1
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ohhira M, Okumura T. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats. Biochem Pharmacol 2022; 206:115331. [PMID: 36330948 DOI: 10.1016/j.bcp.2022.115331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Intestinal barrier dysfunction, a leaky gut, contributes to the pathophysiology of various diseases such as dementia and irritable bowel syndrome (IBS). We recently clarified that orexin, ghrelin, or adenosine A2B signaling in the brain improved leaky gut through the vagus nerve. The present study was performed to clarify whether basal forebrain cholinergic neurons (BFCNs) are implicated in the central regulation of intestinal barrier function. We activated BFCNs using benzyl quinolone carboxylic acid (BQCA), a positive muscarinic M1 allosteric modulator, and evaluated colonic permeability by quantifying the absorbed Evans blue in rat colonic tissue. Intracisternal (not intraperitoneal) injection of BQCA blocked the increased colonic permeability in response to lipopolysaccharide. Vagotomy blocked BQCA-induced improvement of colonic hyperpermeability. Intracisternally administered pirenzepine, a muscarinic M1 selective antagonist, prevented intestinal barrier function improvement by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Adenosine A2B receptor antagonist but not dopamine or opioid receptor antagonist prevented BQCA-induced blockade of colonic hyperpermeability. Additionally, intracisternal injection of pirenzepine blocked orexin- or butyrate-induced intestinal barrier function improvement. These results suggest that BFCNs improve leaky gut through adenosine A2B signaling and the vagal pathway. Furthermore, BFCNs mediate orexin- or butyrate-induced intestinal barrier function improvement. Since BFCNs play a role in cognitive function and a leaky gut is associated with dementia, the present finding may lead us to speculate that BFCNs are involved in the development of dementia by regulating intestinal barrier function.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| |
Collapse
|
2
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
3
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
4
|
Svoboda J, Popelikova A, Stuchlik A. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation. Front Psychiatry 2017; 8:215. [PMID: 29170645 PMCID: PMC5684124 DOI: 10.3389/fpsyt.2017.00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Aitken P, Benoit A, Zheng Y, Philoxene B, Le Gall A, Denise P, Besnard S, Smith PF. Hippocampal and striatal M1-muscarinic acetylcholine receptors are down-regulated following bilateral vestibular loss in rats. Hippocampus 2016; 26:1509-1514. [DOI: 10.1002/hipo.22651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Phillip Aitken
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
| | - Alice Benoit
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| | - Bruno Philoxene
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Anne Le Gall
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Pierre Denise
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Stephane Besnard
- Normandie Univ, UNICAEN, INSERM, COMETE, CHU Caen; 14000 Caen France
| | - Paul F. Smith
- Department of Pharmacology and Toxicology; Brain Health Research Centre University of Otago; Dunedin New Zealand
- Brain Research New Zealand Centre of Research Excellence; New Zealand
| |
Collapse
|
6
|
Smith DL, Davoren JE, Edgerton JR, Lazzaro JT, Lee CW, Neal S, Zhang L, Grimwood S. Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284. Mol Pharmacol 2016; 90:177-87. [PMID: 27382013 DOI: 10.1124/mol.116.104737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/30/2016] [Indexed: 02/14/2025] Open
Abstract
Selective activation of the M1 muscarinic acetylcholine receptor (mAChR) via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. Herein, we describe the characterization of an M1 PAM radioligand, 8-((1S,2S)-2-hydroxycyclohexyl)-5-((6-(methyl-t3)pyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one ([(3)H]PT-1284), as a tool for characterizing the M1 allosteric binding site, as well as profiling novel M1 PAMs. 8-((1S,2S)-2-Hydroxycyclohexyl)-5-((6-methylpyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one (PT-1284 ( 1: )) was shown to potentiate acetylcholine (ACh) in an M1 fluorometric imaging plate reader (FLIPR) functional assay (EC50, 36 nM) and carbachol in a hippocampal slice electrophysiology assay (EC50, 165 nM). PT-1284 ( 1: ) also reduced the concentration of ACh required to inhibit [(3)H]N-methylscopolamine ([(3)H]NMS) binding to M1, left-shifting the ACh Ki approximately 19-fold at 10 μM. Saturation analysis of a human M1 mAChR stable cell line showed that [(3)H]PT-1284 bound to M1 mAChR in the presence of 1 mM ACh with Kd, 4.23 nM, and saturable binding capacity (Bmax), 6.38 pmol/mg protein. M1 selective PAMs were shown to inhibit [(3)H]PT-1284 binding in a concentration-responsive manner, whereas M1 allosteric and orthosteric agonists showed weak affinity (>30 μM). A strong positive correlation (R(2) = 0.86) was found to exist between affinity values generated for nineteen M1 PAMs in the [(3)H]PT-1284 binding assay and the EC50 values of these ligands in a FLIPR functional potentiation assay. These data indicate that there is a strong positive correlation between M1 PAM binding affinity and functional activity, and that [(3)H]PT-1284 can serve as a tool for pharmacological investigation of M1 mAChR PAMs.
Collapse
Affiliation(s)
- Deborah L Smith
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Jennifer E Davoren
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Jeremy R Edgerton
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - John T Lazzaro
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Che-Wah Lee
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Sarah Neal
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Lei Zhang
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| | - Sarah Grimwood
- Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut
| |
Collapse
|
7
|
Fedoce AG, Ferreira-Junior NC, Reis DG, Corrêa FMA, Resstel LBM. M3 muscarinic receptor in the ventral medial prefrontal cortex modulating the expression of contextual fear conditioning in rats. Psychopharmacology (Berl) 2016; 233:267-80. [PMID: 26518024 DOI: 10.1007/s00213-015-4109-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/03/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE Basal forebrain cholinergic neurons modulate the activation of cortical neurons by several stimuli such as fear and anxiety. However, the role of the muscarinic receptor in the medial prefrontal cortex (MPFC) in the modulation of the conditioned emotional response (CER) evoked in the model contextual conditioned fear remains unclear. OBJECTIVES The objective of this study is to test the hypothesis that inhibition of the muscarinic receptor in ventral MPFC modulates CER observed during animal's re-exposure to the aversive context. METHODS Rats implanted with cannulae aimed at the prelimbic (PL) or the infralimbic (IL) were submitted to a high-intensity contextual fear conditioning protocol. Before the test session, they received microinjections of the hemicholinium (choline reuptake blocker), atropine (muscarinic antagonist), J104129 fumarate (M1-M3 muscarinic antagonists), pirenzepine (M1 muscarinic antagonist), neostigmine (inhibitor acetylcholinesterase enzyme), or the systemic administration of the FG7142 (inverse benzodiazepine agonist). Additional independent groups received the neostigmine or FG7142 before the ineffective doses of J104129 fumarate in the low-intensity protocol of contextual fear conditioning. RESULTS In the high-intensity protocol, the administration of hemicholinium (1 nmol), atropine (0.06-6 nmol), J104129 fumarate (6 nmol), or pirenzepine (6 nmol) attenuated the expression of CER in rats. However, in the low-intensity protocol, only J10129 fumarate (0.06 nmol) reduced the expression of the CER. Finally, neostigmine (0.1-1 nmol) or FG7142 (8 mg/Kg) increased CER expression, an effect inhibited by the low dose of the J10129 fumarate. CONCLUSIONS These results indicated that the blockade of M3 muscarinic receptor in the vMPFC attenuates the CER expression.
Collapse
Affiliation(s)
- A G Fedoce
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - N C Ferreira-Junior
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - D G Reis
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil
| | - L B M Resstel
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Robinson AM, Mangini DF, Burk JA. Task demands dissociate the effects of muscarinic M1 receptor blockade and protein kinase C inhibition on attentional performance in rats. J Psychopharmacol 2012; 26:1143-50. [PMID: 21890584 PMCID: PMC3251644 DOI: 10.1177/0269881111415732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cholinergic system is known to be necessary for normal attentional processing. However, the receptors and mechanisms mediating the effects of acetylcholine on attention remain unclear. Previous work in our laboratory suggested that cholinergic muscarinic receptors are critical for maintaining performance in an attention-demanding task in rats. We examined the role of the muscarinic M(1) receptor and protein kinase C (PKC), which is activated by the M(1) receptor, in attention task performance. Rats were trained in an attention-demanding task requiring discrimination of brief (500, 100, 25 ms) visual signals from trials with no signal presentation. The effects of muscarinic M(1) receptor blockade were assessed by administering dicyclomine (0-5.0 mg/kg). The effects of PKC inhibition were assessed by administering chelerythrine chloride (0-2.0 mg/kg). Dicyclomine decreased the accuracy of detecting longer signals in this attention task, including when attentional demands were increased by flashing a houselight throughout the session. Chelerythrine chloride decreased the accuracy of signal detection in the standard version of the task but not when the houselight was flashed throughout the session. The present findings indicate that muscarinic M(1) receptors are critical for maintaining performance when attentional demands are increased, and that PKC activity may contribute to some aspects of attentional performance.
Collapse
Affiliation(s)
- Andrea M Robinson
- Department of Psychology, College of William and Mary, Williamsburg, VA, USA
| | | | | |
Collapse
|
9
|
Muthuraju S, Maiti P, Pati S, Solanki P, Sharma AK, Singh SB, Prasad D, Ilavazhagan G. Role of cholinergic markers on memory function of rats exposed to hypobaric hypoxia. Eur J Pharmacol 2011; 672:96-105. [DOI: 10.1016/j.ejphar.2011.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 08/05/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
10
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
11
|
Wandscheer CB, Vilariño N, Espiña B, Louzao MC, Botana LM. Human Muscarinic Acetylcholine Receptors Are a Target of the Marine Toxin 13-Desmethyl C Spirolide. Chem Res Toxicol 2010; 23:1753-61. [DOI: 10.1021/tx100210a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolina B. Wandscheer
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| | - Begoña Espiña
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| | - M. Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain
| |
Collapse
|
12
|
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34:1307-50. [DOI: 10.1016/j.neubiorev.2010.04.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 01/06/2023]
|
13
|
Thomas DR, Dada A, Jones GA, Deisz RA, Gigout S, Langmead CJ, Werry TD, Hendry N, Hagan JJ, Davies CH, Watson JM. N-desmethylclozapine (NDMC) is an antagonist at the human native muscarinic M1 receptor. Neuropharmacology 2010; 58:1206-14. [DOI: 10.1016/j.neuropharm.2010.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/18/2010] [Accepted: 02/23/2010] [Indexed: 11/26/2022]
|
14
|
Kumar A. Carbachol-induced long-term synaptic depression is enhanced during senescence at hippocampal CA3-CA1 synapses. J Neurophysiol 2010; 104:607-16. [PMID: 20505129 DOI: 10.1152/jn.00278.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the cholinergic transmitter system is a hallmark of Alzheimer's disease and contributes to an age-associated decline in memory performance. The current study examined the influence of carbachol, a cholinergic receptor agonist, on synaptic transmission over the course of aging. Extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synapses in acute hippocampal slices obtained from young adult (5-8 mo) and aged (22-24 mo) male Fischer 344 rats. Bath application of carbachol elicited a transient depression of synaptic transmission, which was followed by a long-lasting depression (CCh-LTD) observed 90 min after carbachol cessation in both age groups. However, the magnitude of CCh-LTD was significantly larger in senescent animals and was attenuated by N-methyl-D-aspartate receptor blockade in aged animals. Blockade of L-type Ca(2+) channels inhibited CCh-LTD to a greater extent in aged animals compared to young adults. Finally, the expression of CCh-LTD was dependent on protein synthesis. The results indicate that altered Ca(2+) homeostasis or muscarinic activation of Ca(2+) signaling contribute to the enhanced CCh-LTD during senescence.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
15
|
|
16
|
Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM, Jones CK, Niswender CM, Weaver CD, Lindsley CW, Conn PJ. A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol 2009; 76:356-68. [PMID: 19407080 PMCID: PMC2713127 DOI: 10.1124/mol.109.056531] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/30/2009] [Indexed: 02/03/2023] Open
Abstract
Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M(1) mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M(1) mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M(1) mAChRs relative to M(2)-M(5). Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M(1) mAChRs, a surprising finding given the high level of M(1) mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilocarpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M(1) mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VAH, Hagan JJ, Herdon HJ, Jones GA, Jeggo R, Kew JNC, Mazzali A, Melarange R, Patel N, Pardoe J, Randall AD, Roberts C, Roopun A, Starr KR, Teriakidis A, Wood MD, Whittington M, Wu Z, Watson J. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 2008; 154:1104-15. [PMID: 18454168 DOI: 10.1038/bjp.2008.152] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE M1 muscarinic ACh receptors (mAChRs) represent an attractive drug target for the treatment of cognitive deficits associated with diseases such as Alzheimer's disease and schizophrenia. However, the discovery of subtype-selective mAChR agonists has been hampered by the high degree of conservation of the orthosteric ACh-binding site among mAChR subtypes. The advent of functional screening assays has enabled the identification of agonists such as AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine), which bind to an allosteric site and selectively activate the M(1) mAChR subtype. However, studies with this compound have been limited to recombinantly expressed mAChRs. EXPERIMENTAL APPROACH In this study, we have compared the pharmacological profile of AC-42 and a close structural analogue, 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) at human recombinant, and rat native, mAChRs by calcium mobilization, inositol phosphate accumulation and both in vitro and in vivo electrophysiology. KEY RESULTS Calcium mobilization and inositol phosphate accumulation assays revealed that both AC-42 and 77-LH-28-1 display high selectivity to activate the M1 mAChR over other mAChR subtypes. Furthermore, 77-LH-28-1, but not AC-42, acted as an agonist at rat hippocampal M1 receptors, as demonstrated by its ability to increase cell firing and initiate gamma frequency network oscillations. Finally, 77-LH-28-1 stimulated cell firing in the rat hippocampus in vivo following subcutaneous administration. CONCLUSIONS AND IMPLICATIONS These data suggest that 77-LH-28-1 is a potent, selective, bioavailable and brain-penetrant agonist at the M1 mAChR and therefore that it represents a better tool than AC-42, with which to study the pharmacology of the M1 mAChR.
Collapse
Affiliation(s)
- C J Langmead
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Esmaeili B, Basseda Z, Dehpour AR. Antagonism of muscarinic M1 receptors by dicyclomine inhibits the consolidation of morphine-associated contextual memory. Brain Res Bull 2008; 76:380-7. [PMID: 18502314 DOI: 10.1016/j.brainresbull.2008.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/13/2008] [Accepted: 02/04/2008] [Indexed: 11/29/2022]
Abstract
M1 muscarinic receptor has been shown to be involved in cognitive functions of the brain. Conditioned place preference (CPP) paradigm involves memory for the association between environmental stimuli and the rewarding properties produced by a treatment. Using a balanced CPP design, we studied the possible involvement of M1 muscarinic receptors on the acquisition, expression and consolidation of morphine place conditioning in male mice. Subcutaneous administration of morphine sulphate-induced CPP in a dose-dependent manner. Using a 6-day schedule of conditioning, it was found that dicyclomine, an M1 muscarinic antagonist, significantly reduced the time spent by mice in the morphine compartment when given immediately, but not 6h, after each conditioning session (consolidation). It had no effect when administered 30 min before each conditioning session during CPP training period (acquisition) or 30 min before testing for place preference in the absence of morphine (expression). It is concluded that M1 muscarinic receptors may play a time-dependent role in the consolidation of reward-related memory of morphine.
Collapse
Affiliation(s)
- Behnaz Esmaeili
- Department of Pharmacology, School of Medicine, Medical Sciences/University of Tehran, Iran
| | | | | |
Collapse
|
19
|
Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 2008; 117:232-43. [DOI: 10.1016/j.pharmthera.2007.09.009] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 11/29/2022]
|
20
|
Betz AJ, McLaughlin PJ, Burgos M, Weber SM, Salamone JD. The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology (Berl) 2007; 194:347-59. [PMID: 17594079 DOI: 10.1007/s00213-007-0844-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/30/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Nonselective muscarinic acetylcholine antagonists have been used for several years as antiparkinsonian drugs. However, there are at least five subtypes of muscarinic receptor (M1-5). Neostriatal M4 receptors have been implicated in aspects of motor function, and it has been suggested that M4 antagonists could be used as treatments for parkinsonism. OBJECTIVE Currently, there is a lack of highly selective M4 antagonists that readily penetrate the blood brain barrier. Thus, the present studies focused upon the effects of tropicamide, a muscarinic acetylcholine receptor antagonist with moderate binding selectivity for the M4 receptor subtype. MATERIALS AND METHODS Tremulous jaw movements were used as a model of parkinsonian tremor in these studies, and the effects of tropicamide were compared with those of the nonselective muscarinic antagonist atropine. RESULTS Tropicamide suppressed the tremulous jaw movements induced by the muscarinic agonist pilocarpine and the dopamine antagonist pimozide. Analysis of the dose-response curves indicated that tropicamide showed approximately the same potency as atropine for suppression of pilocarpine-induced jaw movements but was more potent than atropine on the suppression of pimozide-induced jaw movements. In contrast, atropine was more potent than tropicamide in terms of impairing performance on visual stimulus detection and delayed nonmatch-to-position tasks. CONCLUSIONS These studies demonstrate that tropicamide, which currently is used clinically for ophthalmic purposes, can exert actions that are consistent with antiparkinsonian effects. Moreover, the different pattern of effects shown by tropicamide compared to those of atropine on motor vs cognitive tasks could be due to the modest M4 selectivity shown by tropicamide.
Collapse
Affiliation(s)
- Adrienne J Betz
- Behavioral Neuroscience, Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
21
|
Chan JYH, Wu CHY, Tsai CY, Cheng HL, Dai KY, Chan SHH, Chang AYW. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death. J Physiol 2007; 581:1293-307. [PMID: 17395621 PMCID: PMC2170851 DOI: 10.1113/jphysiol.2007.130872] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/20/2007] [Indexed: 12/17/2022] Open
Abstract
As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, and Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang C, Zhang T, Ma H, Liu J, Fu F, Liu K. Prolonged effects of poly(lactic-co-glycolic acid) microsphere-containing huperzine A on mouse memory dysfunction induced by scopolamine. Basic Clin Pharmacol Toxicol 2007; 100:190-5. [PMID: 17309523 DOI: 10.1111/j.1742-7843.2007.00041.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Huperzine A is an anticholinesterase and cognitive enhancer, which is able to alleviate the symptoms of memory dysfunction in the mouse. The fast metabolization rate and narrow therapeutic spectrum makes it unfit for clinical use. Poly(lactic-co-glycolic acid) microsphere as delivery system effectively maintains the blood concentration of huperzine A by a slow-release effect over a long time. In the present article, we investigated the prolonged protective effect of microsphere-containing huperzine A on memory dysfunction induced by scopolamine. Spectrophotometric assay was used to determine the activity of acetylcholinesterase (AChE) and passive avoidance tests to evaluate memory performance. The results show that a bolus dose of microsphere-containing huperzine A (at a dose of 300 microg/kg or 600 microg/kg) administered intramuscularly can effectively maintain drug activity and significantly decrease the activity of AChE from day 3 to 14, the strongest effect seen on day 3 and 7. Accompanying the reduction of the activity of AChE, microsphere-containing huperzine A (300 microg/kg or 600 microg/kg) remarkably increased transfer latency time and no transfer response on the second trial through mitigating the memory impairments induced by scopolamine as compared to the scopolamine model group. Microsphere-containing huperzine A showed cognitive enhancing properties and anticholinesterase activity and may thus be a candidate for treatment of memory impairment.
Collapse
Affiliation(s)
- Chaoyun Wang
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
23
|
Tsai CY, Wu CHY, Chan SHH, Chang AYW. MUSCARINIC RECEPTOR-INDEPENDENT ACTIVATION OF CYCLIC ADENOSINE MONOPHOSPHATE-DEPENDENT PROTEIN KINASE IN ROSTRAL VENTROLATERAL MEDULLA UNDERLIES THE SYMPATHOEXCITATORY PHASE OF CARDIOVASCULAR RESPONSES DURING MEVINPHOS INTOXICATION IN THE RAT. Shock 2007; 27:559-64. [PMID: 17438462 DOI: 10.1097/01.shk.0000246904.47766.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As inhibitors of acetylcholinesterase, clinical presentations of poisoning from organophosphate compounds are generally believed to entail overstimulation by the accumulated acetylcholine on muscarinic receptors at peripheral and central synapses. That some patients still yielded to acute organophosphate poisoning despite repeated dosing of atropine suggests that cellular mechanisms that are independent of muscarinic receptor activation may also be engaged in organophosphate poisoning. The present study was undertaken to test the hypothesis that muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase A (PKA) in rostral ventrolateral medulla (RVLM), a medullary site where sympathetic vasomotor tone originates and where the organophosphate poison mevinphos (Mev) acts, is involved in the cardiovascular responses exhibited during organophosphate intoxication. In Sprague-Dawley rats, microinjection bilaterally of Mev (10 nmol) into the RVLM significantly augmented PKA activity in ventrolateral medulla that was not antagonized by coadministration of an equimolar concentration (1 nmol) of atropine or selective muscarinic receptor type M1 (pirenzepine), M2 (methoctramine), M3 (4-diphenyl-acetoxy-N-dimethylpiperidinium), or M4 (tropicamide) inhibitor. Comicroinjection of two selective PKA antagonists (100 pmol), N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide and (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolol[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-1][1,6]benzodiazocine-10-carboxylic acid, significantly blunted the initial sympathoexcitatory cardiovascular response and the accompanying augmentation of nitric oxide synthase (NOS I) expression in the ventrolateral medulla exhibited during Mev intoxication; the secondary sympathoinhibitory phase and associated elevation in NOS II expression were unaffected. We conclude that whereas a muscarinic receptor-independent augmentation of PKA activity in the ventrolateral medulla was manifested throughout acute Mev intoxication, this activation was preferentially involved in the sympathoexcitatory phase by an upregulation of NOS I expression.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
24
|
Tsang SWY, Lai MKP, Kirvell S, Francis PT, Esiri MM, Hope T, Chen CPLH, Wong PTH. Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer's disease. Neurobiol Aging 2006; 27:1216-23. [PMID: 16129514 DOI: 10.1016/j.neurobiolaging.2005.07.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/20/2022]
Abstract
Impaired transmission of acetylcholine-mediated signaling by postsynaptic muscarinic M1 receptors has been postulated to underlie the limited efficacy of cholinergic replacement therapies in Alzheimer's disease (AD). However, a clear relationship between the functionality of M1 receptors and dementia severity has not been demonstrated. The present study aims to measure M1 coupling to its nucleotide binding (G-) protein in the AD neocortex, and to correlate neurochemical findings with clinical features. A cohort of dementia patients was longitudinally assessed for cognitive decline, with postmortem neuropathological confirmation of AD diagnosis. Measures of M1 receptor density, M1/G-protein coupling and choline acetyltransferase (ChAT) activities were performed in the frontal and temporal cortex of 24 AD patients as well as in 12 age-matched controls. We found that M1 receptor densities were unchanged in AD, which contrasted with significantly reduced M1 coupling to G-proteins in severely demented AD patients. Loss of M1/G-protein coupling in the frontal cortex, but not the temporal cortex, also correlated with the rate of cognitive decline. Additionally, correlations between M1/G-protein coupling and ChAT activities were demonstrated in both regions. These results suggest that defective coupling of neocortical M1 receptors to G-proteins is a neurochemical substrate of cognitive decline in AD. Based on its associations with ChAT deficits and dementia severity, we propose that M1/G-protein uncoupling may have a significant role in the disease mechanism of AD and thus may be considered to be a potential therapeutic target.
Collapse
Affiliation(s)
- Shirley W Y Tsang
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Disterhoft JF, Oh MM. Pharmacological and molecular enhancement of learning in aging and Alzheimer's disease. ACTA ACUST UNITED AC 2006; 99:180-92. [PMID: 16458491 DOI: 10.1016/j.jphysparis.2005.12.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When animals learn hippocampus-dependent associative and spatial tasks such as trace eyeblink conditioning and the water maze, CA1 hippocampal neurons become more excitable as a result of reductions in the post-burst, slow afterhyperpolarization. The calcium-activated potassium current that mediates this afterhyperpolarization is activated by the calcium influx that occurs when a series of action potentials fire and serves as a modulator of neuronal firing frequency. As a result, spike frequency accommodation is also reduced after learning. Neuronal calcium buffering processes change and/or voltage-dependent calcium currents increase during aging; leading to enhancements in the slow afterhyperpolarization, increased spike frequency accommodation and age-associated impairments in learning. We describe a series of studies done to characterize this learning-specific enhancement in intrinsic neuronal excitability and its converse in aging brain. We have also combined behavioral pharmacology and biophysics in experiments demonstrating that compounds that increase neuronal excitability in CA1 pyramidal neurons also enhance learning rate of hippocampus-dependent tasks, especially in aging animals. The studies reviewed here include those using nimodipine, an L-type calcium current blocker that tends to cross the blood-brain barrier; metrifonate, a cholinesterase inhibitor; CI1017, a muscarinic cholinergic agonist; and galantamine, a combined cholinesterase inhibitor and nicotinic agonist. Since aging is the chief risk factor for Alzheimer's disease, a disease that targets the hippocampus and associated brain regions and markedly impairs hippocampus-dependent learning, these compounds have potential use as treatments for this disease. Galantamine has been approved by the USDA for this purpose. Finally, we have extended our studies to the TG2576 transgenic mouse model of Alzheimer's disease (AD), that overproduces amyloid precursor protein (APP) and increases levels of toxic beta-amyloid in the brain. Not only do these mice show deficits in hippocampus-dependent learning as they age, but their hippocampal neurons show a reduced capacity to increase their levels of intrinsic excitability with reductions in the slow afterhyperpolarization after application of the muscarinic agonist carbachol. These TG2576 APP overproducing mice were crossed with BACE1 knockout mice, that do not produce beta-amyloid because cleavage of APP by the beta-site APP cleaving enzyme 1 (BACE1) is a critical step in its formation. Not only was hippocampus-dependent learning rescued in the bigenic TG2576-BACE1 mice, but the capacity of hippocampal neurons to show normal enhancements of intrinsic excitability was restored. The series of studies reviewed here support our hypothesis that enhancement in intrinsic excitability by reductions in calcium-activated potassium currents in hippocampal neurons is an important cellular mechanism for hippocampus-dependent learning.
Collapse
Affiliation(s)
- John F Disterhoft
- Department of Physiology and Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
26
|
Bachmann K, Telang U, Byers J, Hoss W. The processing of the selective M1 agonist CDD-0102-J by human hepatic drug metabolizing enzymes. Am J Ther 2005; 12:300-5. [PMID: 16041192 DOI: 10.1097/01.pgp.0000145356.05787.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The in vitro metabolism of the selective M1 muscarinic agonist CDD-0102-J was evaluated in heterologous systems expressing individual human cytochrome P-450 (CYP) isoenzymes and also in suspensions of cryopreserved human hepatocytes. In all experiments, the metabolism of CDD-0102-J was characterized based on its rate of disappearance using an HPLC assay since no metabolites have as yet been characterized. The human CYP isoenzymes used were CYP1A2, 2A6, 2B6, 2C8, 2C19, 2D6, and 3A4. Measurable decreases in CDD-0102-J concentrations over time were detectable only in systems containing either CYP2D6 or CYP2C8, although the unbound in vitro clearance was more than 20 times larger for CYP2D6 (7.6 mL h(-1) nmol(-1)) than for CYP2C8 (0.35 mL h(-1) nmol(-1)). When scaled to in vivo hepatic clearance based on just CYP2D6 and CYP2C8, the projected hepatic clearance for CDD-0102-J was 7.7 L h(-1), which corresponded closely with the hepatic clearance of 8.4 L h(-1) scaled from experiments using cryopreserved human hepatocytes.
Collapse
Affiliation(s)
- Kenneth Bachmann
- Department of Pharmacology, The University of Toledo, Toledo, Ohio 43606, USA.
| | | | | | | |
Collapse
|
27
|
Jonasson Z, Cahill JFX, Tobey RE, Baxter MG. Sexually dimorphic effects of hippocampal cholinergic deafferentation in rats. Eur J Neurosci 2005; 20:3041-53. [PMID: 15579159 DOI: 10.1111/j.1460-9568.2004.03739.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To determine whether the basal forebrain-hippocampal cholinergic system supports sexually dimorphic functionality, male and female Long-Evans rats were given either selective medial septum/vertical limb of the diagonal band (MS/VDB) cholinergic lesions using the neurotoxin 192 IgG-saporin or a control surgery and then postoperatively tested in a set of standard spatial learning tasks in the Morris water maze. Lesions were highly specific and effective as confirmed by both choline acetyltransferase/parvalbumin immunostaining and acetylcholinesterase histochemistry. Female controls performed worse than male controls in place learning and MS/VDB lesions failed to impair spatial learning in male rats, both consistent with previous findings. In female rats, MS/VDB cholinergic lesions facilitated spatial reference learning. A subsequent test of learning strategy in the water maze revealed a female bias for a response, relative to a spatial, strategy; MS/VDB cholinergic lesions enhanced the use of a spatial strategy in both sexes, but only significantly so in males. Together, these results indicate a sexually dimorphic function associated with MS/VDB-hippocampal cholinergic inputs. In female rats, these neurons appear to support sex-specific spatial learning processes.
Collapse
Affiliation(s)
- Zachariah Jonasson
- Neuroscience Program, Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
28
|
Friedman JI. Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 2004; 174:45-53. [PMID: 15205878 DOI: 10.1007/s00213-004-1794-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 12/31/2003] [Indexed: 02/08/2023]
Abstract
RATIONALE Alterations in the central cholinergic system of patients with schizophrenia such as reduced numbers of muscarinic and nicotinic receptors in the cortex and hippocampus may contribute to the cognitive impairment of schizophrenia. Therefore, pharmacological treatments that enhance central cholinergic function may be useful as cognitive enhancers in schizophrenia. METHODS Searches were conducted for articles which investigated alterations of central cholinergic systems in patients with schizophrenia. Additional searches were conducted for animal and human trials of potential cognitive enhancing compounds that target the cholinergic system and any preliminary trials conducted with schizophrenic patients. RESULTS Currently available treatments which are potentially suitable for this purpose include acetylcholinesterase inhibitors, muscarinic agonists, nicotinic agonists, and allosteric potentiators of nicotinic receptor function. Although some open label studies demonstrate modest cognitive improvements of schizophrenic patients treated with donepezil, data from a blinded, placebo controlled study demonstrate no effect. Data from a controlled trial of galantamine, a combined acetylcholinesterase inhibitor and allosteric potentiator of the nicotinic receptor, indicates that this may be an effective alternative. In addition, some preclinical data indicates that selective M(1) muscarinic agonists under development may have potential as cognitive enhancers and antipsychotic treatments for schizophrenic patients. CONCLUSIONS A cholinergic approach to ameliorating the cognitive dysfunction of schizophrenia appears viable. There is some preliminary data to support the efficacy of combined acetylcholinesterase inhibitors and allosteric potentiators of the nicotinic receptor, whereas future trials are awaited for more specific muscarinic agonists currently under development.
Collapse
Affiliation(s)
- Joseph I Friedman
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| |
Collapse
|
29
|
Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval of tone/shock-induced fear conditioning. Learn Mem 2004; 11:102-7. [PMID: 14747523 PMCID: PMC321320 DOI: 10.1101/lm.64604] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with no effect on tone conditioning. Cholinergic antagonists also impair acquisition of contextual conditioning. Saline, scopolamine, or physostigmine was administered directly into the CA3 subregion of the hippocampus 10 min before rats were trained on a tone/shock-induced fear conditioning paradigm. Freezing behavior was used as the measure of learning. The scopolamine group froze significantly less during acquisition to the context relative to controls. The scopolamine group also froze less to the context test administered 24 h posttraining. A finer analysis of the data revealed that scopolamine disrupted encoding but not retrieval. The physostigmine group initially froze less during acquisition to the context, although this was not significantly different from controls. During the context test, the physostigmine group froze less initially but quickly matched the freezing levels of controls. A finer analysis of the data indicated that physostigmine disrupted retrieval but not encoding. These results suggest that increased ACh levels are necessary for encoding new spatial contexts, whereas decreased ACh levels are necessary for retrieving previously learned spatial contexts.
Collapse
Affiliation(s)
- Jason L Rogers
- Department of Psychology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
30
|
Yoo JH, Lee SY, Loh HH, Ho IK, Jang CG. Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in ?-opioid receptor knockout mice. Synapse 2004; 54:72-82. [PMID: 15352132 DOI: 10.1002/syn.20067] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anxiety and depression alterations have been reported in micro-opioid receptor knockout mice after exon 2 disruption. However, emotional behaviors, such as novelty and emergence responses have not been reported in micro-opioid receptor knockout mice due to the disruptions of exon 2 and 3. Here, we report that mu-opioid receptor knockout mice, with deletion of exon 2 and 3, display significant emotional behavior changes; they showed less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test, and less depressive-like behavior in the forced-swim test. Analysis of the compensatory mechanism in mu-opioid receptor knockout mice revealed that the M1 mRNA levels were reduced in the cortex, caudate putamen, nucleus accumbens, and hippocampus, and that M1 receptor levels were reduced in the nucleus accumbens, CA1, and the dentate gyrus of the hippocampus, versus the wild-type. However, 5-HT1A receptor levels were significantly elevated in the cerebral cortex and in the hypothalamus of mu-opioid receptor knockout mice versus the wild-type. These aberrant emotional behavioral phenotypes are possibly related to M1 and 5-HT1A receptor alterations in the micro-opioid receptor knockout mice. Overall, our study suggests that micro-opioid receptor may play a role in the modification of emotional responses to novelty, anxiety, and depression.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacokinetics
- Analysis of Variance
- Animals
- Behavior, Animal
- Brain/anatomy & histology
- Brain/diagnostic imaging
- Emotions/physiology
- Exploratory Behavior/physiology
- Gene Expression Regulation/physiology
- Immobilization
- In Situ Hybridization/methods
- Maze Learning/physiology
- Mice
- Mice, Knockout
- Muscarinic Antagonists/pharmacokinetics
- Pirenzepine/pharmacokinetics
- RNA, Messenger/metabolism
- Radioligand Assay/methods
- Radionuclide Imaging
- Reaction Time/genetics
- Receptor, Muscarinic M1/genetics
- Receptor, Muscarinic M1/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/genetics
- Serotonin Receptor Agonists/pharmacokinetics
- Swimming/physiology
- Time Factors
Collapse
Affiliation(s)
- Ji-Hoon Yoo
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Chacón MA, Reyes AE, Inestrosa NC. Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. J Neurochem 2003; 87:195-204. [PMID: 12969266 DOI: 10.1046/j.1471-4159.2003.01985.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have demonstrated that acetylcholinesterase (AChE) promotes the assembly of amyloid-beta-peptides into neurotoxic amyloid fibrils and is toxic for chick retina neuronal cultures and neuroblastoma cells. Moreover, AChE is present in senile plaques in Alzheimer's disease (AD) brains. Here we have studied the effect of AChE on astrocytes and hippocampal neurons in vivo. Morphological as well as behavioral disturbances were analyzed after intrahippocampal injection of AChE. Rats were trained in the Morris water maze and assayed for behavioral parameters. Neuronal cell loss was found in the upper leaf of the dentate gyrus in rats injected with AChE in comparison with control animals. Glial fibrillary acidic protein immunoreactivity showed astrocytic hypertrophy and the magnitude of the response was associated with neuronal cell loss. Behavioral results show that injection of AChE produces cognitive impairment demonstrated by an altered water maze performance including (i) a higher escape latency score, (ii) a decreased spatial acuity and (iii) a shorter time of swimming in the platform quadrant. These findings indicate that a local increment in neuronal AChE concentration at the mammalian hippocampus, such as those present in amyloid deposits, may play a role in triggering neuropathological and behavioral changes such as those observed in AD brains.
Collapse
Affiliation(s)
- Marcelo A Chacón
- Centro de Regulación Celular y Patología Dr Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
32
|
Mancama D, Arranz MJ, Kerwin RW. Genetic perspectives of histamine and muscarinic receptors in schizophrenia and clozapine response. Drug Dev Res 2003. [DOI: 10.1002/ddr.10291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Mogensen J, Svendsen G, Lauritsen KT, Ermens P, Hasman A, Elvertorp S, Plenge P, Mellerup E, Wörtwein G. Associative and nonassociative learning after chronic imipramine in rats. Pharmacol Biochem Behav 2003; 76:197-212. [PMID: 13679233 DOI: 10.1016/s0091-3057(03)00220-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated effects of 15 daily injections of imipramine (20 mg/kg; in one experiment also 10 and 30 mg/kg). The associative learning types (place learning and object recognition) as well as nonassociative learning (habituation of exploration in an open field and within the object recognition test) were studied. Tests were performed immediately after the final injection (early test) and 24 h after the final injection (late test). The 5-HT(1A), 5-HT(1B/D), 5-HT(2A), beta-adrenergic, D(2) receptors were assayed 24 h after the final injection and the 5-HT(2A) and beta-adrenergic receptors were also measured 60 and 96 h after the final injection. While associative types of learning were impaired in early tests, they remained unaffected in late tests and, while the nonassociative learning (habituation of exploration) remained unaffected in early tests, it was changed in late tests. Measured 24 h after the final injection, imipramine (20 and 30 mg/kg per day) down-regulated the concentration of beta-adrenergic and 5-HT(2A) receptors, while leaving all other measured receptors unaffected. However, only the down-regulation of the 5-HT(2A) receptor outlasted the initial 24-h period after the final injection. On the basis of present and previous results, we interpret the impairment of associative types of learning in early tests as a reflection of anticholinergic effects of imipramine, while the modifications of habituation of exploration in late tests are likely primarily to be mediated by imipramine-provoked regulations of serotonergic receptors.
Collapse
Affiliation(s)
- Jesper Mogensen
- Department of Psychology, University of Copenhagen, Amager, Njalsgade 88, DK-2300, Copenhagen S, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mancama D, Arranz MJ, Landau S, Kerwin R. Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 119B:2-6. [PMID: 12707929 DOI: 10.1002/ajmg.b.20020] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The involvement of specific pathways mediated through muscarinic receptor activity has been widely implicated in schizophrenia. Extensive pharmacological evidence supports the systems role in mediating antipsychotic drug efficacy, while mounting physiological evidence demonstrates the presence of significant alterations to normal muscarinic receptor integrity in the disorder. The mechanisms that facilitate the systems involvement and their magnitude, however, remain poorly understood. We have proposed that alterations to normal muscarinic receptor expression exist in schizophrenia, and that these significantly influence the physiological changes often reported for the system amongst patients. In this study, we investigate this potential, and have selected to examine the muscarinic 1 receptor, which constitutes a major target for antipsychotic action and plays a conspicuous role in those regions central to the disorders pathophysiology. Using relative gene quantification, we measured post-mortem levels of steady-state cortical muscarinic 1 receptor cDNA in patients (N = 20) and unaffected controls (N = 20), and examined group differences in expression levels. Commensurate with our hypothesis, we observed significant reductions in muscarinic 1 receptor cDNA in our patient sample (F(1,37) = 4.73, P = 0.036) and have estimated this to constitute a 28% decrease compared to the control subjects (95% CI from 2 to 47%). These results provide evidence in support of altered muscarinic 1 receptor expression in schizophrenia, though further work is needed to corroborate these findings.
Collapse
Affiliation(s)
- D Mancama
- Section of Clinical Neuropharmacology, Department of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London, England, UK.
| | | | | | | |
Collapse
|
35
|
Messer WS, Bachmann KA, Dockery C, El-Assadi AA, Hassoun E, Haupt N, Tang B, Li X. Development of CDD-0102 as a selective M1 agonist for the treatment of Alzheimer's disease. Drug Dev Res 2003. [DOI: 10.1002/ddr.10153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Khokhlova VN, Merzhanova GK, Dolbakyan EE. Network activity in neurons of the motor and prefrontal areas of the cortex in trained cats in conditions of systemic administration of m-cholinoreceptor blockers. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:631-42. [PMID: 12469892 DOI: 10.1023/a:1020465829338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experiments on five cats already trained to an operant conditioned food-procuring reflex to light were used to study the network activity of cells in the frontal and motor areas of the cortex accompanying disruption of conditioned reflex behavior in conditions of systemic administration of m-cholinoreceptor blockers. The activity of cortical neurons and their network properties were assessed using auto- and cross-correlation histograms. Doses of central m-cholinoreceptor blockers (the non-selective blocker scopolamine and the relatively selective m1-cholinoreceptor blocker trihexyphenidyl) disrupted performance of the operant motor reflex but had no effect on the appearance of contextual behavior and responses to switching on of the conditioned signal (standing up, elevating the paw). This was accompanied by 1) changes in the patterns of neuron activity in the moor and frontal areas of the cortex, with increases in train, rhythmic, and rhythmic train activity in cortical cells; 2) appearance of synchronicity in the operation of cortical neurons; 3) decreases in the numbers of direct interneuronal connections in the motor and frontal areas of the cortex and in the numbers of connections between these structures.
Collapse
Affiliation(s)
- V N Khokhlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
37
|
Abstract
Alzheimer's disease is a progressive neurological disorder characterized by amyloid plaques and neurofibrillary tangles along with memory and cognitive deficits associated with a loss of basal forebrain cholinergic neurons. Efforts to treat Alzheimer's disease have focused on compounds that elevate cholinergic activity such as cholinesterase inhibitors and direct acting muscarinic and nicotinic agonists. Low efficacy and poor selectivity of available compounds have limited the clinical utility of muscarinic agonists. Recent studies suggesting a role for muscarinic agonists in regulating the production of A beta raise the possibility that selective M1 agonists could be useful in treating not only the symptoms, but also the underlying cause(s) of Alzheimer's disease. Thus, renewed efforts have focused on the development of compounds with improved selectivity for M1 receptors and lower toxicity. 5-(3-ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine (CDD-0102) is a potent M1 agonist with a low side effect profile that enhances memory function in animal models of Alzheimer's disease. The available preclinical data suggest that CDD-0102 may be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- William S Messer
- Department of Pharmacology, College of Pharmacy, The University of Toledo, OH 43606, USA.
| |
Collapse
|
38
|
Mogensen J, Christensen LH, Johansson A, Wörtwein G, Bang LE, Holm S. Place learning in scopolamine-treated rats: the roles of distal cues and catecholaminergic mediation. Neurobiol Learn Mem 2002; 78:139-66. [PMID: 12071672 DOI: 10.1006/nlme.2001.4055] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Experiments 1 and 2 tested the hypothesis that cholinergic receptor antagonists impair place learning in a water maze by interfering with the processing of distal, visual cues. Extramaze cues were offered to rats in the form of geometrical patterns arranged on the inner circumference of a curtain surrounding the water maze. In Experiment 1 the animals were offered both the distal cues and proximal cues in the form of pingpong balls in fixed positions on the surface of the water while only distal cues were present in Experiment 2. Animals were injected with either scopolamine (0.5 mg/kg body wt) or saline 20 min prior to the daily place learning sessions. Upon reaching criterion level performance the animals were tested on "rotation" sessions on which the distal cues were displaced. The outcome of such "rotations" demonstrated that-regardless of the presence or absence of proximal cues-scopolamine-treated rats relied at least as much as normal animals on the distal cues. The acquisition phase of both Experiments 1 and 2 demonstrated an almost complete lack of scopolamine-associated impairment in acquisition and performance of the place learning task. In Experiment 3 (when scopolamine was no longer administered) the subjects of Experiment 2 were exposed to a series of pharmacological "challenges" of their place learning performance and eventually to surgical ablation of the anteromedial prefrontal cortex. The outcome of the pharmacological challenges and the postoperative test of task performance demonstrated that the place learning performance of animals which had acquired the task under scopolamine was mediated by a neural substrate dissimilar to the substrate of task performance in normal animals. Rats acquiring the task while deprived of the cholinergic system demonstrated above-normal contributions to task mediation from catecholaminergic-probably dopaminergic-mechanisms and tentative results pointed to a "shift" toward prefrontal task mediation.
Collapse
Affiliation(s)
- Jesper Mogensen
- Department of Psychology, University of Copenhagen, DK-2300 Copenhagen S, Denmark.
| | | | | | | | | | | |
Collapse
|
39
|
Kang TH, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H. Pteropodine and isopteropodine positively modulate the function of rat muscarinic M(1) and 5-HT(2) receptors expressed in Xenopus oocyte. Eur J Pharmacol 2002; 444:39-45. [PMID: 12191580 DOI: 10.1016/s0014-2999(02)01608-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pteropodine and isopteropodine are heteroyohimbine-type oxindole alkaloid components of Uncaria tomentosa (Willd.) DC, a Peruvian medicinal plant known as cat's claw. In this study, the effects of these alkaloids on the function of Ca(2+)-activated Cl(-) currents evoked by stimulation of G protein-coupled muscarinic M(1) acetylcholine and 5-HT(2) receptors were studied in Xenopus oocytes in which rat cortex total RNA was translated. Pteropodine and isopteropodine (1-30 microM) failed to induce membrane current by themselves. However, these alkaloids markedly enhanced the current responses evoked by both acetylcholine and 5-hydroxyhyptamine (5-HT) in a concentration-dependent and reversible manner with the maximal effects at 30 microM. Pteropodine and isopteropodine produced 2.7- and 3.3-fold increases in the acetylcholine response with EC(50) values of 9.52 and 9.92 microM, respectively, and 2.4- and 2.5-fold increases in the 5-HT response with EC(50) values of 13.5 and 14.5 microM, respectively. In contrast, in oocytes injected with total RNA from the rat cerebellum or spinal cord, neither alkaloid had an effect on the metabotropic current responses mediated by glutamate receptor(1 and 5) (mGlu(1/5)) receptors or ionotropic responses mediated by N-methyl-D-aspartate, kainic acid or glycine. Pteropodine and isopteropodine (10 microM) significantly reduced the EC(50) values of acetylcholine and 5-HT that elicited current responses, but had no effect on the maximal current responses elicited by acetylcholine and 5-HT. On the other hand, mitraphylline, a stereoisomer of pteropodine, failed to modulate acetylcholine- and 5-HT-induced responses. These results suggest that pteropodine and isopteropodine act as positive modulators of muscarinic M(1) and 5-HT(2) receptors.
Collapse
Affiliation(s)
- Tai-Hyun Kang
- Department of Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
OBJECTIVE This paper examines the current literature pertaining to brain ageing. The objective of this review is to provide an overview of the effects of ageing on brain structure and function and to examine possible mediators of these changes. METHODS A MEDLINE search was conducted for each area of interest. A selective review was undertaken of relevant articles. RESULTS Although fundamental changes in fluid intellectual abilities occur with age, global cognitive decline is not a hallmark of the ageing process. Decline in fluid intellectual ability is paralleled by regionally specific age related changes apparent from both structural and functional neuroimaging studies. The histopathological mediators of these changes do not appear to be reduction in neuronal number, which, with the exception of selected hippocampal regions, remain relatively stable across age. At the molecular level, several mechanisms of age related change have been postulated. Such theoretical models await refinement and may eventually provide a basis for therapy designed to reduce effects of the ageing process. The role of possible protective factors such as 'brain reserve', neuroprotective agents and hormonal factors in modifying individual vulnerability to the ageing process has been the focus of a limited number of studies. CONCLUSION Our understanding of the functional and structural changes associated with both healthy and pathological ageing is rapidly gaining in sophistication and complexity. An awareness of the fundamental biological substrates underpinning the ageing process will allow improved insights into vulnerability to neuropsychiatric disease associated with advancing age.
Collapse
Affiliation(s)
- J N Trollor
- School of Psychiatry, University of New South Wales and Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia.
| | | |
Collapse
|
41
|
Nakada Y, Tamura R, Kuriwaki J, Kimura T, Uwano T, Nishijo H, Ono T. Ameliorative effects of a cognitive enhancer, T-588, on place learning deficits induced by transient forebrain ischemia in rats. Physiol Behav 2001; 74:227-35. [PMID: 11564472 DOI: 10.1016/s0031-9384(01)00576-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, we investigated the effect of (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588), a newly synthesized cognitive enhancer, on place learning deficits in rats with damage selective to the hippocampal CA1 subfield induced by transient forebrain ischemia. Three weeks after the ischemic insult, T-588 was daily administered (0.3 or 3.0 mg/kg/day po). Place learning was tested in a task in which the rat was required to alternatively visit two places located diametrically opposite each other in an open field. The ischemic rats without the treatment of T-588 displayed severe learning impairment in this task; their performance level was significantly inferior to that of the sham-operated rats. The treatment of T-588 improved dose-dependently the task performance in ischemic rats, although no apparent protective effects on ischemic damage were found histologically. These results suggested that T-588 has ameliorative effects on learning deficits induced by brain ischemia, which could be produced through enhancement of residual cognitive functions.
Collapse
Affiliation(s)
- Y Nakada
- Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 2001. [PMID: 11438599 DOI: 10.1523/jneurosci.21-14-05239.2001] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the muscarinic acetylcholine receptor family are thought to play key roles in the regulation of a large number of important functions of the CNS. However, the precise roles of the individual muscarinic receptor subtypes in modulating these processes are not well understood at present, primarily because of the lack of ligands with sufficient receptor subtype selectivity. To investigate the behavioral significance of the M(1) muscarinic receptor (M(1)R), which is abundantly expressed in the forebrain, we subjected M(1) receptor-deficient mice (M(1)R(-/-) mice) to a battery of behavioral tests. M(1)R(-/-) mice showed no significant impairments in neurological reflexes, motor coordination, pain sensitivity, and prepulse inhibition. Strikingly, however, M(1)R(-/-) mice consistently exhibited a pronounced increase in locomotor activity in various tests, including open field, elevated plus maze, and light/dark transition tests. Moreover, M(1)R(-/-) mice showed reduced immobilization in the Porsolt forced swim test and reduced levels of freezing after inescapable footshocks, suggesting that M(1)R(-/-) mice are hyperactive under stressful conditions as well. An increased number of social contacts was observed in a social interaction test. Surprisingly, M(1)R(-/-) mice displayed no significant cognitive impairments in the Morris water maze and in contextual fear conditioning. M(1)R(-/-) mice showed slight performance deficits in auditory-cued fear conditioning and in an eight-arm radial maze, most likely because of the hyperactivity phenotype displayed by the M(1)R(-/-) mice. Our results indicate that M(1) muscarinic receptors play an important role in the regulation of locomotor activity but appear to be less critical for cognitive processes, as generally assumed.
Collapse
|
43
|
Fornari RV, Moreira KM, Oliveira MG. Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn Mem 2000; 7:287-92. [PMID: 11040260 PMCID: PMC311344 DOI: 10.1101/lm.34900] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nonselective muscarinic antagonist scopolamine is known to impair the acquisition of some learning tasks such as inhibitory avoidance. There has been recent research into the effects of this drug in contextual fear conditioning and tone fear conditioning paradigms. The purpose of the present study was to assess the role of the selective M1 muscarinic antagonist dicyclomine in these paradigms and in the inhibitory avoidance test. Rats were administered different doses of dicyclomine or saline 30 min before acquisition training. The animals were tested 24 hr later, and it was observed that 16 mg/kg of dicyclomine impaired both contextual fear conditioning and inhibitory avoidance. However, dicyclomine (up to 64 mg/kg) did not affect tone fear conditioning. These results suggest that the selective M1 muscarinic antagonist dicyclomine differentially affects aversively motivated tasks known to be dependent on hippocampal integrity (such as contextual fear conditioning and inhibitory avoidance) but does not affect similar hippocampus-independent tasks.
Collapse
Affiliation(s)
- R V Fornari
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros 925 CEP 04024-002, São Paulo SP, Brazil
| | | | | |
Collapse
|
44
|
Okuma Y, Murayama T, Tha KK, Yamada C, Hosokawa M, Ishikawa A, Watanabe R, Maekawa M, Nomura Y. Learning deficiency and alterations in acetylcholine receptors and protein kinase C in the brain of senescence-accelerated mouse (SAM)-P10. Mech Ageing Dev 2000; 114:191-9. [PMID: 10802123 DOI: 10.1016/s0047-6374(00)00103-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The senescence-accelerated mouse (SAM) is known to be a murine model for accelerated aging. A novel inbred SAMP10 has shown age-related brain atrophy and learning deficiency. In the present study, we investigated the changes in learning ability and in ligand binding with muscarinic acetylcholine (mACh) receptors, alpha adrenoceptors and protein kinase C in SAMP10. In Morris's water maze task, in a control strain of SAMR1 at 9 months, the escape latency and path length decreased with increasing trial days, in contrast, escape latency and path length did not decrease in SAMP10. These results indicate that SAMP10 exhibits learning deficiency. The ligand binding activity of mACh receptors decreased in the hippocampus of SAMP10 and the protein kinase C level in the hippocampus of SAMP10 was lower than that of SAMR1. On the other hand, there was no significant difference between SAMR1 and SAMP10 regarding ligand binding activity of alpha(1) and alpha(2) adrenoceptors. Thus, a reduction of mACh receptors and protein kinase C in the brain seems to underlie dysfunction of learning and memory in SAMP10.
Collapse
Affiliation(s)
- Y Okuma
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The M1 muscarinic agonist CI-1017 facilitates trace eyeblink conditioning in aging rabbits and increases the excitability of CA1 pyramidal neurons. J Neurosci 2000. [PMID: 10632607 DOI: 10.1523/jneurosci.20-02-00783.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The M1 muscarinic agonist CI-1017 was administered intravenously to aging rabbits on a daily basis before and during hippocampally dependent trace eyeblink conditioning sessions. Circulating levels of CI-1017 were significantly related to the drug dose. The drug was found to significantly increase the rate and amount of learning in a dose-dependent manner with no significant effects on the amplitude, area, or latency of conditioned responses. There was no evidence of pseudoconditioning at the highest drug concentration, and the minimally effective dose produced only mild and temporary hypersalivation as a side effect. CI-1017 (10 microM) was also found to increase the excitability of CA1 pyramidal neurons recorded from hippocampal slices from young and aging naive rabbits as measured by changes in spike-frequency adaptation and the postburst afterhyperpolarization. These biophysical changes were reversed with either atropine (1 microM) or pirenzepine (1 microM). These results suggest that M1 agonists ameliorate age-related learning and memory impairments at least in part by reducing the afterhyperpolarization and spike-frequency adaptation of hippocampal pyramidal neurons and that M1 agonists may be an effective therapy for reducing the cognitive deficits that accompany normal aging and/or Alzheimer's disease.
Collapse
|
46
|
Kikusui T, Aoyagi A, Kaneko T. Spatial working memory is independent of hippocampal CA1 long-term potentiation in rats. Behav Neurosci 2000. [DOI: 10.1037/0735-7044.114.4.700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Ghelardini C, Galeotti N, Gualtieri F, Scapecchi S, Bartolini A. Improvement of cognitive functions by the acetylcholine releaser SM 21. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199907)47:3<118::aid-ddr2>3.0.co;2-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Douma BR, Jansen K, Korte SM, Buwalda B, Van der Zee EA, Luiten PG. Corticosterone modifies muscarinic receptor immunoreactivity in rat hippocampus. Neurosci Lett 1999; 268:41-4. [PMID: 10400073 DOI: 10.1016/s0304-3940(99)00377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study we report the effect of corticosterone in the regulation of hippocampal muscarinic acetylcholine receptor immunoreactivity (mAChR-ir) expression in rats. Adrenalectomy (ADX) or a single injection of a mineralocorticoid antagonist RU-28318 (1.0 mg/100 g body weight (b.w.)) in adrenally intact rats 24 h prior to sacrifice revealed an increased mAChR-ir in hippocampal CA1 and CA3 areas. Corticosterone replacement (100 microg/100 g b.w.) prevented the increase in mAChR-ir of ADX animals. However, glucocorticoid receptor antagonist (RU38486) treatment in adrenally intact rats failed to affect the mAChR immunolabeling. These results point to a modulation of muscarinic receptors by corticosterone that is predominantly mediated by the mineralocorticoid receptor.
Collapse
Affiliation(s)
- B R Douma
- Department of Animal Physiology, Graduated School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Kikusui T, Tonohiro T, Kaneko T. Simultaneous evaluation of spatial working memory and motivation by the allocentric place discrimination task in the water maze in rats. J Vet Med Sci 1999; 61:673-81. [PMID: 10423691 DOI: 10.1292/jvms.61.673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In order to evaluate learning and memory deficits separately from and simultaneously with motivational, motor and sensory impairments in identical animals, we developed the allocentric place discrimination task test using a water maze in rats. For this assessment task, two similar, visible platforms, one was fixed and the other was floating, were simultaneously present in a pool, and the working memory of the allocentric place discrimination task was evaluated. After training, the task accuracy was high about 85% correct and animals were used repeatedly. The accuracy decreased significantly when the pool was surrounded with a black curtain. Muscarinic receptor antagonist scopolamine 0.5 mg/kg selectively impaired the accuracy. Muscle relaxant dantrolene 10 mg/kg selectively decreased swimming speed. Under low motivational condition (warm water), still time increased and swimming speed decreased, but the accuracy was not affected. Similar to warm water, opioid receptor agonist morphine 15 mg/kg increased still time and decreased swimming speed. These results suggest that the allocentric place discrimination task is useful in evaluating spatial working memory ability independently of and concurrently with also visual, motor ability and motivation in identical animals.
Collapse
Affiliation(s)
- T Kikusui
- Neuroscience Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
50
|
Ghelardini C, Galeotti N, Matucci R, Bellucci C, Gualtieri F, Capaccioli S, Quattrone A, Bartolini A. Antisense 'knockdowns' of M1 receptors induces transient anterograde amnesia in mice. Neuropharmacology 1999; 38:339-48. [PMID: 10219972 DOI: 10.1016/s0028-3908(98)00194-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect on memory processes of inactivation of the M1 gene by an antisense oligodeoxyribonucleotide (aODN) was investigated in the mouse passive avoidance test. Mice received a single intracerebroventricular (i.c.v.) injection of M1 aODN (0.3, 1.0 or 2.0 nmol per injection), degenerated ODN (dODN) or vehicle on days 1, 4 and 7. An amnesic effect, comparable to that produced by antimuscarinic drugs, was observed 12, 24, 48 and 72 h after the last i.c.v. aODN injection, whereas dODN and vehicle, used as controls, did not produce any effect. Reduction in the entrance latency to the dark compartment induced by aODN disappeared 7 days after the end of aODN treatment, which indicates the absence of any irreversible damage or toxicity caused by aODN. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that a decrease in M1 mRNA levels occurred only in the aODN-treated group, being absent in all control groups. Furthermore, a reduction in M1 receptors was observed in the hippocampus of aODN-treated mice. Neither aODN, dODN nor vehicle produced any behavioral impairment of mice. These results indicate that the integrity and functionality of M1 receptors are fundamental in the modulation of memory processes.
Collapse
Affiliation(s)
- C Ghelardini
- Department of Pharmacology, University of Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|