer regions) and their mitochondria (ND4). However, the northern and southern symbiont-mitochondrial pairs were decoupled in the hybrid zone. Such decoupling of symbiont-mitochondrial pairs would not occur if the two elements were transmitted strictly vertically through the germ line. Taken together, these findings are consistent with an environmental source of thiotrophic symbionts in Bathymodiolus mussels, although an environmentally "leaky" system of vertical transmission could not be excluded.
Collapse
Affiliation(s)
- Yong-Jin Won
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039-0628, USA
| | | | | | | | | | | |
Collapse
|
27
|
Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 2004; 69:6264-7. [PMID: 14532089 PMCID: PMC201202 DOI: 10.1128/aem.69.10.6264-6267.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Target DNA from the uncultivable Codakia orbicularis endosymbiont was PCR amplified from sea-grass sediment. To confirm that such amplifications originated from intact bacterial cells rather than free DNA, whole-cell hybridization (fluorescence in situ hybridization technique) with the specific probe Symco2 was performed along with experimental infection of aposymbiotic juveniles placed in contact with the same sediment. Taken together, the data demonstrate that the sulfide-oxidizing gill endosymbiont of Codakia orbicularis is present in the environment as a free-living uncultivable form.
Collapse
Affiliation(s)
- Olivier Gros
- Laboratoire de Biologie Marine, Département de Biologie, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France.
| | | | | | | | | |
Collapse
|
28
|
Clay K, Schardl C. Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. Am Nat 2002; 160 Suppl 4:S99-S127. [DOI: 10.1086/342161] [Citation(s) in RCA: 705] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Nishiguchi MK. Host-symbiont recognition in the environmentally transmitted sepiolid squid-Vibrio mutualism. MICROBIAL ECOLOGY 2002; 44:10-8. [PMID: 12019463 DOI: 10.1007/bf03036870] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 01/25/2003] [Indexed: 05/23/2023]
Abstract
Associations between environmentally transmitted symbionts and their hosts provide a unique opportunity to study the evolution of specificity and subsequent radiation of tightly coupled host-symbiont assemblages [3, 8, 24]. The evidence provided here from the environmentally transmitted bacterial symbiont Vibrio fischeri and its sepiolid squid host (Sepiolidae: Euprymna) demonstrates how host-symbiont specificity can still evolve without vertical transmission of the symbiont [1]. Infection by intraspecific V. fischeri symbionts exhibited preferential colonization over interspecific V. fischeri symbionts, indicating a high degree of specificity for the native symbiotic strains. Inoculation with symbiotic bacteria from other taxa (monocentrid fish and loliginid squids) produced little or no colonization in two species of Euprymna, despite their presence in the same or similar habitats as these squids. These findings of host specificity between native Vibrios and sepiolid squids provides evidence that the presence of multiple strains of symbionts does not dictate the composition of bacterial symbionts in the host.
Collapse
Affiliation(s)
- M K Nishiguchi
- Department of Biology, New Mexico State University, Box 30001, MSC 3AF, Las Cruces, New Mexico 88003-8001, USA.
| |
Collapse
|
30
|
Elsaied H, Kimura H, Naganuma T. Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1947-1957. [PMID: 12055314 DOI: 10.1099/00221287-148-6-1947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To better understand the contribution of micro-organisms to the primary production in the deep-sea gutless tubeworm Lamellibrachia sp., the 16S-rDNA-based phylogenetic data would be complemented by knowledge of the genes that encode the enzymes relevant to chemoautotrophic carbon fixation, such as D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO; EC 4.1.1.39). To phylogenetically characterize the autotrophic endosymbiosis within the trophosome of the tubeworm Lamellibrachia sp., bulk trophosomal DNA was extracted and analysed based on the 16S-rRNA- and RuBisCO-encoding genes. The 16S-rRNA- and RuBisCO-encoding genes were amplified by PCR, cloned and sequenced. For the 16S rDNA, a total of 50 clones were randomly selected and analysed directly by sequencing. Only one operational taxonomic unit resulted from the 16S rDNA sequence analysis. This may indicate the occurrence of one endosymbiotic bacterial species within the trophosome of the Lamellibrachia sp. used in this study. Phylogenetic analysis of the 16S rDNA showed that the Lamellibrachia sp. endosymbiont was closely related to the genus Rhodobacter, a member of the alpha-Protebacteria. For the RuBisCO genes, only the form II gene (cbbM) was amplified by PCR. A total of 50 cbbM clones were sequenced, and these were grouped into two operational RuBisCO units (ORUs) based on their deduced amino acid sequences. The cbbM ORUs showed high amino acid identities with those recorded from the ambient sediment bacteria. To confirm the results of sequence analysis, the localization of the symbiont-specific 16S rRNA and cbbM sequences in the Lamellibrachia sp. trophosome was visualized by in situ hybridization (ISH), using specific probes. Two types of cells, coccoid and filamentous, were observed at the peripheries of the trophosome lobules. Both the symbiont-specific 16S rDNA and cbbM probes hybridized at the same sites coincident with the location of the coccoid cells, whereas the filamentous cells showed no cbbM-specific signals. The RuBisCO form I gene (cbbL) was neither amplified by PCR nor detected by ISH. This is the first demonstration of chemoautotrophic symbiosis in the deep-sea gutless tubeworm, based on sequence data and in situ localization of both the 16S-rRNA- and RuBisCO-encoding genes.
Collapse
Affiliation(s)
- Hosam Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| | - Hiroyuki Kimura
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| | - Takeshi Naganuma
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan1
| |
Collapse
|
31
|
Tankéré SPC, Bourne DG, Muller FLL, Torsvik V. Microenvironments and microbial community structure in sediments. Environ Microbiol 2002; 4:97-105. [PMID: 11972619 DOI: 10.1046/j.1462-2920.2002.00274.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to explore the potential of a combined chemical and microbiological approach as part of a study of organic carbon oxidation processes in sediments. An assessment of microbiological diversity using molecular techniques was carried out in combination with high resolution chemical measurements at the sediment-water interface of a coastal lagoon affected by eutrophication in autumn 2000. There was a 0.2 mm overlap between the O2 and H2S profiles. pH showed a maximum just above the sediment-water interface coinciding with an oxygen maximum, suggesting photosynthetic activity, and a minimum coinciding with the O2-H2S interface. The redox potential was high in bottom water and surface sediment, reflecting the presence of oxygen and oxides, and reached low values after a step-wise decrease at -18 mm. Reduction of Fe occurred within the biofilm at the O2-H2S interface and was mostly due to reduction by H2S. The elevated concentrations of dissolved Mn in the oxic water may have been caused either by in situ production within organic aggregates or lateral water flow from sites nearby at which Mn2+ diffuses out of the sediment. Sequences related to sulphur chemolitotrophs were retrieved from the biofilm samples, which is consistent with the small overlap between O2 and H2S observed in this biofilm. Although the resolution of techniques used was different, sequencing results were consistent with chemical data in delineating the same horizons according to redox, pH or ecological properties.
Collapse
Affiliation(s)
- S P C Tankéré
- Department of Microbiology, University of Bergen, Norway.
| | | | | | | |
Collapse
|
32
|
Abstract
The subclass Protobranchia comprises more than 600 species of bivalves that occur throughout the world ocean. Mostly deposit feeders in soft sediments, they are abundant in the deep sea. Apomorphies that unite them as a group include gill structure, hinge conformation, shell microstructure, larval development, foot morphology, respiratory pigments, trophic mode and digestion. They are relatively small and highly conserved in form, originating in the Cambrian era. They may represent an ancestral, derived or paraphylectic group of the Bivalvia. The protobranchs include two orders, the Nuculoida and Solemyoida, which previously were classified separately in the subclasses Paleotaxodonta and Cryptodonta, respectively. They are of ecological interest and have a unique functional morphology. They feed mostly under the surface of the sediment with highly modified labial palps, but the degree to which they are selective in diet remains difficult to determine. They are important bioturbators in many soft-sediment assemblages; their feeding and locomotion affects sediment structure and community development. Solemyoids are unusual in inhabiting reducing environments and hydrocarbon seeps and in deriving their nutrition from endosymbiotic chemosynthetic bacteria. A variety of species of protobranchs are found in oceanic trenches, near hydrothermal vents, and in submarine caves. Protobranchs produce a lecithotrophic larval stage, the pericalymma, making their development unique among bivalves. The pericalymma remains in the plankton for a short time and presumably has low dispersal ability. Recruitment may be intermittent. Growth is rapid in post-larvae but decreases with age, though rates may not necessarily be slow, especially in continental shelf species. Life spans are commonly 1 to 2 decades, but deep-sea representatives may grow more slowly and live longer. Bottom fish, seastars and gastropods are their major predators and a few parasites and commensals have been documented. The predominance of protobranchs in deep-sea sediments may be a result of deep-sea origin or displacement from shallow waters by lamellibranchs. Their ability to deposit-feed, digest food extracellularly, and develop by means of lecithotrophic larvae make them particularly well adapted to cold and oligotrophic habitats.
Collapse
Affiliation(s)
- John D Zardus
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA.
| |
Collapse
|
33
|
Piercey-Normore MD, Depriest PT. Algal switching among lichen symbioses. AMERICAN JOURNAL OF BOTANY 2001; 88:1490-1498. [PMID: 21669682 DOI: 10.2307/3558457] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lichens are intimate and long-term symbioses of algae and fungi. Such intimate associations are often hypothesized to have undergone long periods of symbiotic interdependence and coevolution. However, coevolution has not been rigorously tested for lichen associations. In the present study we compared the nuclear internal transcribed spacer (ITS) phylogenies of algal and fungal partners from 33 natural lichen associations to test two aspects of coevolution, cospeciation and parallel cladogenesis. Since statistically significant incongruence between symbiont phylogenies rejected parallel cladogenesis and minimized cospeciation events, we conclude that switching of highly selected algal genotypes occurs repeatedly among these symbiotic lichen associations.
Collapse
Affiliation(s)
- M D Piercey-Normore
- Department of Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0166 USA
| | | |
Collapse
|
34
|
McFall-Ngai MJ. Identifying 'prime suspects': symbioses and the evolution of multicellularity. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:711-23. [PMID: 11435126 DOI: 10.1016/s1096-4959(01)00406-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The possible involvement of symbioses in the evolution of multicellularity is explored. Evidence is drawn principally from the biology of present day associations of plants and animals with prokaryotes. A particular emphasis is placed on future research opportunities in this area of biology that have been provided by the advent of specific molecular techniques and new model systems. With the application of new approaches that result from these advances, a more holistic understanding of the biology of the coevolved communities, composed of animals or plants and their associated prokaryotes, is within the reach of biologists over the next few decades.
Collapse
Affiliation(s)
- M J McFall-Ngai
- Pacific Biomedical Research Center, Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, 96813, Honolulu, HI, USA
| |
Collapse
|
35
|
Elsaied H, Naganuma T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 2001; 67:1751-65. [PMID: 11282630 PMCID: PMC92794 DOI: 10.1128/aem.67.4.1751-1765.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea.
Collapse
Affiliation(s)
- H Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | | |
Collapse
|
36
|
Ravenschlag K, Sahm K, Amann R. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 2001; 67:387-95. [PMID: 11133470 PMCID: PMC92590 DOI: 10.1128/aem.67.1.387-395.2001] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2000] [Accepted: 10/11/2000] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization with 16S rRNA-targeted oligonucleotide probes were used to investigate the phylogenetic composition of a marine Arctic sediment (Svalbard). FISH resulted in the detection of a large fraction of microbes living in the top 5 cm of the sediment. Up to 65.4% +/- 7.5% of total DAPI (4',6'-diamidino-2-phenylindole) cell counts hybridized to the bacterial probe EUB338, and up to 4.9% +/- 1.5% hybridized to the archaeal probe ARCH915. Besides delta-proteobacterial sulfate-reducing bacteria (up to 16% 52) members of the Cytophaga-Flavobacterium cluster were the most abundant group detected in this sediment, accounting for up to 12.8% of total DAPI cell counts and up to 6.1% of prokaryotic rRNA. Furthermore, members of the order Planctomycetales accounted for up to 3.9% of total cell counts. In accordance with previous studies, these findings support the hypothesis that these bacterial groups are not simply settling with organic matter from the pelagic zone but are indigenous to the anoxic zones of marine sediments. Members of the gamma-proteobacteria also constituted a significant fraction in this sediment (6.1% +/- 2.5% of total cell counts, 14.4% +/- 3.6% of prokaryotic rRNA). A new probe (GAM660) specific for sequences affiliated with free-living or endosymbiotic sulfur-oxidizing bacteria was developed. A significant number of cells was detected by this probe (2.1% +/- 0.7% of total DAPI cell counts, 13.2% +/- 4. 6% of prokaryotic rRNA), showing no clear zonation along the vertical profile. Gram-positive bacteria and the beta-proteobacteria were near the detection limit in all sediments.
Collapse
Affiliation(s)
- K Ravenschlag
- Molecular Ecology Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | | | | |
Collapse
|
37
|
Nishiguchi MK. Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl Environ Microbiol 2000; 66:3550-5. [PMID: 10919820 PMCID: PMC92184 DOI: 10.1128/aem.66.8.3550-3555.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.
Collapse
Affiliation(s)
- M K Nishiguchi
- Department of Biology, New Mexico State University, Las Cruces 88003-8001, USA.
| |
Collapse
|
38
|
Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 2000; 66:651-8. [PMID: 10653731 PMCID: PMC91876 DOI: 10.1128/aem.66.2.651-658.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vestimentiferan tubeworms thriving in sulfidic deep-sea hydrothermal vents and cold seeps are constrained by their nutritional reliance on chemoautotrophic endosymbionts. In a recent phylogenetic study using 16S ribosomal DNA, we found that endosymbionts from vent and seep habitats form two distinct clades with little variation within each clade. In the present study, we used two different approaches to assess the genetic variation among biogeographically distinct vestimentiferan symbionts. DNA sequences were obtained for the noncoding, internal transcribed spacer (ITS) regions of the rRNA operons of symbionts associated with six different genera of vestimentiferan tubeworms. ITS sequences from endosymbionts of host genera collected from different habitats and widely distributed vent sites were surprisingly conserved. Because the ITS region was not sufficient for distinguishing endosymbionts from different habitats or locations, we used a DNA fingerprinting technique, repetitive-extragenic-palindrome PCR (REP-PCR), to reveal differences in the distribution of repetitive sequences in the genomes of the bacterial endosymbionts. Most of the endosymbionts displayed unique REP-PCR patterns. A cladogram generated from these fingerprints reflected relationships that may be influenced by a variety of factors, including host genera, geographic location, and bottom type.
Collapse
Affiliation(s)
- C A Di Meo
- Graduate College of Marine Studies, University of Delaware, Lewes, Delaware 19958, USA
| | | | | | | | | | | |
Collapse
|
39
|
Margaret J MN. Consequences of Evolving with Bacterial Symbionts: Insights from the Squid-Vibrio Associations. ACTA ACUST UNITED AC 1999. [DOI: 10.1146/annurev.ecolsys.30.1.235] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- McFall-Ngai Margaret J
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813; e-mail:
| |
Collapse
|
40
|
GROS OLIVIER, DUPLESSIS MELINDAR, FELBECK HORST. Embryonic development and endosymbiont transmission mode in the symbiotic clamLucinoma aequizonata(Bivalvia: Lucinidae). INVERTEBR REPROD DEV 1999. [DOI: 10.1080/07924259.1999.9652683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abstract
Intracellular parasites and endosymbionts are present in almost all forms of life, including bacteria. Some eukaryotic organelles are believed to be derived from ancestral endosymbionts. Parasites and symbionts show several adaptations to intracellular life. A comparative analysis of their biology suggests some general considerations involved in adapting to intracellular life and reveals a number of independently achieved strategies for the exploitation of an intracellular habitat. Symbioses mainly based on a form of syntrophy may have led to the establishment of unique physiological systems. Generally, a symbiont can be considered to be an attenuated pathogen. The combination of morphological studies, molecular phylogenetic analyses, and palaeobiological data has led to considerable improvement in the understanding of intracellular life evolution. Comparing host and symbiont phylogenies could lead to an explanation of the evolutionary history of symbiosis. These studies also provide strong evidences for the endosymbiogenesis of the eukaryotic cell. Indeed, an eubacterial origin for mitochondria and plastids is well accepted and is suggested for other organelles. The expansion of intracellular living associations is presented, with a particular emphasis on peculiar aspects and/or recent data, providing a global evaluation.
Collapse
Affiliation(s)
- D Corsaro
- Laboratoire de Microbiologie-Virologie, Centre Hospitalier Universitaire de Nancy, France
| | | | | | | |
Collapse
|
42
|
Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of puget sound Cycloclasticus strains. Appl Environ Microbiol 1998; 64:4703-10. [PMID: 9835552 PMCID: PMC90912 DOI: 10.1128/aem.64.12.4703-4710.1998] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 10(2) to 10(6) cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.
Collapse
Affiliation(s)
- A D Geiselbrecht
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
43
|
Nishiguchi MK, Ruby EG, McFall-Ngai MJ. Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-vibrio symbioses. Appl Environ Microbiol 1998; 64:3209-13. [PMID: 9726861 PMCID: PMC106711 DOI: 10.1128/aem.64.9.3209-3213.1998] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 06/22/1998] [Indexed: 11/20/2022] Open
Abstract
One of the principal assumptions in symbiosis research is that associated partners have evolved in parallel. We report here experimental evidence for parallel speciation patterns among several partners of the sepiolid squid-luminous bacterial symbioses. Molecular phylogenies for 14 species of host squids were derived from sequences of both the nuclear internal transcribed spacer region and the mitochondrial cytochrome oxidase subunit I; the glyceraldehyde phosphate dehydrogenase locus was sequenced for phylogenetic determinations of 7 strains of bacterial symbionts. Comparisons of trees constructed for each of the three loci revealed a parallel phylogeny between the sepiolids and their respective symbionts. Because both the squids and their bacterial partners can be easily cultured independently in the laboratory, we were able to couple these phylogenetic analyses with experiments to examine the ability of the different symbiont strains to compete with each other during the colonization of one of the host species. Our results not only indicate a pronounced dominance of native symbiont strains over nonnative strains, but also reveal a hierarchy of symbiont competency that reflects the phylogenetic relationships of the partners. For the first time, molecular systematics has been coupled with experimental colonization assays to provide evidence for the existence of parallel speciation among a set of animal-bacterial associations.
Collapse
Affiliation(s)
- M K Nishiguchi
- Pacific Biomedical Research Center, University of Hawai'i, Manoa, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
44
|
Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci U S A 1998; 95:9962-6. [PMID: 9707583 PMCID: PMC21444 DOI: 10.1073/pnas.95.17.9962] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicomyid clams depend entirely on sulfur-oxidizing endosymbiotic bacteria for their nutriment. Endosymbionts that are transmitted cytoplasmically through eggs, such as these, should exhibit a phylogenetic pattern that closely parallels the phylogeny of host mitochondrial genes. Such parallel patterns are rarely observed, however, because they are obscured easily by small amounts of horizontal symbiont transmission or occasional host switching. The present symbiont genealogy, based on bacterial small subunit (16S) rDNA sequences, was closely congruent with the host genealogy, based on clam mitochondrial cytochrome oxidase subunit I and large subunit (16S) rDNA sequences. This phylogenetic evidence supports the hypothesis of cospeciation and a long term association between the participants in this symbiosis.
Collapse
Affiliation(s)
- A S Peek
- Center for Theoretical and Applied Genetics and Institute of Marine and Coastal Sciences, 71 Dudley Road, Rutgers University, New Brunswick, NJ 08901-8521, USA.
| | | | | | | |
Collapse
|
45
|
|
46
|
Gros O, Wulf-Durand P, Frenkiel L, Mouëza M. Putative environmental transmission of sulfur-oxidizing bacterial symbionts in tropical lucinid bivalves inhabiting various environments. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb12920.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Affiliation(s)
- H W Jannasch
- Woods Hole Oceanographic Institution, Massachusetts 02543, USA
| |
Collapse
|
48
|
Burnett WJ, McKenzie JD. Subcuticular bacteria from the brittle star Ophiactis balli (Echinodermata: Ophiuroidea) represent a new lineage of extracellular marine symbionts in the alpha subdivision of the class Proteobacteria. Appl Environ Microbiol 1997; 63:1721-4. [PMID: 9143108 PMCID: PMC168468 DOI: 10.1128/aem.63.5.1721-1724.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many species of echinoderms, in all five extant classes, contain subcuticular bacterial symbionts (SCB). The role of these extracellular symbionts and the nature of the relationship remain unclear. We have sequenced 16S rRNA genes from symbionts to determine their phylogenetic affinities. Symbionts of an ophiuroid, Ophiactis balli, appear closely related to bacteria within the alpha group of the class Proteobacteria, including intracellular endosymbionts and pathogens. SCB are clearly of separate origin from other documented major groups of marine symbiotic bacteria.
Collapse
Affiliation(s)
- W J Burnett
- Scottish Association for Marine Science, Oban, Scotland.
| | | |
Collapse
|
49
|
Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 1996; 62:3005-10. [PMID: 8702293 PMCID: PMC168087 DOI: 10.1128/aem.62.8.3005-3010.1996] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arbuscular-mycorrhizal fungi are obligate endosymbionts that colonize the roots of almost 80% of land plants. This paper describes the employment of a combined morphological and molecular approach to demonstrate that the cytoplasm of the arbuscular-mycorrhizal fungus Gigaspora margarita harbors a further bacterial endosymbiont. Intracytoplasmic bacterium-like organisms (BLOs) were detected ultrastructurally in its spores and germinating and symbiotic mycelia. Morphological observations with a fluorescent stain revealed about 250,000 live bacteria inside each spore. The sequence for the small-subunit rRNA gene obtained for the BLOs from the spores was compared with those for representatives of the eubacterial lineages. Molecular phylogenetic analysis unambiguously showed that the endosymbiont of G. margarita was an rRNA group II pseudomanad (genus Burkholderia). PCR assays with specifically designed oligonucleotides were used to check that the sequence came from the BLOs. Successful amplification was obtained when templates from both the spores and the symbiotic mycelia were used. A band of the expected length was also obtained from spores of a Scutellospora sp. No bands were given by the negative controls. These findings indicate that mycorrhizal systems can include plant, fungal, and bacterial cells.
Collapse
Affiliation(s)
- V Bianciotto
- Dipartimento di Biologia Vegetale, Università di Torino, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Canfield DE, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 1996; 382:127-32. [PMID: 11536736 DOI: 10.1038/382127a0] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.
Collapse
Affiliation(s)
- D E Canfield
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|